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Abstract
The anonymity of online networks makes tackling
fraud increasingly costly. Thanks to the superiority
of graph representation learning, graph-based fraud
detection has made significant progress in recent
years. However, upgrading fraudulent strategies
produces more advanced and difficult scams. One
common strategy is synergistic camouflage ——
combining multiple means to deceive others. Exist-
ing methods mostly investigate the differences be-
tween relations on individual frauds, that neglect
the correlation among multi-relation fraudulent be-
haviors. In this paper, we design several statis-
tics to validate the existence of synergistic cam-
ouflage of fraudsters by exploring the correlation
among multi-relation interactions. From the per-
spective of multi-relation, we find two distinctive
features of fraudulent behaviors, i.e., alienation and
marginalization. Based on the finding, we pro-
pose COFRAUD, a correlation-aware fraud detec-
tion model, which innovatively incorporates syn-
ergistic camouflage into fraud detection. It cap-
tures the correlation among multi-relation fraudu-
lent behaviors. Experimental results on two public
datasets demonstrate that COFRAUD achieves sig-
nificant improvements over state-of-the-art meth-
ods.

1 Introduction
The vast amount of networks - social media, blogs, trading
networks, and communication networks, provide a consid-
erable space for fraudulent activity [Velampalli and Eberle,
2017]. The anonymity of online networks and the lack of su-
pervision by administrators make fraud cases often more de-
structive and difficult to address [Hooi et al., 2017]. Thanks
to the superiority of graph representation learning, com-
plex user interactions can be efficiently exploited to iden-
tify fraudsters. Graph-based fraud detection has become a
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research problem with full of opportunities and challenges
in recent years. It focuses on utilizing graphs to estab-
lish the interactions with multiple types of relations (multi-
relation) between nodes and design models to identify the
fraudsters [Pourhabibi et al., 2020].

Existing approaches have achieved some success in explor-
ing fraudulent behavior. [Liu et al., 2020; Dou et al., 2020]
proposed to reconstruct graph structure to tackle the incon-
sistency problem resulting from fraudsters’ camouflage. [Liu
et al., 2021] sampled the neighbor information to alleviate
the label imbalance of fraudsters. [Zhang et al., 2021] re-
fined the graph inconsistency problem from three aspects and
proposed a unified GNN-based model to solve them. [Tang
et al., 2022] first explored the relevance between fraud and
frequency spectral energy, and had notable success. These
approaches focus on single-strategy fraud and therefore are
more inclined to address initial simple scams.

However, upgrading fraudulent strategies produce more
advanced and difficult scams. One common strategy is syn-
ergistic camouflage — combining multiple means to deceive
others. Fraudsters tend to employ various techniques to pre-
vent themselves from exposure. E.g., telecom scammers
use multiple communication methods, such as phone calls
and text messages, together to covertly spread their words.
It means that interactions of multiple relation types (multi-
relation) are correlated to achieve the ultimate deceiving goal.
Unfortunately, to our knowledge, synergistic camouflages
have not been discussed by the current methods which usu-
ally consider user interactions in each relation type separately.
These methods mostly investigate the differences between re-
lations (described as relation inconsistency [Liu et al., 2020;
Zhang et al., 2021]) on individual frauds, that neglect the cor-
relation among multi-relation fraudulent behaviors.

Hence, to solve the above issues, we intend to answer the
following two questions in this paper. 1) Is there any syn-
ergistic camouflage phenomenon on the fraudsters’ multi-
relation network? 2) How can the correlation among multi-
relation interactions be explored to solve the synergistic cam-
ouflage problem?

To answer question 1, we plan to explore the correla-
tion among individuals’ multi-relation fraudulent behaviors.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4959



Specifically, we design several statistics to analyze the user
interaction patterns on all relation-specific subgraphs. The
details of our statistics are illustrated in Section 2.2. In con-
clusion, we have the following two observations: 1) Alien-
ation. we calculate the cross-relation neighbor overlap of all
users, and find that the neighbor overlap of fraudsters is lower
than normal users. This illustrates that fraudsters’ multi-
relation interactions are alienated. They often do not establish
regular social connections with their neighbors to avoid being
identified by other users. 2) Marginalization. We then mea-
sure the Pagerank [Page et al., 1999] of all users on the sub-
graphs and find that the fraudsters have lower Pagerank values
than the normal users on most of the subgraphs. Understand-
ably, in order to hide their activities, fraudsters tend to place
themselves in an undetectable marginal position. The above
two statistical findings demonstrate the existence of synergis-
tic camouflage of fraudsters. They also demonstrate that the
multi-relations in different fraudulent behavior are correlated.
Furthermore, we gain the motivation that the correlation be-
tween multi-relational interactions can effectively help distin-
guish fraudsters from normal users.

