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Abstract

The rapid development of single-cell RNA se-
quencing (scRNA-seq) technologies allows us to
explore tissue heterogeneity at the cellular level.
Cell annotation plays an essential role in the sub-
stantial downstream analysis of scRNA-seq data.
Existing methods usually classify the novel cells
in target data as an “unassigned” group and rarely
discover the fine-grained cell type structure among
them. Besides, these methods carry risks, such
as susceptibility to batch effect between reference
and target data, thus further compromising of in-
herent discrimination of target data. Considering
these limitations, here we propose a new and prac-
tical task called realistic cell type annotation and
discovery for scRNA-seq data. In this task, cells
from seen cell types are given class labels, while
cells from novel cell types are given cluster la-
bels. To tackle this problem, we propose an end-
to-end algorithm called scPOT from the perspective
of optimal transport (OT). Specifically, we first de-
sign an OT-based prototypical representation learn-
ing paradigm to encourage both global discrimina-
tions of clusters and local consistency of cells to un-
cover the intrinsic structure of target data. Then we
propose an unbalanced OT-based partial alignment
strategy with statistical filling to detect the cells
from seen cell types across reference and target
data. Notably, scPOT also introduces an easy yet
effective solution to automatically estimate the to-
tal cell type number in target data. Extensive results
on our carefully designed evaluation benchmarks
demonstrate the superiority of scPOT over various
state-of-the-art clustering and annotation methods.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) technologies allow
us to measure gene expressions in millions of single cells and
promise to provide high-resolution insights into the complex
cellular ecosystem [Ziegenhain et al., 2017]. Cell annota-
tion is the fundamental step in analyzing scRNA-seq data
[Luecken and Theis, 2019]. In recent years, with more and

more well-annotated scRNA-seq data becoming available, re-
searchers turn to use neural networks to achieve automatic
annotation of cell types [Cao et al., 2019]. Naturally, sup-
pose Cr and Ct represent the label sets of reference and target
data, respectively. Earlier developed methods are based on
a close-set assumption, which can be expressed as Ct ⊆ Cr.
However, this assumption is difficult to satisfy for data in the
wild[Xu et al., 2021]. Therefore, to take into account a more
realistic situation, the open-set scenario is introduced, that is,
Cr ⊂ Ct, and several methods are proposed to settle this task,
aiming to annotate cells with cell type labels in reference data
or a unified “unassigned” label [Kimmel and Kelley, 2020].

Although the existing methods have achieved remarkable
progress, they can not carry out further fine-grained analysis
for them, which is not conducive to the subsequent down-
stream analysis [Brbić et al., 2020]. To address this need,
we propose a more practical and challenging annotation task
called realistic cell type annotation and discovery for scRNA-
seq data, whereby cells from novel cell types are given clus-
ter labels instead of “unassigned” label and cells from seen
cell types are given cell type label. One may argue that we
can first use the annotation methods for the open-set scenario
to find cells with “unassigned” label and then further clus-
ter them into different groups. However, since the annotation
results have a significant effect on the subsequent clustering
process [Chen et al., 2020b], completely separating two pro-
cesses is not conducive to problem-solving. Furthermore, we
can also prove experimentally that the two-step approach only
provides sub-optimal results.

However, settling this new task may face some challenges.
First, the lack of label supervision for novel cell types will
cause the model to be biased towards the seen cell types, thus
further generating an imbalanced prediction state. Second,
removing batch effects and other confounding noises, while
maintaining biological signals of interest, is also essential but
challenging for exploiting the clustering structure in target
data [Lähnemann et al., 2020]. In this paper, we propose an
end-to-end algorithm called scPOT based on a unified optimal
transport (OT) framework to address these issues. For the cell
type discovery, we introduce an OT-based prototypical self-
supervised learning paradigm to facilitate both global dis-
crimination of clusters and local consistency of cells, which
can avoid over-reliance on reference supervision and help rec-
ognize the whole cell types automatically. With regard to seen
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cell type annotation, we design an unbalanced OT-based par-
tial alignment method to detect the common cells in the target
data, which can uncover the intrinsic difference between ref-
erence and target data based on the statistical information of
the assignment matrix. By leveraging the clustering accuracy
on reference data, we propose a solution to estimate the num-
ber of cell types in target data, which is a challenging and
poorly investigated problem in single-cell annotation. Lastly,
to evaluate the performance of scPOT comprehensively, we
choose various comparison baselines and build the intra-data
and cross-data benchmarks on the basis of massive, highly
imbalanced scRNA-seq data.

We highlight the main contribution as follows:
• We propose a new, practical, and challenging task called

realistic cell type annotation and discovery in the single-
cell annotation field. To solve this problem effectively,
we further propose a novel method named scPOT.

• We introduce a unified OT framework based on a cell-
prototype alignment schedule to achieve seen cell type
annotation and novel cell type clustering simultaneously.

