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Abstract
Due to repetitive trial-and-error style interactions
between agents and a fixed traffic environment
during the policy learning, existing Reinforcement
Learning (RL)-based Traffic Signal Control (TSC)
methods greatly suffer from long RL training time
and poor adaptability of RL agents to other com-
plex traffic environments. To address these prob-
lems, we propose a novel Adversarial Inverse Re-
inforcement Learning (AIRL)-based pre-training
method named InitLight, which enables effective
initial model generation for TSC agents. Unlike
traditional RL-based TSC approaches that train a
large number of agents simultaneously for a spe-
cific multi-intersection environment, InitLight pre-
trains only one single initial model based on multi-
ple single-intersection environments together with
their expert trajectories. Since the reward function
learned by InitLight can recover ground-truth TSC
rewards for different intersections at optimality, the
pre-trained agent can be deployed at intersections
of any traffic environments as initial models to
accelerate subsequent overall global RL training.
Comprehensive experimental results show that, the
initial model generated by InitLight can not only
significantly accelerate the convergence with much
fewer episodes, but also own superior generaliza-
tion ability to accommodate various kinds of com-
plex traffic environments.

1 Introduction
Along with the rapid growth of urbanization, we are witness-
ing an increasing number of traffic jams on road networks
worldwide, inevitably resulting in both serious environmental
pollution (e.g., carbon emissions) and tremendous loss in eco-
nomic and time costs. To reduce such traffic congestion, vari-
ous Traffic Signal Control (TSC) methods [Rizzo et al., 2019;
Chen et al., 2020b; Zheng et al., 2021] have been extensively
studied. So far, the most widely used TSC approaches in
practice can be classified into two categories: i) rule-based
methods (e.g., FixedTime [Koonce and Rodegerdts, 2008],
GreenWave [Török and Kertész, 1996], SCOOT [Hunt et al.,
1982], and SCATS [PR, 1992]) that make control decisions

based on the pre-defined rules of traffic plans; and ii) adap-
tive methods (e.g., MaxPressure [Varaiya, 2013], MaxQueue
[Zhang et al., 2021], and SOTL [Cools et al., 2013]) that con-
trol the traffic in a heuristic manner.

Thanks to the prosperity of Artificial Intelligence (AI), Re-
inforcement Learning (RL) has become more and more pop-
ular in designing intelligent policies to further improve TSC
performance. Unlike traditional TSC methods, RL-based
TSC equips each intersection with an agent, which gradually
trains its control policy based on repetitive “trial-and-error”
style interactions with the corresponding intersection traffic.
Although such methods can achieve much better TSC per-
formance than their traditional counterparts, due to the in-
creasing simulation complexity of modern traffics, the train-
ing time for agents of RL-based TSC is skyrocketing. Worse
still, existing RL-based TSC methods are typically traffic
environment-specific, i.e., a set of correlated RL-based agents
are trained together within a specific traffic environment. As
a result, it is hard for such agents to either learn from or ben-
efit from the training in other complex traffic environments.
Therefore, how to effectively improve both the learning effi-
ciency and generalization ability of RL agents is becoming a
major challenge in the design of RL-based TSC.
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Figure 1: Our InitLight framework.

Inspired by the concept of Adversarial Inverse Reinforce-
ment Learning (AIRL), we propose a novel agent pre-training
method named InitLight, which can quickly generate an ini-
tial model with superior generalization ability to other com-
plex traffic environments. As shown in Figure 1, InitLight
is built on top of an adversarial framework consisting of
two main components, i.e., generator and discriminator. Un-
like traditional RL-based TSC methods that train a large
set of correlated agents simultaneously for a specific multi-
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intersection environment, the pre-training made by InitLight
is based on a variety of single-intersection environments to-
gether with their expert trajectories. To form a pre-trained ini-
tial model, InitLight conducts the training on a Proximal Pol-
icy Optimization (PPO) [Schulman et al., 2017] agent guided
by the discriminator, which iteratively distinguishes the ex-
pert trajectories (obtained from a given TSC method) from
agent trajectories (derived from real-time agent-environment
interactions). Eventually, the discriminator learns a reward
function that can recover the ground-truth reward function at
optimality for TSC of any traffic environment. Therefore, the
pre-trained agent by InitLight can be deployed at intersec-
tions of any complex traffic environments as the initial mod-
els to accelerate their overall global RL training. This paper
makes the following three major contributions:

•We propose a novel AIRL-based framework that can
quickly derive a general but effective initial model for
various multi-intersection environments to accelerate
their overall RL-training performance.

•We introduce an adversarial learning mechanism that
supports simultaneous learning of the RL model and re-
ward function, where the discriminator can recover the
ground-truth reward at optimality.