Thus, as for question 2, we propose a correlation-aware
fraud detection model, called COFRAUD, which captures the
correlation among multi-relation interactions to solve the syn-
ergistic camouflage problem. Specifically, COFRAUD con-
tains the following three modules: 1) in the intra-relation ex-
ploration module, we utilize the user frequency information
in each relation-specific subgraph to obtain user represen-
tations and relation representations; 2) in the inter-relation
exploration module, we pass information between different
relation-specific node representations of the same user to rep-
resent the correlation among user multiple interactions; 3) in
the relation fusion modu le, we not only fuse the information
from intra-relation exploration and inter-relation exploration,
but also aggregate the node and relation representations, to
form the final user behavior representation. We conduct ex-
tensive experiments on two public datasets to evaluate the
performance of our COFRAUD. Experimental results show
that COFRAUD outperforms state-of-the-art methods for the
fraud detection task.

The contributions of our paper are summarized as follows:

- We propose and prove the existence of synergistic
camouflage by exploring the correlation among multi-
relation interactions through statistical analysis. From
the perspective of multi-relation, we found that fraud-
sters have alienation and marginalization which are ap-
parently distinguished from normal users.

- We develop a novel correlation-aware fraud detection
model, called COFRAUD, which captures multi-relation
correlation information to solve the synergistic camou-
flage problem.

- We conduct adequate evaluations on two real-world
datasets to validate the performance of COFRAUD. The
results show that COFRAUD achieves significant im-
provements over state-of-the-art methods.

2 Preliminary
In this section, we give some necessary mathematical def-
initions and formulate the problem to be solved. Then we
present our preliminary to describe the motivation.

2.1 Definition and Problem Formulation
Multi-relation graph. The graph is a heterogeneous graph
constructed by users and their multi-relation types of interac-
tions. We denote the G = (V,X , E ,R,Y) as a multi-relations
graph, where the vi ∈ V means the node, the r ∈ R denotes
the type of relations, the eij,r ∈ E represents the edge be-
tween node vi and vj under the r-relation, and the xi ∈ X
is the feature of node vi. Node vi is associated with the label
yi ∈ 0, 1, where 1 denotes the node is a fraudster.

Relation-specific subgraph. We define relation-specific
subgraphs which are split by the multi-relation graph accord-
ing to relation types. Each subgraph is homogeneous, i.e.,
there is only one type of node and relation.

Problem formulation. The graph-based fraud detection is
regarded as a semi-supervised classification task. Given a
multi-relation graph G and partial nodes with labels y, we
intend to infer the labels of another part of the nodes.

2.2 Motivation
To validate the existence of the synergistic camouflage phe-
nomenon, we conduct two statistics on a real-world public
dataset Amazon [McAuley and Leskovec, 2013] which has
three types of relations: U-P-U, U-S-U, and U-V-U (referring
Sec4.1). In order to analyze the behavior correlation across
relations, we should leverage the relation-specific interaction
information. Our intuition is that the variety of user interac-
tions leads to the structural diversity of the relation-specific
subgraphs. So we intend to study the behavior patterns of
fraudsters from the subgraph structure. Then we conduct the
following two statistics.

Alienation
First of all, we mine clues on the local structure of the
subgraph, i.e., the user neighbor information. Referring to
Adamic–Adar index [Adamic and Adar, 2003], we creatively
design the following formula to measure the cross-relation
neighbor overlap of individuals:

O(vr1 , vr2) =
∑

N (vr1
)∩N (vr2

)

1

log |N (vr1)| · log |N (vr2)|
,

where N (vr1) denotes the neighbor set of node v in relation
r1. Then we normalize the value by dividing by the degrees
of the node on the two relation-specific subgraphs. This met-
ric is designed to represent whether the user has more and a
larger ratio of common neighbors between the two relations.