• An easy yet effective solution is designed for the chal-
lenging problem of estimating the overall cell type num-
ber in target data.

• Comprehensive evaluation benchmarks are constructed
to validate the practicality of scPOT, and deeper analyses
show the effectiveness of its individual components.

2 Related Work
Single-Cell RNA-Seq Data Clustering. As an unsuper-

vised learning branch, clustering is widely used for iden-
tifying cell types [Lakkis et al., 2021]. Early efforts are
mostly based on traditional dimension reduction and hard
clustering methods [Satija et al., 2015]. However, since the
scRNA-seq data possess the characteristics of high dimen-
sion, sparseness, and complex nonlinear relationships, the
traditional clustering methods might obtain unsatisfactory re-
sults. Recently, with the breakthrough of deep learning, sev-
eral deep clustering methods have emerged to serve scRNA-
seq data. scziDesk clusters the cell population in the learned
latent space by a soft self-training K-means algorithm [Chen
et al., 2020a]. scNAME incorporates a mask estimation task
and a neighborhood contrastive learning framework to clus-
ter cells [Wan et al., 2022]. As a semi-supervised cluster-
ing method based on the capsule network, scCNC integrates
domain knowledge into the clustering process [Wang et al.,
2022]. However, although these methods can discover novel
cell types in target data, they cannot recognize the seen cell
types that previously existed in reference data.

Single-Cell RNA-Seq Data Annotation. The traditional
cell annotation methods usually first cluster cells and then
manually annotate these clusters to different cell types based
on marker genes, which is time-consuming and subjective
[Kiselev et al., 2019]. With the tremendous increase of well-
annotated scRNA-seq datasets, more and more studies turn to
exploring automatic annotation methods [Shao et al., 2020].
ItClust is a transfer learning-based method that takes advan-
tage of cell-type-specific gene expression information learned

from reference data [Hu et al., 2020]. MARS applies meta-
learning to encourage the same cell types to have similar fea-
tures while those of different cell types are far apart [Brbić
et al., 2020]. scNym is a gene expression knowledge inte-
gration framework that uses semi-supervised and adversarial
learning techniques [Kimmel and Kelley, 2020]. scArches
uses transfer learning and parameter optimization to enable
reference building and contextualization of target data [Lot-
follahi et al., 2022]. Overall, these methods can only roughly
annotate cells from novel cell types with “unassigned” label,
which is not conducive to subsequent downstream analysis.

3 Method
We first give some notations. In realistic cell type anno-
tation and discovery task, we are given some labeled ref-
erence data Dr = {(xr

i , y
r
i )

nr
i=1} and unlabeled target data

Dt = {(xt
i)

nt
i=1}, which can come from the same scRNA-seq

dataset or different scRNA-seq datasets. The label sets of ref-
erence and target data are denoted as Cr and Ct, respectively.
In our problem, we assume that Cr ⊂ Ct; furthermore, the
seen label set is defined as Cs = Cr ∩ Ct, and the novel label
set is defined as Cn = Ct\Cr. The goal is to assign either seen
cell type labels or clustering labels to cells in the target data.

Considering the traits of scRNA-seq data, we assume that
{xi}nr+nt

i=1 follows a zero-inflated negative binomial distribu-
tion and use a denoising autoencoder model to reconstruct
data [Eraslan et al., 2019]. Inspired by the recent progress in
self-supervised learning [He et al., 2020], we use a data aug-
mentation strategy to generate different views of gene expres-
sion, which can capture the correlations across genes better.
The detailed information can be seen in the supplementary. In
order to assign an annotation or clustering label for each cell,
we attach two prototype-based classifiers Φr and Φt to the
latent layer. Φr projects the l2 normalized embedding zi into
one of the |Cr| seen cell types together with a similarity vec-
tor sri , where sri = V rzi and V r = [vr1, v

r
2, ..., v|Cr

r |]
T is the

l2 normalized reference prototype matrix. Similarly, Φt maps
zi to one of the |Cr ∪ Ct| clusters together with a similarity
vector sti, where sti = V tzi and V t = [vt1, v

t
2, ..., v

t
|Cr∪Ct|]

T

is the l2 normalized target prototype matrix. The value of |Cn|
can be estimated and entered into the model as a prior. The
specific estimation method will be introduced later. Since we
also take the augmented data as input, its embedding repre-
sentation and predictive probability can be written as z̃i and
s̃i, respectively. In the testing phase, we match each reference
prototype with the nearest target prototype by the cosine sim-
ilarity. Then for each target cell, we calculate the maximum
component index of sri ∪sti and take it as the prediction label.

