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Abstract

In financial scenarios, influenced by common fac-
tors such as global macroeconomic and sector-
specific factors, stocks exhibit varying degrees of
correlations with each other, which is essential in
risk-averse portfolio allocation. Because the real
risk matrix is unobservable, the covariance-based
correlation matrix is widely used for constructing
diversified stock portfolios. However, studies have
seldom focused on dynamic correlation matrix es-
timation under the non-stationary financial market.
Moreover, as the number of stocks in the mar-
ket grows, existing correlation matrix estimation
methods face more serious challenges with regard
to efficiency and effectiveness. In this paper, we
propose a novel hash-based dynamic correlation
forecasting model (HDCF) to estimate dynamic
stock correlations. Under structural assumptions
on the correlation matrix, HDCF learns the hash
representation based on normalizing flows instead
of the real-valued representation, which performs
extremely efficiently in high-dimensional settings.
Experiments show that our proposed model outper-
forms baselines on portfolio decisions in terms of
effectiveness and efficiency.

1 Introduction
In financial scenarios, influenced by common factors such as
global macroeconomic and sector-specific factors [Fama and
French, 1989; Fama and French, 1993], stocks exhibit vary-
ing degrees of correlations with each other. For instance,
stocks sharing the same industry risks tend to have highly
correlated returns. These correlations between stocks play a
central role in risk-averse portfolio allocation. According to
Markowitz’s theory [Markowitz, 1952], portfolio optimiza-
tion heavily relies on the correlations between the returns of
different stocks to diversify risk. In risk-averse portfolio al-
location, a covariance-based correlation matrix, i.e., correla-
tion coefficients matrix of stocks, can directly reflect such
correlations in a risk perspective, which is widely used for
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constructing diversified stock portfolios [Fan et al., 2013a;
Ke et al., 2020].

There is a large body of work on covariance-based cor-
relation matrix estimation, which can be divided into two
categories: static and dynamic methods. Static estima-
tion methods, like POET [Fan et al., 2013b], often cap-
ture the most recent correlations, which ignore the dynam-
ics of these correlations. Alternatively, there is impressive
literature on dynamic estimation techniques, such as para-
metric GARCH-based methods [Bollerslev et al., 1988;
Engle et al., 2017; Lan et al., 2017; Ke et al., 2020] and
non-/semi-parametric kernel approaches [Chen et al., 2013;
Chen et al., 2019]. However, the above estimation methods
face a challenging problem when markets include a large va-
riety of stocks, i.e., the limited sample size problem in high-
dimensional settings. This problem especially becomes more
severe for dynamic correlation matrix estimation. The reason
is twofold. Firstly, obtaining adequate data samples in non-
stationary markets is challenging due to the limited utility of
too old data in reflecting the present dynamic changes in cor-
relation. Secondly, there are more parameters to estimate in
the time-varying estimation model. To address this problem,
researchers have made several structural assumptions on cor-
relation matrices; the two most common ones are low-rank
factor models [Fama and French, 1989; Fan et al., 2007] and
(conditional) sparsity [Bickel and Levina, 2008; Friedman
et al., 2008] (or a combination of both [Fan et al., 2013b;
Chandrasekaran et al., 2010]). Inspired by earlier work on
the structural assumptions, we creatively propose an end-to-
end dynamic correlation matrix forecasting method between
different stocks, aiming to enhance the efficiency of correla-
tion matrix forecasting in portfolio diversification.

Due to the excellent efficiency in storage and computa-
tion, deep hashing yields breakthrough results in image re-
trieval [Cao et al., 2017; Xia et al., 2014; Gong et al., 2013],
video retrieval [Liu et al., 2017; Yuan et al., 2019], and
cross-modal retrieval [Jiang and Li, 2016; Yang et al., 2017].
Deep hashing methods have a good ability to learn complex
hash functions and obtain high-quality hash representations
using the powerful representation capabilities of deep learn-
ing. Based on the aforementioned analysis, we design a hash-
based dynamic correlation matrix forecasting model (HDCF).
HDCF learns the binary representation of the correlation ma-
trix, which performs the dynamic correlation matrix forecast-
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ing and portfolio risk reduction task extremely efficiently.
However, it is non-trivial to model a hash-based correlation

matrix prediction model, where the challenge is twofold.
Firstly, CH1: How to implement optimization on discrete

hash representations? Due to the discrete property of the bi-
nary hash representations, the optimization is an intractable
problem and is prone to the vanishing gradient problem. To
address CH1, HDCF contains an approximate discretization
flow module (ADFM). A series of reversible transformations
based on normalizing flow are performed on a real-valued
representation that follows a priori normal distribution to gen-
erate an approximate binary representation. Then, the hash
representation is generated by the binarization operations. Fi-
nally, we directly optimize the hash representation based on
the approximate binary representation.