As shown in Figure 1, we calculate the distribution of
O(·, ·) of all users between every two relation-specific sub-
graphs. It is easy to find that the cross-relation neighbor over-
lap of fraudsters is closer to 0 in all the statistical results that
clearly distinguish them from normal users. This indicates
that the multi-relation interactions of fraudsters are alienated.
normal users tend to build more frequent interactions while
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(a) U-P-U vs. U-S-U (b) U-P-U vs. U-V-U (c) U-S-U vs. U-V-U

Figure 1: The distribution of cross-relation neighbor overlap of all users between every two relation-specific subgraphs. We divide the users
into two groups, fraudsters and normal users. The metric is designed to represent whether the user has more and a larger ratio of common
neighbors between the two relations. A larger value means that the individual has more common neighbors in the two relation-specific
subgraphs and the interactions in the two subgraphs of the user are more similar. For the intuitiveness of the results, we omitted users with
values above 4, whose density is negligibly small.

(a) U-P-U (b) U-S-U (c) U-V-U

Figure 2: The distribution of Pagerank of all users on the three relation-specific subgraphs. This metric measures the frequency of user
interaction and social status in the subgraph structure. The higher the Pagerank value, the more important the node is in the graph and the
more frequent the user’s interactions are. We ignore the very few users with Pagerank values above 0.0003 but with very low density.

fraudsters often avoid establishing regular interactions with
others. However, if the interactions of each relation type inde-
pendently are observed independently, it is difficult to detect
the fraudsters.

Marginalization

After that, we analyze the user’s interaction information on
the global structure of the relation-specific subgraphs. We
utilize a metric that measures the importance of nodes, Pager-
ank [Page et al., 1999], which has the following formula:

PR(vi) =
1− d

|V|
+ d

∑
vj∈N (vi)

PR(vj)

|N (vi)|
,

where d is the damping factor. This metric measures the fre-
quency of user interaction and social status on the subgraph.

As shown in Figure 2, we calculate the distribution of
Pagerank of all users on the three relation-specific subgraphs.
It can be observed that the fraudsters have their Pagerank
value concentrated in the lower part in most relations, com-
pared to the normal users. This implies that fraudster nodes
tend to distribute at the margins of all the relation-specific
subgraphs and are not notable. It is easy to understand that
fraudsters usually hide their behavior, keeping themselves in
an undetectable marginal position.

3 Method
Based on the above two observations, we gain a motivation
that fraudulent behavior patterns are obviously different from
the norm after correlating interactions of multiple relation
types. Hence, we realize that passing the interaction infor-
mation between different relation types for the same user
seems to be meaningful for fraud detection. As we know,
existing fraud detection methods focus on passing user rep-
resentation information within each relation type and aggre-
gating them [Zhang et al., 2021; Tang et al., 2022]. This
motivates us to design a distinct information passing mod-
ule that explores the correlation among multi-relation inter-
actions. Then we introduce our model, COFRAUD, in this
section.

3.1 Framework Overview
Figure 3 shows the pipeline of COFRAUD. our framework is
comprised of three different modules, respectively the intra-
relation exploration module, the inter-relation exploration
module, and the relation fusion module. In the intra-relation
exploration module, we capture node frequency information
and represent node and relation representations. In the inter-
relation exploration module, we intend to pass information
between different relation-specific node representations of the
same user to explore the correlation among user multiple in-
teractions. In the final module, we not only fuse the infor-
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Figure 3: The framework of correlation-aware fraud detection model, COFRAUD. It consists of the intra-relation exploration module for
capturing node frequency information and representing relation-specific node and relation representations. It also contains the inter-relation
exploration module for exploring the correlation among multi-relation interactions. Finally, the relation fusion module is leveraged for
not only fusing the information from intra-relation exploration and inter-relation exploration but also aggregating the node and relation
representations.

Figure 4: Details of the intra-relation exploration module.

mation from intra-relation exploration and inter-relation ex-
ploration but also aggregate the node and relation representa-
tions, to get the final user fraud behavior representation.