•We implement InitLight on top of the traffic simulator
Cityflow [Zhang et al., 2019], and conduct comprehen-
sive experiments on both complex real-world and syn-
thetic multi-intersection datasets to show the effective-
ness of our approach.

2 Related Work
Various RL-based methods [Chen et al., 2022] have been
proposed to improve the performance of TSC. For example,
inspired by the Max Pressure (MP) control theory [Varaiya,
2013], PressLight [Wei et al., 2019a], MPLight [Chen et al.,
2020a], and MetaLight [Zang et al., 2020] conducted RL-
based TSC optimization by encoding both system states and
reward functions based on pressure. Similarly, Zhao et al.
[2022] created a new concept named intensity, which takes
extra vehicle dynamics (i.e., speed and position) besides pres-
sure into account. Based on the notion of intensity, Ye et al.
[2022] presented the fair index, which takes the travel quality
of individual vehicles into account. To further improve TSC
performance, Ye et al. [2021] developed FedLight, which
adopts federated reinforcement learning to reduce the over-
all RL training costs. Jiang et al. [2022] proposed a univer-
sal communication form to enable high-quality TSC based on
cooperation among intersections. Moreover, RL-based meth-
ods have been increasingly investigated in specific TSC prob-
lems, e.g., multi-agent-based TSC [de Almeida et al., 2022;
Koohy et al., 2022], TSC with dynamic lanes [Jiang et al.,
2021], and resource-constrained TSC [Xing et al., 2022]. Al-
though the above methods are promising, most of them adopt
randomly initialized models, where TSC agents need a long
training time to achieve near-optimal control performance.

Under the guidance of expert trajectories, Inverse Rein-
forcement Learning (IRL) [Russell, 1998; Ng et al., 2000]
has been acknowledged as a promising way to optimize RL

policy learning. However, existing IRL methods (e.g., max-
imum margin approaches [Abbeel and Ng, 2004; Ratliff et
al., 2006] and probabilistic approaches [Ziebart et al., 2008;
Ramachandran and Amir, 2007; Boularias et al., 2011; Choi
and Kim, 2013]) are not good at dealing with complex RL
tasks. Although various adversarial IRL methods [Ho and Er-
mon, 2016; Finn et al., 2016a; Finn et al., 2016b] have been
proposed to tackle such a problem, most of them: i) do not
support reward function recovery; or ii) have to learn from
complete trajectories. Therefore, they are unsuitable for RL
scenarios with complex settings or uncertain environments.
To enable smooth transfer between environments with no-
table variations, Fu et al. [2018] proposed an effective ad-
versarial IRL method named AIRL based on a novel adver-
sarial reward learning formulation, whose discriminator can
accurately recover reward functions with superior adaptabil-
ity to various dynamic environments. Inspired by AIRL, we
propose a novel pre-training method that can derive initial
models for TSC agents to accelerate the overall RL perfor-
mance of complex traffic environments. Unlike existing RL-
based TSC methods [Xiong et al., 2019; Zhang et al., 2020;
Zhu et al., 2021] that consider generalization performance,
our work can quickly pre-train a general but effective initial
model from single-intersection environments, which can be
deployed to various kinds of multiple-intersection environ-
ments to accelerate their RL training processes.

To the best of our knowledge, InitLight is the first adver-
sarial IRL framework for TSC to enable the pre-training of
an initial model for the RL agent, which can be deployed to
arbitrary complex traffic environments to accelerate their RL
training processes.

3 Our InitLight Approach
To enable training an effective initial RL model with out-
standing adaptability to various traffic environments, we de-
sign InitLight based on an adversarial architecture, where the
discriminator learns a reward function from expert trajecto-
ries to guide the RL training. Figure 2 details the major
components and workflow of InitLight. In our approach, the
adversarial framework consists of a generator, a discrimina-
tor, and three buffers. Through interactions between the PPO
agent and the corresponding traffic environment, the gener-
ator generates agent trajectory data stored in the agent tra-
jectory buffer to confuse the discriminator. By distinguish-
ing between expert and agent trajectories, the discriminator
can learn a reward function to guide the learning process of
the PPO agent. Based on the adversarial learning framework
above, InitLight can improve both the learning efficiency and
generalization ability of RL models. The following subsec-
tions will give the details of our approach.