Secondly, CH2: How to preserve the properties of the
correlation matrix? On the one hand, considering that the
correlation matrix is dynamically changing, from a prac-
tical point of view, the difference between the correlation
matrices in two successive periods should not be too large,
i.e., the evolution pattern of the correlation matrix is slow-
varying. On the other hand, the correlation matrix has sym-
metry. To tackle CH2, we design two structure preserving
components, i.e., slow-varying preserver (SVP) and correla-
tion matrix structure preserver (CMSP). SVP constructs pair-
wise metric learning of hash representations in two successive
periods in Hamming space. In CMSP, we design two regular-
izers to impose structural constraints on the correlation ma-
trix, which is fast and flexible.

To the best of our knowledge, this is the first work in the
literature on end-to-end deep hashing-based correlation ma-
trix estimation in portfolio diversification. Our main contri-
butions are as follows:

• We propose a novel deep hashing model called HDCF,
which focuses on efficient dynamic correlation matrix
estimation for a risk-averse portfolio allocation;

• In HDCF, we design three special modules, i.e., ADFM,
SVP, and CMSP, to address the two challenges. Specif-
ically, ADFM applies normalizing flow to learn the
binary representation of the dynamic correlation ma-
trix (for addressing CH1), and two structure preserv-
ing components (SVP and CMSP) construct three con-
straints based on regularizers and pair-wise metric learn-
ing to preserve the properties of the correlation matrix
(for addressing CH2).

• We have conducted extensive experiments on three real-
world datasets to demonstrate HDCF’s superiority over
the state-of-the-art covariance-based correlation matrix
estimation methods. The results highlight HDCF is not
only effective for the portfolio decision task but also ef-
ficient in large-scale scenarios.

2 Related Work
2.1 Risk-averse Portfolio Selection
Since the seminal work of Markowitz [Markowitz, 1952], the
mean-variance paradigm has been at the heart of the modern
portfolio theory, which is the theoretical cornerstone of the

risk-averse portfolio selection problem. In risk-averse portfo-
lios, correlations between stocks are an important considera-
tion, where lower stock correlations imply a higher diversi-
fication in the portfolio, which can diversify risk effectively.
As stock correlations change over time, a risk-averse portfo-
lio in one step may no longer be diversified in the next step
and may incur unexpected losses [Engle, 2009]. Therefore,
we need to model the dynamic correlation matrix in order to
achieve a consistent low-risk level in a portfolio.

2.2 Dynamic Correlation Matrix Prediction
Methods

Multivariate GARCH (MGARCH) is a class of models that
can estimate time-varying stock correlations. The Dynamic
Conditional Correlation (DCC) model [Engle, 2002] and its
variants [Engle et al., 2017; Rangel and Engle, 2012] address
the dynamic structure of stock correlations by parameterizing
conditional correlations. However, these statistically oriented
methods (1) hold unrealistic statistical assumptions that make
them unsuitable for real data and (2) use linear regression in
parameter estimation, which is challenging to model correla-
tions in large-scale settings. Compared with existing works,
on the one hand, our framework is based on deep hashing
to learn binary correlation representation, which makes our
model extremely efficient even when the number of stocks
grows substantially. On the other hand, using regularizers to
make structural constraints on the dynamic correlation matrix
is flexible.

3 Preliminaries and Problem Formulation
Preliminaries. In the financial market, given the historical
daily prices of stock i:

{
pi0, p

i
1, . . . , p

i
T

}
, where pit denotes

the price of stock i at time t, the price relative of stock i at
time t is calculated by:

rit = log
(
pit
)
− log

(
pit−1

)
. (1)

Let ft (si, sj) denote the correlation measurement between
stock i and stock j at time t. For correlation function f of two
stocks si and sj in period [t−∆, t], ft(si, sj) is calculated as
follows:

ft (si, sj) =

∑t
p=t−∆

(
rip − ri

)(
rjp − rj

)
√∑t

p=t−∆

(
rip − ri

)2
√∑t

p=t−∆

(
rjp − rj

)2
.