3.1 OT-Based Prototypical Representation
Learning for Novel Cell Type Discovery

To exploit the cell type structure and facilitate the feature rep-
resentation learning for the target data, we propose a pro-
totypical self-supervised clustering technique from the per-
spective of OT [Villani, 2009], which solves a full mapping
problem between target cells and target prototypes. Specif-
ically, we briefly recall the well-known OT problem. Let
Ωd = {µ : µT 1d = 1} denote a simplex set, where 1d refers
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Figure 1: Schematics of scPOT. The overall model consists of an autoencoder and two prototype-based classifiers.

to a d-dimensional vector of all one. Given two simplex dis-
tribution vectors α ∈ Ωm and β ∈ Ωn, we can define the
transport polytope of α and β as follows,

A(α, β) = {Qm×n : Q1n = α,QT 1m = β}. (1)

The transport polytope A(α, β) can also be interpreted as a
set of all possible joint probabilities of (F ,G), where F and
G are two d-dimensional random variables with marginal dis-
tribution α and β, respectively. When we have a similarity
matrix M , the joint probability matrix Q∗, also called as cou-
pling matrix mapping α to β, can be quantified by optimizing
the following maximization problem,

OT ϵ(M,α, β) = argmax
Q∈A(α,β)

Trace(QTM) + ϵH(Q), (2)

where ϵ > 0 and H(Q) = −
∑

ij Qij logQij is the entropy
regularization. The optimal Q∗ is shown to be unique with
the form Q∗ = Diag(u) exp(M/ϵ)Diag(v), where u and v
can be solved by sinkhorn-knopp algorithm [Cuturi, 2013].

Given B normalized target feature vectors Zt =
[zt1, z

t
2, ..., z

t
B ]

T , we are interested in mapping them to the
target prototypes V t. We denote this mapping by Qtt =
[qtt1 , q

tt
2 , ..., q

tt
B ]

T , and optimize Qtt to maximize the similar-
ity matrix Stt = [stt1 , s

tt
2 , ..., s

tt
B ]

T between the target features
and target prototypes by solving the following OT problem,

Qtt = OT ϵ(Stt,
1

|Cr ∪ Ct|
1|Cr∪Ct|,

1

B
1B). (3)

The constraint of marginal uniform distribution enforces that
on average each prototype is selected at least B

|Cr∪Ct| times
in the batch. The solution Qtt satisfies the condition that the
sum of each row equals to 1

|Cr∪Ct| strictly. To further obtain
the prototype assignment distribution for each target cell, we
need to multiply Qtt by |Cr∪Ct|, i.e., Qtt ← Qtt×|Cr∪Ct|, to
ensure each row of Qtt is a probability vector. Similarly, for
another augmented branch, we can also obtain the soft assign-
ment matrix Q̃tt. To encourage the separability of clusters
and guarantee the discrimination of features, we propose a
swapped prototypical representation learning loss as follows,

Lpro = − 1

2B

B∑
i=1

|Cr∪Ct|∑
k=1

(q̃ttik log p
tt
ik + qttik log p̃

tt
ik), (4)

where pttik =
exp(sttik/τ)∑|Cr∪Ct|

j=1 exp(sttij/τ)
and τ is a temperature pa-

rameter. By replacing sttik with s̃ttik, the p̃ttik can be obtained as
same way as pttik. We observe that a strong entropy regular-
ization (i.e., using a high ϵ) in OT generally leads to a trivial
solution where all cells collapse into a unique representation
and are all assigned uniformly to all prototypes [Caron et al.,
2020]. Hence, in practice, we keep ϵ low.

Note that Lpro does not involve the cells in the reference
data and the local structure of the whole data cannot be cap-
tured. Therefore, we propose to encourage the prediction
consistency of similar cells and utilize the pairwise constraint
to group the cells from the same cell types. To achieve this,
we rely on the ground-truth annotations from the reference
data and pseudo-labels generated on the target data. Specif-
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ically, for the reference data, we already know which pairs
should belong to the same cell types according to ground-
truth labels. To obtain the pseudo-labels for the target data,
we compute the cosine distance between all pairs of normal-
ized feature embeddings in the reference and target batches.
We then rank the computed distances and for each target
cell generate the pseudo-label for its most similar neighbor.
Given two mini-batch feature embeddings {zri }Bi=1∪{ztj}Bj=1,
we denote its closest set as {z′ir}Bi=1 ∪ {z′jt}Bj=1. Note that
{z′ir}Bi=1 is always correct since it is generated using the
ground-truth labels. Similarly, for the augmented branch
{z̃ri }Bi=1 ∪ {z̃tj}Bj=1, we also can obtain the corresponding
closest set {z̃′ir}Bi=1 ∪ {z̃′jt}Bj=1. Then our pairwise objective
is defined as a modified binary cross-entropy loss,

Lpair = − 1

4B

2B∑
i=1

(log σ(⟨sti, s̃′it⟩) + log σ(⟨s′it, s̃ti⟩)), (5)

where σ is the sigmoid function and ⟨.⟩ refers to the vector
inner product operation. We update similarities and positive
pairs in an online fashion and thus benefit from improved fea-
ture representation during training. Eventually, to encourage
both global discrimination of clusters and local consistency
of cells, we unify Lpro with Lpair as follows,