3.1 Generator Design
As shown on the left part of Figure 2, the generator consists of
a PPO agent and a single-intersection environment. The PPO
agent interacts with the environment to generate agent trajec-
tory data in the same way as classic reinforcement learning.
We use solid-line arrows in the generator part to show this
process. First, the agent obtains the current traffic state s
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Figure 2: Architecture and workflow of InitLight.

from the intersection environment. Second, a best action a
is chosen by the agent based on s. Finally, after applying a in
traffic lights, the traffic environment will enter the next state
s′. The trajectory data ⟨s, a, r, s′⟩ will be saved in the agent
replay buffer for future learning by using mini-batch samples
B⟨s,a,r,s′⟩, where reward r is obtained from the discriminator
based on ⟨s, a, s′⟩.
Intersection Modeling. The right part of the generator in
Figure 2 shows an intersection example. The intersection
consists of a set of arrival lanes La = {l1i , l2i , · · · , l12i } and
a set of departure lanes Ld = {l1o, l2o, · · · , l12o }. Each road is
represented by a 2-tuple (li, lo), where li ∈ La and lo ∈ Ld

are incoming and outgoing lanes, respectively. Based on di-
rection marks on the end of each arrival lane, we define a
directed road as (li, lo) if lo is the departure lane indicated by
the direction mark on the ground of li. For example, (l10i , l10o )
and (l11i , l11o ) are two directed roads. According to common
sense, the vehicles turning right are not restricted by traffic
signals. Therefore, there is a set of eight feasible control
phases P = {p1, · · · , p8} indicating the rights-of-way sig-
naled to vehicles by traffic lights. The intersection example
shows a scenario with control phase p5 enabled, where the
vehicles on lane l10i can turn left to enter lane l10o and the ve-
hicles on lane l11i can go straight to enter lane l11o . Note that,
when the number of lanes increases, the number of control
phases will not change.

Pressure. Inspired by the MP control theory [Varaiya,
2013], we use the concept of pressure for the design of RL
agents.

Definition 1. (Pressure of a Directed Road). For a directed
road (li, lo), the pressure of (li, lo) is defined as

P(li,lo) = N(li)−N(lo), (1)

where N(li) and N(lo) are the numbers of vehicles on the
arrival lane li and departure lane lo, respectively.

For example, in Figure 2, the pressure of directed road
(l2i , l

2
0) is P(l2i ,l

2
0)

= 2− 1 = 1.

Definition 2. (Pressure of an Intersection). The pressure of

an intersection I is calculated as:

PI =

∣∣∣∣∣ ∑
li∈La

N(li)−
∑

lo∈La

N(lo)

∣∣∣∣∣ . (2)

In the example of Figure 2, we have PI = |0+2+1+2+
2 + 1 + 2 + 1 + 1 + 2 + 2 + 2 − 0 − 1 − 1 − 1 − 1 − 2 −
1− 1− 1− 2− 1− 1| = 5.

Intuitively, the pressures of roads and intersections indi-
cate the degrees of disequilibrium between the numbers of
arrival and departure vehicles. In general, we can maximize
the throughput of an intersection by minimizing the pressure,
PI , of the intersection. This is because larger PI implies a
more unbalanced distribution of vehicles.
Agent Design. Based on the pressure definition, we design
the key elements of PPO agent using the following settings:

• State: The PPO agent captures part of the intersection
information as the state. For a standard intersection as
shown in Figure 2, the state includes the pressure of all
the directed roads (i.e., P(l1i ,l

1
o)
, P(l2i ,l

2
o)
, · · · , P(l12i ,l12o ))

and the current control phase pcur (i.e., p5).
• Action: Based on the observed state, the PPO agent

needs to choose one best control phase to maximize the
throughput of the intersection. In this paper, the PPO
agent has 8 permissible phases (i.e., p1, · · · , p8) by de-
fault as shown in Figure 2.

• Reward: When an action finishes, the environment will
return a reward as r = −PI to reflect the effect of the
action, where PI is the intersection pressure. Note that,
in single-intersection environments, we use a discrimi-
nator to learn a reward function from expert trajectories
and generate the reward of each agent trajectory sample,
which is helpful to pre-train a robust initial agent.

In our approach, the PPO agent has two neural networks,
namely, Actor and Critic models, with their own model pa-
rameters, Aθ and Cθ, respectively. The Actor model is used
to learn which action to take under the current state, whereas
the Critic model learns to evaluate whether or not the action
(chosen by the Actor model) can result in a better state of the
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traffic environment. Meanwhile, the feedback from the Critic
model is used to optimize the Actor model. On the left part of
Figure 2, the dashed-line arrows show the learning process of
the PPO agent. To calculate the loss value for optimization, a
mini-batch of sequential trajectory samples is collected from
the agent replay buffer. Note that, the trajectory samples of
the mini-batch must be continuous.