(2)
It is natural to use matrix group all pair-wise correlations,
then the correlation matrix at time t can be denoted as Γt,
formulated as:

Γt =


ft (si, si) ft (si, sj) · · · ft (si, sn)
ft (sj , si) ft (sj , sj) · · · ft (sj , sn)

...
...

. . .
...

ft (sn, si) ft (sn, sj) · · · ft (sn, sn)

 . (3)

When the computation of correlation coefficient is used as the
measure function ft, Γt is called a covariance-based correla-
tion matrix.
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Definition 1 (Covariance-based Correlation Matrix).
Covariance-based correlation matrix of stocks is a symmet-
ric matrix composed of the correlation coefficients of a group
of stocks. We can calculate the predicted covariance matrix
Σ̂t at round t:

Σ̂t = diag(s) · Γ̂t · diag(s), (4)

where Γ̂t denotes the covariance-based correlation matrix
predicted by the estimation method, s denotes the standard
deviation vector at round t, and diag(s) is to create a diago-
nal matrix with s.
Problem Formulation. We consider a portfolio diversifi-
cation problem with p stocks during T trading rounds. We
start by setting up notation. At each trading round t, the
price relatives of the stocks are denoted by a vector rt =(
r1t , r

2
t , . . . , r

p
t

)
. The price relative rit is bounded in a closed

interval [C1, C2] (C1 and C2 are constants satisfying 0 <
C1 ≤ C2). The portfolio diversification problem at round t is
to determine an optimal portfolio πt based on the correlations
between all the p stocks at round t. The portfolio πt is defined
by a weight vector wt =

(
w1

t , w
2
t , . . . , w

p
t

)
satisfying the

constraint that every wi
t is non-negative and the sum of all wt

equals to one, i.e., w ∈ ∆p =
{
w | 0 ≤ w ≤ 1,w⊤1 = 1

}
,

where wi
t indicates the proportion of wealth allocated to the

stock i. The goal is to forecast dynamic correlation matrix Γt

at round t based on the multivariate time series {rt−τ :t−1}
(for simplicity called Xt) up to round t− 1. τ is the window
size on price-relative sequences.
Definition 2 (Minimum-variance Portfolio). A minimum-
variance portfolio wt at round t is constructed as follows:

wt = argminw ft(w) = argminw
(
w⊤Σtw

)︸ ︷︷ ︸
risk

subject to w⊤µt ≥ E,w ∈ ∆p,

(5)

where Eq.(5) is an objective function according to the mean-
variance portfolio criterion [Markowitz, 1952], Σt is the
portfolio’s risk matrix, µt is the mean vector of stock price
relatives, and E is the expected portfolio’s return decided by
the investor.

4 Method
4.1 Overview of HDCF
The architecture of our proposed HDCF is presented in Fig-
ure 1, which includes three key modules, i.e., approximate
discretization flow module (ADFM), slow-varying preserver
(SVP), and correlation matrices structure preserver (CMSP).
Details of each module are as follows:

• ADFM uses a recurrent neural network (RNN), here an
LSTM [Sak et al., 2014], to model correlations between
stocks as real-valued representations that obey prior nor-
mal distribution. Normalizing flow is subsequently de-
ployed to achieve pre-hash representation that obeys a
continuous but approximately discrete distribution. Fi-
nally, the binarization operation on this distribution is
recruited to output the hash representation of the corre-
lation matrix (§4.2).

• SVP supposes to learn hash representations between two
successive periods supervised by the similarity under
the slow-varying assumption. The pair-wise similarity
would encourage hash correlation matrices of successive
periods to be close to each other. Through such pair-wise
similarity learning, the similarity information between
correlation matrix pairs can be preserved, yielding high-
quality hash correlation matrices (§4.3).

• CMSP utilizes the properties of symmetry matrix and
sparse matrix to learn binary correlation matrices with
the correct structure, improving the hash representation
of correlation matrix (§4.4).