Lctd = Lpro + Lpair. (6)

3.2 OT-Based Prototypical Partial Alignment for
Seen Cell Type Annotation

For seen cell type classifier Φr, we can use the known label
information of reference data to train it based on the standard
cross-entropy loss. Given B reference cells, we have

Lce = −
1

2B

B∑
i=1

|Cr|∑
j=1

(yrij log ϕ(s
rr
ij ) + yrij log ϕ(s̃

rr
ij )), (7)

where ϕ is the softmax function. Since the target data possess
some novel cell types, we cannot match all target cells with
reference prototypes and we should consider partial align-
ment to avoid misalignment between them. To extract the
shared knowledge across data, we propose an unbalanced OT-
based seen cell type annotation method, which solves a partial
mapping problem between target cells and reference proto-
types. Specifically, OT ϵ(M,α, β) is not suitable for the par-
tial alignment problem, because its solution Q∗ satisfies the
condition of A(α, β) strictly. So unbalanced OT is designed
to relax the conservation of marginal constraints by allowing
the system to use soft penalties, which can be formulated as,

UOT ϵ,κ(M,α, β) = argmax
Q∈Rm×n

Trace(QTM) + ϵH(Q)

− κ(KL(Q1n||α) +KL(QT 1m||β)), (8)

where KL is the Kullback-Leibler Divergence. This opti-
mization problem can be solved by the generalized sinkhorn-
knopp algorithm [Chizat et al., 2018]. Given B normalized

target features Zt = [zt1, z
t
2, ..., z

t
B ]

T , to achieve mapping
them to the reference prototypes V r, we can obtain the op-
timal assignment matrix Qrt by optimizing the following un-
balanced OT objective,

Qrt = UOT ϵ,κ(Srt,
1

|Cr|
1|Cr|,

1

B
1B), (9)

where Srt = [srt1 , srt2 , ..., srtB ]T . Note that the target cells
from novel cell types will be assigned with relatively low
weights in Qrt. Based on this observation, we select target
cells with top confidence as seen cell types by mining the sta-
tistical information of the assignment matrix Qrt.

We first normalize the assignment matrix, i.e., Qrt ←
Qrt/

∑
Qrt. Then we generate scores based on the statistical

property of Qrt, which depicts the geometrical relationship
between target cells and reference prototypes. For i-th row of
Qrt, it can be seen as a prediction vector of i-th target cell and
we can obtain its pseudo-label ŷti by argmax operation. And
we assign it confidence score ξrti with the maximum value of
i-th row in Qrt, i.e., ξrti = max({Qrt

i1, Q
rt
i2, ..., Q

rt
i|Cr|}). A

higher score ξrti implies that zti is relatively closer to a source
prototype than any other cells and is more likely from a seen
cell type. Meanwhile, to select target cells with top confi-
dence, we also evaluate the confidence score of j-th reference
prototype with the sum of j-th column, i.e., ζrtj =

∑B
i=1 Q

rt
ij .

Analogously, a higher score ζrtj means vrj is a more reliable
reference prototype, which is assigned to target cells more
frequently. Then the target cells from seen cell types can be
detected by statistic values, i.e.,

δti =

{
1, ξrti ≥ 1

|Cr| and ζ
rt
ŷt
i
≥ 1

B ,

0, otherwise
(10)

where δti = 1 indicates the i-th target cell is regarded as
from the seen cell types with top confidence, which can be
assigned with pseudo-label ŷti . Similarly, the same procedure
can be implemented on the augmented branch to obtain δ̃ti and
ˆ̃yti . Naturally, we can use the pseudo-labels of selected target
cells to compute the swapped partial alignment loss below,

Lalign = − 1∑B
i=1 2(δ

t
i + δ̃ti)

B∑
i=1

(δti

|Cr|∑
j=1

ŷtij log ϕ(s̃
rt
ij )

+ δ̃ti

|Cr|∑
j=1

ˆ̃ytij log ϕ(s
rt
ij )), (11)

where ϕ is the softmax function. Combining Lce with Lalign,
we give the training loss on the reference prototypes,

Lsca = Lce + Lalign. (12)

Overall loss. Together with the data denoising loss Lden

(see supplementary), we give the overall training objective as

Ltol = Lden + λLsca + γLpro, (13)

where λ and γ are two weight hyper-parameters.
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3.3 Estimation of the |Ct| Value
Here, we propose a solution to the challenging and under-
investigated problem in cell annotation: estimating the cell
type number |Ct| in target data. Almost all annotation meth-
ods assume that the number of |Ct| is prior. However, this
assumption is unrealistic in the real world. This calls on the
community to develop a method for estimating |Ct|. Our main
idea derives from the information available in Dr. Specif-
ically, we perform sphere k-means clustering on the whole
dataset Dr

⋃
Dt and then evaluate clustering accuracy only

on the reference data Dr. Let |Ĉt| represent the estimated
value. If |Ĉt| > |Ct|, then Ĉt − Ct can be called the extra
cell types, and all cells assigned to extra cell types are mis-
predicted. Similarly, if |Ĉt| < |Ct|, then Ct − Ĉt can be called
the extra true cell types, and all cells with those cell types
are predicted incorrectly. Based on this analysis, whether |Ĉt|
is higher or lower than |Ct| will have a negative impact on
the clustering accuracy on Dr. In other words, the clustering
accuracy onDr will be maximized when |Ĉt| = |Ct|. Accord-
ing to this intuition, we use AC = f(|Ĉt|,Dr) to measure the
clustering accuracy on Dr, which we optimize with Brent’s
algorithm to find the optimal |Ĉt| [Brent, 2013].