Critic Model. The loss function of the Critic model is:

LC = E[|Cθ(st)target − Cθ(st)|], (3)

where E is an operator to calculate empirical average over
a mini-batch of samples. By using the Temporal-Difference
(TD) algorithm [Tesauro and others, 1995] to estimate the
target value, Cθ(st)target is calculated by Cθ(st)target =
rt+1+γ ·C(st+1). The parameters of the Critic model can be
updated by the stochastic gradient descent algorithm Adam
[Kingma and Ba, 2014]:

θ′C = θC − ηC∇LC , (4)

where ∇LC is the gradient of Critic’s loss, θC is model pa-
rameters of C, θ′C denotes the updated parameters, and ηC is
the learning rate for the optimization of the Critic model.

Actor Model. Since PPO is a policy gradient-based RL al-
gorithm, the original loss function of the Actor model LA is:

LA = E[log(Aθ(at|st))At], (5)

where At is an estimated value of the advantage function at
time step t. By using the Generalized Advantage Estimator
(GAE) [Schulman et al., 2015], At is calculated as follows:

At = δt + (γλ)δt+1 + (γλ)2δt+2

+ · · ·+ (γλ)|B|−t+1δ|B|−1,
(6)

where γ ∈ [0, 1] is the discount factor of future rewards,
λ ∈ [0, 1] is the GAE parameter, |B| is the batch size of the
sampled mini-batch B, and δt = rt + γCθ(st+1)− Cθ(st).

In our PPO agent, instead of using the original loss function
in Equation 5, we use the importance sampling to obtain the
expectation of samples under the new Actor model Aθ we
need to update. Note that, the samples are gathered from an
old Actor model Aold

θ . The loss function of the Actor model
by using the importance sampling is:

LA = E
[
Aθ(at|st)
Aold

θ (at|st)
At

]
. (7)

By using Kullback–Leibler divergence [Kullback, 1997]
with a small value ϵ, we can optimize LA subject to the con-
straint on the amount of the Actor model optimization:

E[KL(Aθ(·|st), Aold
θ (·|st))] ≤ ϵ. (8)

To simplify the implementation and improve the sampling ef-
ficiency, the loss function LA can be given by a clipped sur-
rogate objective function:

LA = E[min(Rt, clip(Rt, 1− σ, 1 + σ))At], (9)

where Rt = Aθ(at|st)
Aold

θ (at|st)
and σ is the clipping parameter that

restricts the upper/lower bounds in the clip(·) function to sta-
bilize the updating process. By using the clipped objective
function, the PPO agent can quickly avoid actions with neg-
ative advantage values and does not greedily choose actions
with positive advantage values.

3.2 Discriminator Design
Inspired by AIRL, we design a discriminator to learn a reward
function from expert trajectories, which is robust to changes
in dynamics and can guide the pre-training process of the
agent. On the right part of Figure 2, the discriminator has
two neural networks R and V . The solid-line arrows show
the reward generation based on the agent trajectory ⟨s, a, s′⟩
and dashed-line arrows show the learned reward function op-
timization from the expert trajectory ⟨se, ae, s′e⟩.

In a trajectory-centric formulation proposed by [Finn et al.,
2016a], the discriminator Dθ is defined as follows:

Dθ(τ) =
exp{fθ(τ)}

exp{fθ(τ)}+ π(τ)
, (10)

where τ is a sequence of states and actions induced by a pol-
icy and dynamics, fθ is a learned function with its own pa-
rameter θ, π is the policy of agent trained to maximize the
learned reward R(τ) = log(1 − Dθ(τ)) − logDθ(τ). Note
that, updating the discriminator can be viewed as updating
the reward function, and updating the policy can be viewed
as improving the sampling distribution used to estimate the
partition function. If trained to optimality, it has been proved
that an optimal reward function can be extracted from the op-
timal discriminator as f∗(τ) = R∗(τ)+c and the policy π can
recover the optimal policy, where c is a constant value. How-
ever, using the entire trajectory τ can result in high-variance
estimates compared to using single state-action pairs.

In order to solve this issue, we convert Equation 10 into a
single state and action case:

Dθ(s, a) =
exp{fθ(s, a)}

exp{fθ(s, a)}+ π(a|s)
. (11)

Fu et al. [Fu et al., 2018] proved that, at optimality, f∗
θ (s, a)

is equal to the advantage function of the optimal policy
A∗(s, a):

f∗
θ (s, a) = logπ∗(a|s) = A∗(s, a). (12)

Although this change results in an efficient algorithm for im-
itation learning, it is less desirable for the purpose of reward
learning. This is because the advantage function is a heavily
entangled reward and it supervises each action based on the
action of the optimal policy, which is not robust to changes in
environmental dynamics.