4.2 Approximate Discretization Flow Module
(ADFM)

Modeling. For the stock correlation forecasting task at
round t, the objective we seek to maximize is the likelihood of
the correlation matrix Γt, i.e., p(Γt). Formally, we determine
the likelihood p(Γt) in Eq.(6) by introducing the predicted
hash representation B̂t of the correlation matrix at round t as
the condition:

log p (Γt) = log p
(
Γt | B̂t

)
+ log p

(
B̂t

)
. (6)

We assume any correlation coefficient γ(i,j)
t in Γt is Gaus-

sian distributed around their true mean, and b̂
(i,j)
t is the bit of

B̂t at the corresponding position, such that we can compute
the conditional log-likelihood as follows:

log p
(
γ
(i,j)
t | b̂(i,j)t

)
= logN

(
γ
(i,j)
t − b̂

(i,j)
t , σ2

γ

)
, (7)

where the variance σ2
γ is constant, thus providing an equal

weighting of correlation coefficients.
However, the exact value of the variance is irrelevant since

maximizing Eq.(7) corresponds to simply minimizing the
squared error (MSE) of the mean term, i.e., γ(i,j)

t − b̂
(i,j)
t .

The conditional log-likelihood within the expectation term in
Eq.(6) can be considered a reconstruction term, which rep-
resents how well the observed correlation matrix Γt can be
decoded from the hash representations B̂t. Thus, we define
the reconstruction error loss function as follows:

Lrecon = MSE
(
Γt, B̂t

)
. (8)

Furthermore, maximization in Eq.(6) is still intractable.
Thus we need to introduce variational inference [Jordan
et al., 1999]. Variational inference devotes to approximate
posterior qϕ

(
B̂t | Xt

)
to surrogate the true intractable pos-

terior p
(
B̂t

)
, where ϕ denotes parameters on neural net-

works. Formally, variational inference in this work seeks
to simultaneously minimize the Kullback-Leibler divergence
KL

(
qϕ

(
B̂t | Xt

)
∥p

(
B̂t

))
to achieve the optimal ϕ. Dur-

ing the learning process with the above variational inference,
an Evidence Lower BOund can be drawn in Eq.(9). There-
fore, we can use ELBO maximization as a proxy to indirectly
maximize the log-likelihood function, as follows:

log p (Γt) ≥ −Lrecon−KL
(
qϕ

(
B̂t | Xt

)
∥p

(
B̂t

))
, (9)
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Figure 1: Network architecture of our model HDCF

where the second term in ELBO is a regularizer that con-
strains the form of the approximate posterior.
Calculation. Firstly, we adopt LSTM to encode the stocks’
historical returns Xt to obtain a latent state ht that repre-
sents the concatenation of the LSTM cell state vectors and the
LSTM-unit output vectors at time t, i.e., ht = gθ (Xt,ht−1),
where g refers to the hidden-state evolution at each timestep
and the subscript θ indicates model parameters.

Secondly, we use a linear layer to generate the mean and
variance of the base distribution qθ

(
z0,(i,j)

)
as follows:[

µ
z
0,(i,j)
t

,σ2

z
0,(i,j)
t

]
= linear(ht), (10)

qθ

(
z
0,(i,j)
t

)
= N

(
µ

z
0,(i,j)
t

,σ2

z
0,(i,j)
t

)
, (11)

where z
0,(i,j)
t is the latent random variable sampled from

qθ

(
z
0,(i,j)
t

)
, and z

0,(i,j)
t with ∀i, j ∈ {0, ..., p− 1} forms

the real-valued representation Z0
t ∈ Rp×p.

Then due to B̂t’s discrete property, HDCF transforms the
base distribution by stacking K affine coupling transforma-
tion layers, and the output of the Kth affine coupling trans-
formation layer is ZK

t ∈ Rp×p. Since every transformation in
normalizing flow is invertible: Using the change-of-variables
formula, we can write the log-likelihood of qϕ