4 Experiment
4.1 Setup

Dataset. Our experiments consist of intra-data annota-
tion and cross-data annotation. For the former, we collect 10
datasets sequenced from different organisms. The cell num-
bers range from 6462 to 110704, and the cell type numbers
vary from 9 to 45. Unless otherwise noted, we first divide all
cell types into 50% seen and 50% novel. Then we select 50%
samples in seen cell types as Dr and the rest as Dt. For the
latter, we select 10 groups of datasets. Each group consists of
a reference dataset and a target dataset, and the batch effect
exists between them. The basic information of these datasets
can be seen in the supplementary.

Baselines. Our task is to establish a new cell annotation
setting for which no ready-to-use baselines exist. Thus, we
compare scPOT with recently developed scRNA-seq clus-
tering and annotation algorithms, including three clustering
methods (scziDesk, scCNC, and scNAME) and four annota-
tion methods (MARS, ItClust, scNym, and scArches). For
clustering methods, only scCNC participates in training with
bothDr andDt, while the other two trains only onDt. We re-
port their clustering performance on seen and novel cell types.
For annotation methods, we first use them to classify target
cells into seen cell types and identify the “unassigned” group.
Next, we apply k-means clustering on the “unassigned” group
to obtain novel clusters. Detailed information on these base-
lines can be seen in the supplementary.

Evaluation Protocols. We report the classification ac-
curacy on seen cell types and clustering accuracy on novel
cell types for scPOT and annotation baselines while reporting
clustering accuracy on both seen and novel cell types for clus-
tering baselines. Specifically, to compute the clustering accu-
racy, we apply the Hungarian algorithm to solve the optimal

assignment problem [Kuhn, 1955]. When reporting accuracy
on all cell types, we solve the optimal assignment problem on
both seen and novel cell types. The reported accuracies are
the mean values of three runs.

Implementation Details. Our algorithm is implemented
by PyTorch, and we conduct the experiments with 2 Tesla
A100 GPUs. The two layers of the encoder are sized 512 and
256, respectively, and the decoder has the reverse structure of
the encoder. The bottleneck layer has a size of 128. The train-
ing mini-batch size is set to 256, and the optimizer is Adam
with a learning rate of 1e-4. The temperature τ is set to 0.1,
and the loss weight parameters λ and γ are both set to 1.0.
The parameters ϵ and κ in OT are set slightly differently in
various datasets and the details can be seen in the supplemen-
tary. We first train the whole model using Lden loss with 600
epochs. Then, we apply the sphere k-means algorithm on tar-
get embeddings to obtain cluster centers as the initial values
of target prototypes. The initialization of reference prototypes
can be obtained by the mean values of reference embeddings
based on ground-truth labels. Finally, we train the model with
the overall loss Ltol until the predictions no longer change.

4.2 Results
Intra-data Annotation. To begin, we explore the perfor-

mance of scPOT under the intra-data setting without batch ef-
fect. From the results in Tabel 1, we can conclude that scPOT
consistently achieves stable and the best performance under
three types of accuracy on most datasets. It is not worth sur-
prising that scPOT gets such an excellent performance since
the unified OT framework based on a cell-prototype align-
ment schedule can effectively realize label transferring of
seen cell types and cell clustering of novel cell types by solv-
ing the optimal assignment problem. The results in Tabel 1
also fully show that the two-step strategy that first annotates
cells of novel cell types with “unassigned” label and then fur-
ther clusters them is not an appropriate solution to this new
task. By comparison, although scNym can obtain relatively
high annotation accuracy on seen cell types, and even higher
than our method on individual datasets, it has a sharp drop in
clustering accuracy on novel cell types. As an unsupervised
annotation method, MARS allows for fine-grained analysis of
novel cell types and has the ability to assign clustering labels
for them. However, it can only provide sub-optimal results for
both annotation and clustering accuracy. scCNC and ItClust
are not excellent in both annotation and clustering accuracy,
and ItClust even fails catastrophically in annotating seen cell
types. As clustering methods, scziDesk and scNAME cannot
provide satisfactory results for the reason that they do not uti-
lize the information in reference datasets, which makes them
less competitive. In summary, scPOT outperforms other com-
peting methods under three kinds of accuracy in the intra-
data setting. This superior performance shows that scPOT
achieves remarkable progress for this novel task.