To decouple the reward function from the advantage, we
modify the discriminator with the form:

Dθ(s, a, s
′) =

exp{fRθ,Vθ
(s, a, s′)}

exp{fRθ,Vθ
(s, a, s′)}+Aθ(a|s)

, (13)
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where the policy π is equivalent to the Actor model Aθ,
fRθ,Vθ

is restricted to a reward approximator Rθ and a shap-
ing term Sθ with their own parameters θ:

fRθ,Vθ
(s, a, s′) = Rθ(s, a) + γVθ(s

′)− Vθ(s). (14)

The additional shaping term Vθ helps mitigate the effects of
unwanted shaping on our reward approximator Rθ. The ad-
vantage of this approach is that Rθ(s) can be parameterized
as a sole function of the state, which allows us to extract dis-
entangled rewards from the dynamics of the environment. At
optimality, it can recover a state-only ground-truth reward in
this restricted case:

R∗
θ = R∗(s) + c,

V ∗
θ = V ∗(s) + c,

(15)

where R∗(·) is the true reward function and V ∗(·) is the opti-
mal value function. This is because, by Equation 12, f∗

Rθ,Vθ

must recover to the advantage function:

Algorithm 1 The Training Procedure for InitLight
Input: i) the number, E, of episodes, ii) the number, S, of
episode steps; iii) expert trajectory buffer Be; iv) agent tra-
jectory buffer Ba; v) agent replay buffer Br; vi) Actor model
Aθ; vii) Critic model Cθ; viii) R model Rθ; ix) V model Vθ;
x) discount factor γ, and; xi) batch size N .
Output: i) Cθ; ii) Aθ.

1: initialize Ba and Br to empty;
2: for episode = 1, 2, · · · , E do
3: for step = 1, 2, · · · , S do
4: obtain the current state s;
5: choose the action a based on s;
6: execute action a in environment;
7: observe the next state s′;
8: store agent trajectory ⟨s, a, s′⟩ in Ba;
9: compute f ← Rθ(s, a) + γVθ(s

′)− Vθ(s);
10: compute d← exp(f)/(exp(f) +Aθ(a|s));
11: compute reward r ← log(d)− log(1− d);
12: store trajectory ⟨s, a, s′, r⟩ in Br;
13: if Br.size() ≥ N then
14: sample a mini-batch be of size N from Be;
15: sample a mini-batch ba of size N from Ba;
16: for samplee in be and samplea in ba do
17: compute Le and La by Equation 17;
18: compute LD ← Le + La;
19: update model parameters of Rθ and Vθ;
20: end for
21: sample a mini-batch br of size N from Br;
22: for sampler in br do
23: compute LC using Equation 3;
24: compute LA using Equation 9;
25: update model parameters of Cθ and Aθ;
26: end for
27: end if
28: end for
29: end for
30: return trained models Cθ and Aθ;

f∗(s, a, s′) = A∗(s, a) = Q(s, a)− V (s)

= R∗(s) + γV ∗(s′)− V ∗(s),
(16)

where f(s, a, s′) can be considered as a single-sample esti-
mate of A∗(s, a) in stochastic environments and Q(·) is the
Q-function. Therefore, Rθ and Vθ can recover to the ground-
truth reward and optimal value function, respectively.

Since the objective of the discriminator is to classify expert
and agent trajectories, we use a binary cross-entropy loss to
train the discriminator. The loss function of the discriminator
is LD = Le + La, where Le and La are defined as follows:

Le = − 1

N

N∑
i=1

yei log(DG,H(xei))

+(1− yei)log(1−DG,H(xei)),

La = − 1

N

N∑
i=1

yai
log(DG,H(xai

))

+(1− yai
)log(1−DG,H(xai

)), (17)

where xei and xai
are expert and agent trajectory samples,

respectively, yei and yai
are labels that indicate whether the

corresponding sample is from agent or expert trajectories, re-
spectively, and N is the number of samples.

3.3 InitLight Implementation
Algorithm 1 details the training process of InitLight. In lines
4-12, the PPO agent interacts with the environment and stores
the trajectory, where the reward is generated by the discrimi-
nator. Lines 14-20 show the optimization of the discriminator.
After the discriminator update, lines 21-26 update the param-
eters of the PPO agent. Finally, line 30 returns a trained PPO
agent as the initial model to be applied in multi-intersection
traffic scenarios.