3.2 Intra-relation Exploration

In the intra-relation exploration module, the node repre-
sentation and relation representation are processed on each
relation-specific subgraph independently. In each subgraph,
we leverage the frequency information of the user to suit
the fraud detection task. The key to the GNN model’s suc-
cess is considered a special form of low-pass filter [Wu et
al., 2019]. However, fraud in social networks tends to fo-
cus on high-frequency information [Tang et al., 2022]. This
high-frequency information indicating the difference of nodes
contributes more to fraud detection than low-frequency infor-
mation indicating the similarity. Hence, we intend to distinc-
tively represent relation-specific node frequency information
to represent the differences between different user features.

As shown in Figure 4, we take the target node v1 and the re-
lation r2 as the example. After dividing the original graph G
into relation-specific subgraphs, we input node features hv,r2
and relation features hr2 . Motivated by the success of the
frequency signal representation on GNN [Bo et al., 2021],
we use the attention mechanism to learn the high-frequency
and low-frequency signals, αH and αL. The values are set
as αH + αL = 1, and α = αL − αH . Then we consider
the features of both neighbor nodes and relations to learn the

coefficient α:

zvi,r2 = Wvhvi,r2 , (1)
zvj ,r2 = Wvhvj ,r2 , (2)

zr2 = Wr2hr2 , (3)

αij,r2 = αL
ij,r2 − αH

ij,r2

= tanh
(
zTr2(zvi,r2 ∥ zvj ,r2)

)
, (4)

where the weight matrix Wv and Wr2 are used to trans-
form the node features and relation features into latent spaces.
Then function tanh(·) limits the value of α in [-1,1] that rep-
resents not only the proportion of low-frequency and high-
frequency signals but also the coefficients of neighbors in ag-
gregation.

After calculating αij , the neighbor representations are ag-
gregated as follow:

cvi,r2 = (1− λ)Walignhvi,r2 + λ
∑

j∈Nvi

αij,r2√
dvi,r2dvj ,r2

zvj ,r2 ,

(5)

where we utilized the weighted residual connection to aggre-
gate the neighbor information. The λ is a trainable parameter
and Walign is used to align the dimensions of hvi,r2 . And
the dvi,r2 and dvj ,r2 are the degrees of the node vi and vj in
the subgraph of relation r2, which are used to normalize the
coefficients.

In addition, we leverage the MLP model to represent the
semantic information of the relations. The formula is as fol-
lows:

h′
r2 = Wr2,mlphr2 + br2,mlp, (6)

where the Wr2,mlp and br2,mlp are the trainable parameters to
update the relation features.
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3.3 Inter-relation Exploration
As mentioned previously, the correlation among different
types of fraudulent behavior has been verified and distin-
guished from normal behavior. This drives us to pass dif-
ferent relation-specific node information to each other before
aggregating different representations.

Through the above relation-specific frequency adaptation
representation, We obtain the frequency-aware representation
of the target node which is specific to the relation types. Tak-
ing the target node v1 in relation r2 as an example, we corre-
late the multi-relation information as follows:

h′
v1,r2 =

∑
ri∈R

βr2,ri · cv1,ri , (7)

where βr2,ri is the coefficient between relation ri and relation
r2. we calculate it as follows:

βr2,ri =
exp

(
LeakyReLU(qr2

T cv1,ri)
)

∑
rj∈R exp

(
LeakyReLU(qr2

T cv1,rj )
) , (8)

where qr2 is the trainable attention vector to control the infor-
mation flow from all relations.

It is worth mentioning that we design two layers of intra-
and inter-relation exploration modules. In the input of the
first layer, the node representations are the original features x
and the relation representations are one-hot encoding, where
the value of 1 corresponds to the relation type. And the input
in the second layer, hv1,r2 and hr2 , are the output in the first
layer, h′

v1,r2 and h′
r2 .

3.4 Relation Fusion
After exploring intra- and inter-relation information, we need
to design a suitable aggregator to converge them and leverage
both node and relation representations. Aggregators of ex-
isting fraud detection methods focus only on the differences
among relations, and simply summarize the node representa-
tions with weights. This cannot accurately simulate the com-
plicated activities of real-world fraudsters. To better reflect
the diversity and complexity of social interactions, we aggre-
gate the information passed across different relation types,
while fusing relation semantic information.