Cross-Data Annotation. In this section, we turn to ex-
plore a more challenging setting, that is, the cross-data set-
ting with batch effect. We compare scPOT with other seven
competitive methods on ten groups of mixed datasets. As
shown in Table 2, scPOT achieves consistently better results
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Cao Hochane Park Quake 10x Quake Smart-seq2
seen novel overall seen novel overall seen novel overall seen novel overall seen novel overall

scziDesk 85.2 74.1 63.8 91.0 83.9 84.4 97.3 72.9 85.0 84.1 58.5 73.3 76.7 72.5 70.7
scNAME 79.1 78.5 75.1 91.0 85.7 84.3 56.6 79.5 73.4 82.2 62.0 69.8 76.5 61.2 63.5
scCNC 50.2 60.9 52.7 94.1 70.0 70.4 92.4 61.0 76.6 85.0 49.8 61.3 65.0 40.8 39.0
MARS 88.6 75.8 64.3 96.9 74.5 78.8 61.6 78.2 68.3 92.1 52.8 68.9 80.3 70.6 69.2
ItClust 14.5 62.3 56.6 33.1 49.5 45.3 76.3 42.6 62.4 70.5 47.3 52.3 32.7 55.5 49.4
scNym 99.2 69.4 66.2 98.9 49.8 46.0 99.8 48.9 45.2 98.4 52.8 60.8 96.9 59.2 56.4

scArches 73.4 46.5 52.2 82.6 91.5 89.3 86.6 36.8 65.7 88.3 56.6 69.1 72.3 54.7 57.2
scPOT 90.6 84.3 81.5 98.4 93.6 86.2 96.8 82.1 87.5 94.5 63.4 78.2 90.1 75.4 76.7

Wagner Zeisel Zheng Chen Guo
seen novel overall seen novel overall seen novel overall seen novel overall seen novel overall

scziDesk 72.1 48.2 54.6 78.0 89.1 82.5 57.7 52.0 45.7 78.8 92.2 90.8 99.6 80.0 75.1
scNAME 74.4 48.4 54.8 93.4 88.1 84.3 57.7 52.0 45.7 79.8 92.1 91.1 99.8 76.4 72.0
scCNC 85.8 51.4 55.0 77.2 50.8 55.0 61.5 56.6 48.6 79.8 92.1 91.1 99.8 76.4 72.0
MARS 81.6 42.6 50.9 98.9 83.3 84.1 72.5 59.5 50.6 80.1 94.1 90.4 99.7 72.6 68.8
ItClust 18.5 32.2 36.4 52.7 57.3 54.1 20.7 50.9 43.8 20.8 82.5 72.2 19.5 74.7 67.8
scNym 96.5 42.3 44.2 99.6 64.6 62.7 98.8 56.5 51.4 97.4 77.7 72.2 99.8 60.4 56.8

scArches 58.1 35.9 41.7 78.1 60.0 63.3 60.4 72.9 68.4 74.4 85.6 82.9 61.0 78.9 74.8
scPOT 89.2 53.7 58.6 97.5 90.8 87.4 93.9 76.2 69.5 90.6 95.7 93.2 99.8 87.1 80.6

Table 1: Performance comparison between various baselines on ten real datasets in intra-data annotation experiments.

than other methods on most datasets, which demonstrates that
scPOT can also deliver excellent performance for the cross-
data situation. Moreover, compared with the intra-data set-
ting, there is no significant decline in the performance of
scPOT, indicating that scPOT could resist the effect of batch
effect to some extent. scziDesk and scNAME are unsuper-
vised clustering methods and do not use reference data, they
do not have to deal with batch effects, but at the same time,
they can not get the cell type knowledge from reference data.
In comparison, since MARS and ItClust separate the learning
process on reference data from the training process on tar-
get data, elevating susceptibility to batch effect, and in turn,
leading to model overfitting and false cell type annotations.

4.3 Ablation Study
Robustness Analysis. Since the novel cell type number
|Cn| determines the difficulty for methods to discover and
cluster novel cells, it is imperative to explore the influence
of the variation of |Cn| on the methods. We evaluate the
performance of all eight methods on Quake 10x and Quake
Smart-seq2 with 36 and 45 total cell type numbers, respec-
tively. Here, |Cn| varies in the range of [4, 11, 18, 25, 32] for
Quake 10x and [5, 14, 23, 32, 41] for Quake Smart-seq2. Fig-
ure 2(a) and Figure 2(b) are the line graphs that show the
results intuitively. It is easy to see that the change of |Cn| has
a huge effect on the overall accuracy of all methods and it is
reasonable because |Cn| affects the specific gravity of differ-
ent cell types and can therefore influence the performance of
methods. From the Figure, we can conclude that no matter
what value |Cn| takes, scPOT beats other methods with clear
margins. Moreover, with the change of |Cn|, the overall accu-
racy of scPOT varies only slightly, suggesting the robustness
of scPOT. On the contrary, other methods are affected by the
variation of |Cn| to varying degrees. The overall accuracy of
scNym, scArches and scCNC drops catastrophically with in-
creasing |Cn|. It is noteworthy that the result for ItClust rises
dramatically on Quake 10x and drops significantly on Quake

Smart-seq2, which suggests its instability. Although the re-
sults of MARS, scziDesk and scNAME are relatively stable,
they tend to provide sub-optimal results. Therefore, we can
conclude that scPOT is robust for the variation of |Cn|.