4 Performance Evaluation
To evaluate the effectiveness of our approach, we conducted
experiments on an Ubuntu server equipped with 3.7GHz In-
tel CPU, 32GB memory, and NVIDIA RTX 3080 GPU. We
used the open-source traffic simulator Cityflow [Zhang et al.,
2019] to simulate both single- and multi-intersection environ-
ments. During the simulation of traffic scenarios, similar to
the work in [Wei et al., 2019a; Ye et al., 2021], we set the
phase duration of each signal light to 10 seconds. In Init-
Light, the PPO agent contains two neural networks, i.e., the
Actor model with three layers (13, 32, and 8 neurons on each
layer, respectively) and the Critic model with three layers (13,
64, and 1 neurons on each layer, respectively). The R model
and V model of the discriminator have the same structure,
i.e., three layers with 13, 32, and 1 neurons on each layer,
respectively. We used the Adam optimizer for parameter up-
dating and set the learning rate η to 0.0003 for all models. The
discount factor γ is 0.99, and the GAE parameter λ is 0.95.
The batch size N of the data sampled for training is 20, and
the clipping parameter ϵ is 0.2. We designed comprehensive
experiments to answer the following three research questions.
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Type Method Average Travel Time (seconds)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Non-RL FixedTime 385.16 556.05 412.41 209.13 165.86 217.05 186.41 247.63 502.89 458.88 535.41
MaxPressure 112.31 125.88 103.34 93.22 87.20 91.79 93.23 95.32 106.23 98.95 103.63

RL

PressLight 125.24 151.28 98.21 75.04 70.41 78.67 76.13 83.06 108.11 88.91 97.58
A2C 155.59 213.09 116.89 77.09 71.34 76.00 75.91 84.55 113.64 120.86 111.51

FedLight 155.59 213.09 116.89 77.09 71.34 76.00 75.91 84.55 113.64 120.86 111.51
PPO 104.98 134.44 98.87 82.32 73.29 76.99 79.28 94.83 98.06 92.92 94.04

InitLight 94.20 110.09 97.92 74.06 73.75 77.80 80.91 84.85 101.02 87.80 94.14

Table 1: Comparison of average travel time on single-intersection datasets.

Type Method
Average Travel Time (seconds)

Synthetic Datasets Real-World Datasets
Syn1 Syn2 Syn3 Syn4 Hangzhou1 Hangzhou2 Jinan1 Jinan2 Jinan3

Non-RL FixedTime 380.35 453.73 534.47 606.52 525.28 537.82 444.84 378.41 403.22
MaxPressure 122.68 162.32 245.26 310.37 404.67 456.11 373.76 371.24 356.30

RL

PressLight 108.23 145.43 186.28 260.41 351.55 425.61 305.21 302.56 294.08
A2C 117.60 133.65 236.58 433.85 339.24 416.08 375.12 322.92 288.92

FedLight 108.71 136.45 172.45 217.58 341.94 410.40 290.38 290.58 278.69
PPO 105.86 138.11 204.76 314.84 358.66 421.89 321.37 304.66 286.43

InitLight 102.86 126.44 172.36 237.52 333.80 374.60 297.58 293.81 284.24

Table 2: Comparison of average travel time on multi-intersection datasets.

Method
Average Travel Time after the 1st Episode (seconds) / Start Episode # of Converge (#)

Synthetic Datasets Real-World Datasets
Syn1 Syn2 Syn3 Syn4 Hangzhou1 Hangzhou2 Jinan1 Jinan2 Jinan3

PressLight 487.54 (79) 532.26 (123) 759.62 (142) 781.93 (157) 472.46 (80) 521.24 (61) 541.44 (75) 512.36 (76) 543.18 (82)
A2C 871.73 (95) 1306.89 (165) 1032.85 (N/A) 1315.05 (N/A) 1241.92 (122) 765.53 (65) 1298.90 (N/A) 1207.52 (105) 1224.99 (133)

FedLight 916.81 (53) 1175.63 (111) 1309.26 (133) 1357.66 (59) 1009.92 (48) 807.72 (52) 1152.66 (47) 1213.16 (110) 1229.11 (70)
PPO 873.82 (83) 1056.83 (165) 1127.96 (145) 1297.66 (N/A) 813.43 (111) 694.34 (100) 972.88 (110) 1031.68 (89) 869.87 (80)

InitLight 115.73 (1) 164.63 (2) 202.51 (2) 262.45 (5) 330.78 (1) 387.06 (1) 300.42 (1) 294.18 (1) 288.42 (1)

Table 3: Convergence information on multi-intersection datasets.
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Figure 3: Convergence comparison for single-intersection datasets.

RQ1 (Effectiveness): Can InitLight quickly learn from ex-
pert trajectories of single-intersection environments and form
a corresponding high-quality TSC policy?

RQ2 (Generalizability): Can the agent pre-trained in RQ1
be deployed in arbitrary complex multi-intersection environ-
ments to benefit their RL training processes?

RQ3 (Benefits): Why can our proposed InitLight substan-
tially improve the learning performance and generalization
ability of RL models?