Specifically, the attention mechanism is used to aggregate
the above information as follows (taking the target node v1
and relation r2 as an example):

γv1,r2 =
exp

(
LeakyReLU

(
(Vr2h

′
v1,r2)

⊤Ur2h
′
r2

))
∑

ri∈R exp
(
LeakyReLU

(
(Vrih

′
v1,ri)

⊤Urih
′
ri

)) ,
(9)

hfinal
v1

=
∑
ri∈R

γv1,ri · Vrih
′
v1,ri , (10)

where Vr and Ur are the transformation matrix respectively
for node representation and relation representation. Remark-
ably, we consider the relation semantic information while ag-
gregating node representations containing multi-relation in-
formation. The significance of this is to increase the distinc-
tiveness of node representations in each relation type.

Dataset Users Fraudsters Relation Edges

A
m

az
on

11944 9.5%
U-P-U 175,608
U-S-U 3,566,479
U-V-U 1,036,737

Y
el

p

45954 14.5%
R-U-R 49,315
R-T-R 573,616
R-S-R 3,402,743

Table 1: Statistical details of two datasets.

Finally, we adjust the dimension of the final node represen-
tations hfinal

v1
through the fully connected layer and minimize

the cross entropy loss to train the fraud detection task.

4 Experiments
4.1 Experimental Setup
Dataset
Our experiments are conducted on two real-world datasets,
Amazon [McAuley and Leskovec, 2013] and Yelp [Rayana
and Akoglu, 2015]. Amazon. It is extracted from the mu-
sical instrument comments on Amazon.com. There are three
relations: U-P-U (users reviewing at least one same product),
U-S-U (users having at least one same star rating within one
week), and U-V-U (users with top-5% mutual review similar-
ities). Yelp. It is comprised of spam reviews on restaurants
and hotels. There are also three relations: R-U-R (the reviews
posted by the same user), R-S-R (the reviews under the same
product posted in the same star rating), R-T-R (the reviews
under the same product posted in the same month). The sta-
tistical details of the two datasets are shown in Table 1.

Baselines
First, we chose some Normal GNN models as the base-
line: GCN [Kipf and Welling, 2017], GAT [Veličković et al.,
2018], GraphSAGE [Hamilton et al., 2017]. Then, some state
of art GNN-based fraud detection methods were used to com-
pare with our approach as follows: GraphConsis [Liu et al.,
2020], CARE-GNN [Dou et al., 2020], PC-GNN [Liu et al.,
2021], FRAUDRE [Zhang et al., 2021], and BWGNN [Tang
et al., 2022]. In the classical GNN model, we merge the
multi-relation graph into a homogeneous graph. For fair-
ness, we replaced the binary classification threshold search
in BWGNN with the argmax operation which is the same as
the other methods in the validation set. In addition to that, we
follow the papers to choose the parameters.

Evaluation Metrics
We adopt three widely used metrics to measure the perfor-
mance of all the methods, respectively AUC, Rec, and F1.
The AUC is the area under the ROC Curve that can evaluate
the performance of classification by eliminating the influence
of imbalanced classes. The Rec and F1 both are the macro-
average of the recall and F1-score of the two classes.

Implementation Details
We set the training ratio as 40% and 10% to compare the per-
formance of different methods. For the remaining part of the
samples, we divide the validation set and test set in the ratio
of 1:2. In the validation set, we take the maximum value of
F1 to determine the performance of the methods in the test
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Category Methods
Amazon Yelp

10% 40% 10% 40%
AUC Rec F1 AUC Rec F1 AUC Rec F1 AUC Rec F1

Normal GNN
GCN 77.26 50.00 47.51 77.94 50.00 47.51 52.12 50.00 46.08 53.12 50.00 46.08
GAT 76.96 50.00 47.50 77.35 50.00 47.50 50.14 50.00 46.08 49.67 50.00 46.08

GraphSAGE 69.87 50.00 47.50 71.49 50.00 47.50 52.94 50.00 46.08 56.45 50.00 46.41
GraphConsis 82.67 82.63 75.97 85.15 85.10 77.98 64.12 64.72 61.30 61.02 61.67 63.03
CARE-GNN 88.16 88.19 88.21 87.36 83.90 88.36 69.73 65.68 52.86 70.99 66.80 56.47