(
ZK

t

)
as used

in likelihood maximization, as follows:

qϕ
(
ZK

t

)
= log qN (Z0

t )−
K−1∑
l=0

log

∣∣∣∣∣det ∂Zl+1
t

∂Zl
t

∣∣∣∣∣ , (12)

where ϕ denotes model parameters, and qN is the probabil-
ity density function of the p2-dimensional normal distribu-
tion, and ∂Zl+1

t

∂Zl
t

is the Jacobian matrix of the transformation

Zl
t→Zl+1

t on the lth affine coupling layer.
Finally, we achieve the hash representation B̂t of the cor-

relation matrix at round t, where

b̂
(i,j)
t =

{
0, z

K,(i,j)
t ≤ 0.5

1, z
K,(i,j)
t > 0.5

(13)

is applied element-wisely, and z
K,(i,j)
t is the element in ZK

t .
Meanwhile, we prefer that the hash representation B̂t con-

forms to the Bernoulli distribution. However, the Bernoulli
distribution is discrete, which makes it much more difficult to
be optimized. Therefore, to control the quantization error be-
tween Γt and B̂t to learn high-quality hash representations,
we use MSE between Γt and ZK

t to approximate Eq.(8) as

Lrecon = MSE
(
Γt, B̂t

)
≈ MSE

(
Γt,Z

K
t

)
. (14)

Moreover, to approximate the Bernoulli distribution, we
utilize the approximate mixture multivariate normal distribu-
tion defined as

p
(
B̂t

)
≈ p

(
ZK

t

)
=

1

2
[N (0, ηI) +N (1, ηI)] , (15)

where ηI denotes the covariance matrix of the corresponding
normal distribution. Here, η is set to 0.005 in our experi-
ments. Therefore the KL term in Eq.(9) can be written by:

LKL = KL
(
qϕ

(
B̂t | Xt

)
∥p

(
B̂t

))
≈ log qN (Z0

t )−
K−1∑
l=0

log

∣∣∣∣det ∂Zl+1
t

∂Zl
t

∣∣∣∣− p−1∑
i=0

p−1∑
j=0

log p
(
z
K,(i,j)
t

)
.

(16)
Finally, the loss function for the optimal hash representa-

tions can be defined as:

LΓ = Lrecon + LKL. (17)

It is worth noting that B̂t ∈ {0, 1}p×p, so we scale the value
range of the real correlation matrix Γt to [0, 1] through a re-
versible linear transformation for better supervision.

4.3 Slow-varying Preserver (SVP)
Considering that the correlation matrix is dynamic, we as-
sume the evolving pattern of the stock correlation matrix is
slow-varying. Thus, predicted binary correlation matrices of
round t and round t− 1, B̂t and B̂t−1, are encouraged to
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be close to each other in the Hamming space. Therefore, we
design a loss function for the slow-varying pattern as follows:

LH = DH

(
B̂t−1, B̂t

)
≈ 1

2
∥ZK

t−1 − ZK
t ∥22, (18)

where DH (·, ·) denotes the Hamming distance between two
binary matrices. Here we use the squared L2-norm to mea-
sure the distance between the approximate real-valued repre-
sentations to replace the Hamming distance.

4.4 Correlation Matrices Structure Preserver
(CMSP)

To further enhance the quality of the hash representation, in
CMSP we design two regularizers to preserve the properties
of the correlation matrix. First, the correlation matrix is sym-
metric, i.e., B̂t = B̂⊤

t , where B̂⊤
t is the transpose of B̂t.

Thus, we design a loss function to constrain the distance be-
tween B̂t and B̂⊤

t :

Lsymmetry =
1

2

∥∥∥B̂t − B̂⊤
t

∥∥∥2
2
≈ 1

2

∥∥∥ZK
t −

(
ZK

t

)⊤∥∥∥2
2
. (19)

Based on the sparsity assumption of the covariance-based
correlation matrix, we redefine Eq.(15) as:

p
(
B̂t

)
≈ p

(
ZK

t

)
= αN (0, η1I) + (1− α)N (1, η2I) , (20)

where we add the sparsity control coefficient α, the larger
the α, the sparser B̂t is. α needs to be manually specified
as needed. With the sparsity control, the hash representation
loss function in Eq.(17) is represented as LΓ(α).