4.1 Experimental Settings
Baselines. Since the agent design of our InitLight approach
is based on the concept of the pressure, for fair comparison,
we chose six representative pressure-based baseline methods,
including two classic Non-RL methods and four RL-based
methods as follows: i) FixedTime [Koonce and Rodegerdts,
2008], a non-RL control method that cyclically selects control
phases based on a predefined phase sequence; ii) MaxPres-

sure [Varaiya, 2013], a heuristic MP-based control method
that greedily selects the phase with the maximum pressure;
iii) PressLight [Wei et al., 2019a], a deep RL-based control
method controlling traffic lights intelligently based on the MP
control theory; iv) A2C [Ye et al., 2021], a TSC method that
controls one intersection by an individual Advantage Actor-
Critic (A2C) agent; v) FedLight [Ye et al., 2021], a state-of-
the-art federated reinforcement learning method that enables
the sharing of the knowledge among RL agents; and vi) PPO
[Schulman et al., 2017], a deep RL-based method that uses
the PPO algorithm to control traffic lights.
Datasets. We tested twenty public datasets (i.e., environ-
ments) provided by [Wei et al., 2019b], including eleven
real-world single-intersection datasets (i.e., S1-S11), four
synthetic multi-intersection datasets (i.e., Syn1-Syn4), and
five real-world multi-intersection datasets (i.e., Hangzhou1,
Hangzhou2, and Jinan1-Jinan3). For all the investigated
datasets, each intersection of all the road networks has four
incoming roads and four outgoing roads, where each road has
three lanes, i.e., turning left, going straight, and turning right.
The details of the datasets are as follows:

• Real-world single-intersection datasets: We consid-
ered 11 real-world single-intersection datasets (i.e., S1-
S11), which are captured by cameras deployed in the
city of Hangzhou. Based on the collected taxi statistics
in Hangzhou, we set the turning ratios of these datasets
to 10%, 60%, and 30% for turning left, going straight,
and turning right, respectively.

• Synthetic multi-intersection datasets: Synthetic
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Figure 4: Convergence rates in multi-intersection datasets.
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Figure 5: Learned rewards on single-intersection datasets.

datasets, Syn1-Syn4, contain 1 × 3, 2 × 2, 3 × 3, and
4×4 intersections, respectively. The vehicle arrival rates
of each dataset follow a Gaussian distribution with an
average of 500 vehicles per hour for each entry lane.

• Real-world multi-intersection datasets: We in-
vestigated five real-world datasets (i.e., Hangzhou1,
Hangzhou2, Jinan1, Jinan2, and Jinan3), which are col-
lected by the cameras deployed in the cities of Hangzhou
(Gudang sub-district) and Jinan (Dongfeng sub-district).
Note that each multi-intersection dataset collected from
Hangzhou has 12 (3×4) intersections, and each multi-
intersection dataset collected from Jinan has 16 (4×4)
intersections.

Since the diversity of different datasets is crucial for
our experiments of generalization ability, we used eleven
single-intersection datasets, S1-S11, to pre-train the initial
PPO agent and nine multi-intersection datasets, Syn1-Syn4,
Hangzhou1-Hangzhou2, and Jinan1-Jinan3, to evaluate the
transfer performance of the initial model generated by our
InitLight approach.

4.2 Performance of Imitation Learning (RQ1)
To answer RQ1, we considered InitLight as an imitation
learning method and compared it against the six baseline
methods on single-intersection datasets. For each RL method,
we trained its model on the eleven single-intersection datasets
(i.e., S1-S11) in a round-robin fashion, where the training
lasted 20 times. Therefore, the whole training process in-
volved 220 episodes in total. We collected the expert trajec-

tories for each single-intersection dataset, which were gen-
erated by the TSC method MaxPressure [Wei et al., 2019a].
The reason why we chose MaxPressure here is that MaxPres-
sure can achieve competitive results compared with state-of-
the-art pressure-based methods.

Table 1 shows the comparison results for different control
methods in terms of average travel time over S1-S11. For
each dataset, the TSC methods with the best or second-best
performance are highlighted in bold. From this table, we
can find that InitLight achieves the best performance, since it
achieves top-2 best average time in 7 out of 11 datasets. Since
InitLight adopts the same RL model as PPO, due to the guid-
ance of expert trajectories, we can find that InitLight signif-
icantly outperforms PPO by more than 10% in four datasets
(i.e., S1, S2, S4, and S8). Note that FedLight and A2C have
the same results. This is because the clients of FedLight are
implemented on top of A2C models, where FedLight is equiv-
alent to A2C when dealing with only one single intersection.

Figure 3 compares the convergence performance of all the
RL-based methods on datasets S1-S11. Since the training is
in a round-robin fashion, we can observe periodic fluctua-
tions along with the convergence curves. Since FedLight and
A2C are the same for single-intersections, we omit the result
for FedLight here. From this figure, we can find that, com-
pared with the three baselines, our InitLight approach can
achieve the quickest convergence and lowest average travel
time for the given 11 single-intersection datasets. Accord-
ing to the convergence criterion used by [Zhao et al., 2022;
Fang et al., 2022], the three baselines need more training
episodes to converge (e.g., PressLight converges at the 88th
episode, whereas InitLight needs only 22 episodes to con-
verge) and have more significant fluctuations (without the
guidance of expert trajectories).