Graph-based PC-GNN 93.31 88.47 81.77 94.64 87.37 88.21 79.04 71.63 66.90 83.05 72.56 70.90
fraud detection FRAUDRE 91.34 87.94 87.35 94.27 87.50 90.09 71.47 64.49 59.58 73.93 66.22 61.65

BWGNN 93.73 78.38 83.72 96.69 84.85 87.73 84.08 62.99 71.55 89.97 70.04 76.21
COFRAUD 94.35 87.64 90.39 97.21 89.08 91.53 87.49 73.21 74.62 91.52 79.70 79.71

Table 2: Performance on the two datasets under different percentages of the training data. (%)

w/o Intra
w/o Inter

w/o Fusion

COFRAUD
80

85

90
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100
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AUC Rec F1

(a) Amazon
w/o Intra

w/o Inter

w/o Fusion

COFRAUD
60

70

80

90

100

Pe
rc

en
ta

ge

AUC Rec F1

(b) Yelp

Figure 5: The ablation analysis on Amazon and Yelp. (%)

Units Layers Amazon Yelp
AUC Rec F1 AUC Rec F1

16 1 91.74 88.80 91.47 91.09 73.64 76.66
2 93.73 87.86 89.82 91.14 75.49 77.45

32 1 91.74 88.80 91.47 91.22 76.88 78.36
2 97.21 89.08 91.53 91.52 79.70 79.71

64 1 89.64 87.68 90.40 90.88 76.67 77.69
2 93.01 88.39 89.73 91.05 77.63 78.37

128 1 91.48 79.21 79.18 91.47 77.47 78.37
2 92.37 88.31 90.05 91.01 75.12 77.50

Table 3: The parameter analysis on Amazon and Yelp.(%)

set. We implement our method by Pytorch and DGL [Wang,
2019]. And we conduct all the experiments on the GPU re-
source of Google Colaboratory [Carneiro et al., 2018].

4.2 Performance
Table 2 presents the results of comparing COFRAUD with
other baselines under training ratio 10% and 40%. All the
methods are evaluated by the AUC, Rec, and F1. From the
table, we can observe that:

1) Importance of multi-relation information. Fraud de-
tection methods based on multi-relation graphs generally
have a higher performance compared to normal GNN mod-
els which utilize homogeneous graphs. This indicates that
multi-relation information is essential and helpful for fraud
detection.

2) Importance of frequency information. BWGNN
achieves better results compared to other fraud detection
methods. It indicates that frequency information effectively

0.1 0.2 0.3 0.4
Training Set Percentage
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(a) Amazon
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20
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40
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COFRAUD

(b) Yelp

Figure 6: The time efficiency on Amazon and Yelp.

represents the differences between user features, which is the
key to fraud detection. It also motivates us to utilize the node
frequency information in the Intra-relation exploration mod-
ule.

3) Superiority of COFRAUD. Our model achieves sig-
nificant improvements in most evaluation metrics which
proves the effectiveness of capturing the correlation of the
multi-relation fraudulent behavior. In particular, COFRAUD
achieves the best performance in all metrics on the Yelp
dataset and improves significantly for Rec and F1 on the two
datasets. Specifically, it improves 2.41% on the Amazon
dataset and improves 3.07% on the Yelp dataset compared
with BWGNN at F1 under 10% training ratio, as well as im-
proves 3.82% on the Amazon dataset and 3.50% on the Yelp
dataset compared with BWGNN at F1 under 10% training ra-
tio.

4) Limitation of COFRAUD. Overall, all methods per-
form better on Amazon dataset than in the Yelp dataset. How-
ever, COFRAUD has a relatively unsatisfactory performance
in the Amazon dataset. This may be due to the label imbal-
ance caused by the small percentage of fraudsters in the Ama-
zon dataset, which is a problem to be solved in COFRAUD.

4.3 Ablation Analysis
In this literature, we design a novel model to capture not only
the frequency signal information by intra-relation but also the
correlation of multi-relation fraud behavior by inter-relation.
Then we aggregate the above two modules to obtain the final
representations. To validate the effectiveness of these mod-
ules, we design the following three ablation variants: 1) w/o
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intra. We replaced the node representation part of this module
with the GAT, because completely removing the inter-relation
exploration module would invalidate the other modules. This
allows us to determine whether the frequency signal infor-
mation can benefit our model. 2) w/o inter. We remove the
inter-relation exploration module and let the node represen-
tations in intra-relation exploration directly input the relation
fusion. 3) w/o fusion. We replace the relation fusion module
with the weighted summation. The training ratio is set as 0.4.