Besides, since the ratio of labeled data determines how
much information can be used for annotation and clustering,
we explore its impact by conducting experiments on Quake
10x and Quake Smart-seq2 datasets. The ratio of labeled data
varies in the range of [0.1, 0.3, 0.5, 0.7, 0.9], and Figure 2(c)
and 2(d) describe the variation tendency overall accuracy of
eight methods. We can find that scPOT still performs best,
no matter what value the ratio of labeled data takes. How-
ever, the other seven methods all show an obvious downward
trend. This result is in line with our speculation for the reason
that these three methods are all to make the model learn the
knowledge from the reference data first and then transfer the
learned knowledge or model to the target data to make predic-
tions, which is sensitive to the size of the reference dataset.
In conclusion, this experiment provides intuitive evidence to
confirm that scPOT can provide reliable and remarkable per-
formance, even with a few labeled data.

Validity of the |Ct| Value Estimation Method. The esti-
mated value of |Ct| determines the performance of methods
for discovering novel cell types. Thus, it is imperative to con-
duct experiments to validate the validity of the |Ct| value es-
timation method. Specifically, Quake 10x and Quake Smart-
seq2 are used as our experimental data, whose total cell type
numbers are 36 and 45, respectively. We study the case when
|Ct| varies in the range of [−15,−10,−5, 0, 5, 10, 15] and
“increment=0” means that the estimated value of |Ct| is equal
to the true value. The results are shown in Table 3. For these
two datasets, we can clearly see that the clustering accuracy
gets the maximum value when the increment is 0, indicating
the validity of our estimation method.

Effect of Lpro, Lpair and Lalign. Here, we carry out an
ablation study on 10 real datasets to learn about the effect
and performance gain of introducing Lpro,Lpair and Lalign
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Enge (R)
Baron human (T)

Lawlor (R)
Baron human (T)

Muraro (R)
Baron human (T)

Xin (R)
Baron human (T)

Vento 10x (R)
Vento Smart-seq2 (T)

seen novel overall seen novel overall seen novel overall seen novel overall seen novel overall
scziDesk 81.6 81.5 81.6 81.3 80.3 81.2 81.6 81.5 81.6 75.1 84.2 81.3 81.7 79.0 81.5
scNAME 81.0 81.9 81.2 80.7 79.4 79.9 95.8 71.4 91.2 73.6 85.3 77.7 87.4 80.3 86.0
scCNC 47.6 38.5 38.8 54.0 43.9 40.9 75.0 40.8 61.1 46.6 54.7 36.5 92.1 63.4 84.8
MARS 90.3 86.2 79.8 80.9 90.7 80.3 79.5 82.3 80.0 93.6 78.0 88.6 71.3 78.6 70.3
ItClust 83.4 52.3 72.7 88.5 48.9 77.1 80.9 56.4 69.2 84.5 80.7 84.1 79.8 50.7 70.4
scNym 97.7 71.9 84.7 90.2 52.2 82.8 88.2 55.5 63.9 97.9 40.0 52.3 98.7 66.5 75.9

scArches 89.2 58.0 80.3 47.3 66.8 52.5 89.3 52.8 80.9 61.5 52.2 52.7 87.6 52.9 78.2
scPOT 92.5 84.7 87.2 93.8 86.4 88.7 94.5 85.9 92.4 94.3 87.6 90.8 96.5 82.2 90.6

Vento Smart-seq2 (R)
Vento 10x (T)

Plasschaert (R)
Montoro 10x (T)

M Smart-seq2 (R)
M 10x (T)

Haber largecell (R)
Haber region (T)

Haber region (R)
Haber largecell (T)

seen novel overall seen novel overall seen novel overall seen novel overall seen novel overall
scziDesk 88.4 98.4 90.9 67.9 74.6 68.3 94.0 89.3 91.2 43.9 60.9 53.0 85.3 80.8 71.0
scNAME 86.5 98.2 92.8 95.1 90.2 96.0 93.7 99.0 96.8 46.0 62.6 54.3 89.1 80.9 71.6
scCNC 83.4 47.1 43.7 79.7 73.1 73.0 92.4 65.5 76.2 62.7 69.4 55.9 75.7 50.4 51.6
MARS 94.5 78.6 83.8 88.6 94.5 89.1 81.5 97.5 86.9 57.1 75.1 68.2 83.8 64.1 67.1
ItClust 64.3 75.0 58.2 90.1 75.1 83.2 36.8 70.5 67.2 53.4 58.2 56.4 6.2 64.5 53.6
scNym 98.1 70.4 80.6 96.1 77.7 83.1 95.1 48.6 49.8 95.8 44.4 51.2 84.2 53.7 53.0

scArches 83.4 66.8 75.2 91.4 67.4 85.3 62.0 55.5 59.0 72.3 51.7 59.6 71.9 45.4 50.4
scPOT 96.8 98.9 97.3 95.8 92.3 96.5 94.6 99.2 97.7 83.4 92.5 88.1 86.9 82.6 80.0