4.3 Performance of Transfer Learning (RQ2)
To evaluate the generalization ability of InitLight, we con-
sidered nine transfer tasks that adopt the pre-trained PPO
agent in various multi-intersection datasets, where each in-
tersection is equipped with one pre-trained PPO agent. For a
specific multi-intersection dataset, we trained each RL with
200 episodes. Table 2 presents the TSC performance of all
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Figure 6: Learned rewards on multi-intersection datasets.

the investigated TSC methods on multi-intersection datasets.
Similar to Table 1, we highlight the best and second-best re-
sults in bold for each dataset. From this table, we can find
that RL-based methods can achieve much better performance
than non-RL methods. For example, although MaxPressure
and PressLight are based on MP control theory, PressLight
outperforms MaxPressure on all datasets as it adopts RL to
control traffic signals more intelligently. Compared with the
four RL-based baselines, our InitLight method can achieve
top-2 performance on all nine datasets.

Figure 4 evaluates the convergence performance of the RL-
based methods on the nine multi-intersection datasets. Note
that here only InitLight adopted the same pre-trained model
at intersections for all the multi-intersection datasets, while
all the baselines adopt randomly initialized models at inter-
sections. Compared to all the four baseline methods, our
InitLight approach achieves almost the lowest average travel
time at the beginning of RL training for all the datasets with
much fewer fluctuations. Note that, for all the investigated
datasets, InitLight can converge within 5 episodes, which is
much quicker than all the baselines. Moreover, InitLight can
always achieve the top-2 lowest average travel time for all
the multi-intersection datasets eventually. The above facts
evidently reveal the generalization ability of the pre-trained
agent by InitLight.

To better understand the merits of InitLight, Table 3 shows
the detailed convergence information of different RL-based
TSC methods from the perspective of jumpstart performance
(i.e., average travel time after the first episode) and the start-
ing episode of the convergence, where the best and second-
best results are marked in bold. Here, we used the crite-
rion of convergence following [Zhao et al., 2022; Fang et al.,
2022]. From this table, we can find that InitLight achieves
the best jumpstart performance and the fastest convergence
on all datasets. After the first episode, the average travel time
of InitLight over all the datasets approximates the final re-
sults as shown in Table 2. It means that InitLight can almost
converge in the first episode, which again confirms the gener-
alization ability of pre-trained agents.

4.4 Quality of Learned Reward Function (RQ3)
To understand why InitLight can improve both the effective-
ness and generalization ability of RL models, we compared

the rewards learned by our discriminator and the ground-truth
rewards calculated by r = −PI according to the MP con-
trol theory. Figure 5 compares the ground-truth rewards with
the learned rewards for single-intersection datasets in the last
round (i.e., the 20th round) of pre-training. Note that here the
horizontal axis indicates the step indices, where each episode
(with one-hour simulation) of a dataset involves 360 steps,
since a reward is calculated at the end of each control phase
(with 10 seconds). From this figure, we can find that the
learned reward trend approximates the ground-truth reward
trend. The reason for such consistency is mainly because
InitLight can learn an accurate reward function from expert
trajectories to guide the pre-training process of the agent.

Figure 6 compares the average accumulative learned re-
wards with the average accumulative ground-truth rewards of
all the intersections obtained within each episode. Note that,
for a dataset, a reward of an episode is the summation of 360
rewards calculated within the same episode for all the dataset
intersections. From this figure, we can find that the learned
reward trends are similar to the ground-truth reward trends
for all the datasets. It means that the discriminator learned by
InitLight can recover the ground-truth reward function from
expert trajectories, which is robust to various kinds of com-
plex environments.

5 Conclusions
To address the problems of slow convergence and poor model
generalization ability existing in Reinforcement Learning
(RL)-based Traffic Signal Control (TSC), this paper pro-
posed a novel AIRL-based method named InitLight, which
enables the pre-training of an initial model to accelerate the
global training process of RL-based TSC methods. Since Init-
Light trains the initial model only on a limited set of single-
intersection environments, the generation time of the initial
model is negligible. Meanwhile, since the reward function
learned by InitLight can recover the ground-truth TSC re-
wards at optimality for different intersections, the obtained
agent by InitLight can be deployed on different kinds of com-
plex traffic environments to accelerate their overall RL pro-
cesses. Comprehensive experimental results validate the ef-
fectiveness of InitLight.
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