In Figure 5, COFRAUD achieves the best results among
all metrics compared to the other variants, which shows that
each module in the model is meaningful. In both two datasets,
w/o relation had the worst results in all variants, which illus-
trates the importance of effectively fusing information from
all modules. The relation representation input in the relation
fusion module can introduce relation semantic information to
identify the differences among relation-specific node repre-
sentations.

4.4 Parameter Analysis
In this set of experiments, we explore the effect of the number
of feature dimensions of hidden units and the number of mod-
ule layers of Intra-relation exploration and Inter-relation ex-
ploration on the performance of the model. We set the dimen-
sions of all hidden units to 16, 32, 64, and 128, and module
layers to 1 and 2, to record the performance of COFRAUD.
As illustrated in Table 3, there is no doubt that setting the
units to 32 and the layers to 2 is the best parameter con-
figuration. Analyzing the overall trend, the performance
of COFRAUD does not drop significantly with parameter
changes, indicating the stability of the model.

4.5 Time Efficiency
To demonstrate the time efficiency of COFRAUD, we com-
pare COFRAUD with two current states of art fraud detection
methods, FRAUDRE and BWGNN. We record the average
training time per epoch with the training ratio varying from
10% to 40%. We set the hidden units to 32 and the batch
size to 1024 for all algorithms on the two datasets. As shown
in Figure 6, compared to FRAUDRE, COFRAUD runs much
faster on both two datasets. Compared to the well-performing
BWGNN, COFRAUD has higher running efficiency on the
Amazon dataset and is comparable to it on the Yelp dataset.

4.6 Case Study
To clearly illustrate the performance of COFRAUD and how
COFRAUD tackles the synergistic camouflage, we show two
cases of fraud detection results of the two models, FRAUDRE
and COFRAUD. For both the two methods, we extract the test
set results for a training set ratio of 0.4 on amazon.

Figure 7 depicts the distribution of prediction results for
both two methods in terms of cross-relation neighbor overlap
value. It’s obvious that compared to FRAUDRE, COFRAUD
has a significantly higher detection rate for both fraudsters
and normal users, especially near the lower left side of the
figure, i.e., the overlap values are low. This shows that
COFRAUD can overcome the fraudsters’ alienation.

Figure 8 shows the distribution of prediction results in
terms of Pagerank value. We can find that FRAUDRE seems
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Figure 7: The case 1 of the prediction results of FRAUDRE and
COFRAUD. We plot the 3d scatter figure to show the distribution
of cross-relation neighbor overlap of users and mark the label and
prediction outcome of them. The three axes represent the two by
two overlap values among the three relation types. The users have
two types of labels, normal users as circles, and fraudsters as crosses.
The prediction results are represented in two colors, blue as correct,
and red as false.
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Figure 8: The case 2 of the prediction results of FRAUDRE and
COFRAUD. Except for using the Pagerank values calculated in the
three relation types as axes, the settings are the same as in Figure 7.

to be helpless for a large number of users with low Pagerank
values that cluster in the lower left of the figure. Whereas
COFRAUD exploits the marginalization of fraudsters and
thus successfully predicts the results.

5 Conclusion
In this paper, we first validate the existence of synergistic
camouflage by exploring the correlation among multi-relation
interactions. Based on this, we propose a novel correlation-
aware fraud detection model (COFRAUD) to solve the syner-
gistic camouflage problem.

Border impact. This paper opens up a new perspective
on graph-based anomaly user detection. In the past, these
methods focused on analyzing variations in behavior patterns
among users on the graph. Our findings suggest that correlat-
ing multiple types of behaviors of users themselves is also of
great value.

Limitations. 1) Our model needs in-depth exploration of
the label imbalance problem. So we plan to apply a superior
loss function to incorporate anti-imbalance into COFRAUD.
2) From a practical perspective, COFRAUD should validate
its performance in more application scenarios. We intend to
apply the model to other fraud datasets such as telecom fraud
and insurance fraud.
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