Table 2: Performance comparison between various baselines in cross-data annotation experiments. “R”: reference data; “T”: target data.
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Figure 2: Accuracy on all cell types. (a,b) Changing the novel cell type numbers in Quake 10x and Quake Smart-seq2 datasets, respectively;
(c, d) Changing the labeled ratio in Quake 10x and Quake Smart-seq2 datasets, respectively

increment -15 -10 -5 0 5 10 15
Quake 10x 87.5 91.2 93.3 94.1 93.6 92.4 90.6

Quake Smart-seq2 78.3 83.6 89.4 90.8 90.2 88.9 87.1

Table 3: Clustering accuracy on seen cell types when changing the
value of |Ct| on Quake 10x and Quake Smart-seq2 datasets.

in scPOT, respectively. The results are shown in Table 4. We
can clearly see that removing Lpro results in the most signif-
icant effect on the overall accuracy, mainly because it plays a
key role in the discovery and separation of novel cell types. It
can also be seen that when the number of cell types in target
data is relatively large, adding the local structure constraint
Lpair has a greater effect on overall accuracy, in contrast, the
effect of prototype-oriented partial alignment loss Lalign is
more significant. Overall, we can conclude that the strategies
we propose are of significant value to address this new task.

5 Conclusion
In this article, we propose a new, practical, and challenging
task called realistic cell type annotation and discovery in the
single-cell field and design a unified OT framework called
scPOT to address it. scPOT mainly consists of two main
parts, which are an OT-based prototypical learning paradigm

Methods Cao Hochane Park Q 10x Q Smart-seq2
scPOT w/o Lpro 73.6 80.8 76.1 68.7 64.3
scPOT w/o Lpair 76.9 84.5 84.7 72.3 70.9
scPOT w/o Lalign 78.4 82.9 84.0 74.1 73.8

scPOT (full) 81.5 86.2 87.5 78.2 76.7
Methods Wagner Zeisel Zheng Chen Guo

scPOT w/o Lpro 49.8 78.5 62.6 88.4 74.7
scPOT w/o Lpair 54.3 82.7 66.8 91.3 78.2
scPOT w/o Lalign 56.1 84.9 65.4 90.8 77.0

scPOT (full) 58.6 87.4 69.5 93.2 80.6

Table 4: Ablation study on ten real datasets.
for the novel cell type discovery and an OT-based partial
alignment strategy to realize seen label transferring. We also
introduce a solution for the estimation problem of the to-
tal number of cell types in target data. To evaluate the al-
gorithm’s performance, we carefully construct comprehen-
sive baselines and benchmarks. The results on massive real
datasets verify the superiority and robustness of scGAD com-
pared to several annotation and clustering methods.
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[Brbić et al., 2020] Maria Brbić, Marinka Zitnik, Sheng

Wang, Angela O Pisco, Russ B Altman, Spyros Darma-
nis, and Jure Leskovec. Mars: discovering novel cell
types across heterogeneous single-cell experiments. Na-
ture methods, 17(12):1200–1206, 2020.

[Brent, 2013] Richard P Brent. Algorithms for minimization
without derivatives. Courier Corporation, 2013.

[Cao et al., 2019] Zhi-Jie Cao, Lin Wei, Shen Lu, De-Chang
Yang, and Ge Gao. Cell blast: searching large-scale scrna-
seq databases via unbiased cell embedding. BioRxiv, page
587360, 2019.

[Caron et al., 2020] Mathilde Caron, Ishan Misra, Julien
Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by con-
trasting cluster assignments. Advances in Neural Informa-
tion Processing Systems, 33:9912–9924, 2020.

[Chen et al., 2020a] Liang Chen, Weinan Wang, Yuyao Zhai,
and Minghua Deng. Deep soft k-means clustering with
self-training for single-cell rna sequence data. NAR ge-
nomics and bioinformatics, 2(2):lqaa039, 2020.

[Chen et al., 2020b] Liang Chen, Yuyao Zhai, Qiuyan He,
Weinan Wang, and Minghua Deng. Integrating deep su-
pervised, self-supervised and unsupervised learning for
single-cell rna-seq clustering and annotation. Genes,
11(7):792, 2020.

[Chizat et al., 2018] Lenaic Chizat, Gabriel Peyré, Bernhard
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