4.5 Combined Loss Function
Next, we arrive at the fused loss function combining the three
modules above:

L = LΓ(α) + LH + Lsymmetry. (21)

Supposed that there are N rounds of data
{Xt | t = 1, ..., N} being trained, and our goal is to
minimize the overall loss function:

L =

N∑
t=1

{
MSE

(
Γt,Z

K
t

)
+ qN (Z0

t )−
K−1∑
l=0

log

∣∣∣∣det ∂Zl+1
t

∂Zl
t

∣∣∣∣
−

p−1∑
i=0

p−1∑
j=0

log p
(
z
K,(i,j)
t

)
+

1

2
∥ZK

t−1 − ZK
t ∥22

+
1

2

∥∥∥∥ZK
t −

(
ZK

t

)⊤
∥∥∥∥2

2

}
,

(22)
where B̂t ∈ {0, 1}p×p is the predicted hash correlation ma-
trix at round t with t ∈ {1, . . . , N} and Γt ∈ Rp×p is the real
covariance-based correlation matrix at round t. Z0

t ∈ Rp×p

is the real-valued representation under the base distribution.
Zl

t ∈ Rp×p is the output of the lth affine coupling transforma-
tion layer, l ∈ {1, . . . ,K}, and z

K,(i,j)
t refers to elements in

ZK
t . With this objective function, the network is trained us-

ing back-propagation algorithm with the mini-batch stochas-
tic gradient descent (SGD) method.

5 Experiments
In this section, we aim to answer the following questions
through empirical studies: Q1: How does HDCF perform
on cumulative return over the trading rounds? Q2: How does
HDCF perform in reducing risk? Q3: How can SVP and
CMSP contribute to the performance of HDCF? Q4: How
does the hash-based correlation prediction model perform on
computational efficiency?

5.1 Experimental Settings
Dataset Descriptions. Experiments are conducted on three
representative datasets, i.e., SP500 N, SP500 O, and HS300
datasets1. SP500 N is a newly collected U.S. market dataset
containing the SP500 index constituent stocks, which covers
the volatile COVID-19 period. SP500 O is a widely used
dataset also containing the SP500 index constituent stocks,
which covers the well-known 2007 - 2008 financial crisis
period. HS300 is a newly collected dataset containing the
CSI300 index constituent stocks in China, which covers the
COVID-19 period. Some newly listed constituent stocks with
excessive missing data have been eliminated. All datasets are
divided into non-overlapping training/validation/test sets, as
described in Table 1.

Baselines. Six baselines are classified into three groups,
and two versions of our proposed approaches are compared:

(1) Static/Dynamic Correlation Matrix Estimation Meth-
ods: Full Historical Model (FHM) [Elton et al., 1978] is
the simplest method to adopt the past correlation value as the
future correlation coefficient. Constant Correlation Model
(CCM) [Elton and Gruber, 1973; Elton et al., 1978] esti-
mates the correlation of each pair of stocks to be the average
correlation of all pairs of stocks in a given portfolio. Dy-
namic Conditional Correlation GARCH (DCC-GARCH)
[Engle, 2002] is a multivariate time-series-based method that
considers the dynamic property of correlation in the model
by parameterizing the conditional correlations to forecast the
future correlation matrix.

(2) Sparse Correlation Matrix Estimation Methods: Hard
Thresholding [Bickel and Levina, 2008] and Graphical
Lasso [Friedman et al., 2008] are multivariate time-series-
based methods that consider regularizing the correlation ma-
trix by hard thresholding and lasso penalty, respectively, un-
der the assumption of sparsity.

(3) Deep Learning Model For Correlation Matrix Predic-
tion: ADNN [Zhu et al., 2022] is the state-of-the-art deep
learning model for correlation matrix prediction and portfo-
lio risk reduction.

(4) Simplified versions of HDCF: HDCF-flow is HDCF
without structure preserver SVP and CMSP, which means
that the predicted binary correlation matrix cannot guarantee
symmetry and a slow-varying pattern. HDCF-hash is HDCF
without SVP, CMSP, and ADFM, which is a general deep-
hashing method with LSTM as encoder and bi-modal Lapla-
cian prior [Zhu et al., 2016] for quantization.

1Data is collected from https://finance.yahoo.com/, https://www.
kaggle.com/camnugent/sandp500, and https://tushare.pro/, respectively.
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Dataset # Stock Training Data Range Validation Data Range Test Data Range

SP500 N 511 01/01/2020 - 12/31/2020 01/01/2021 - 06/30/2021 07/01/2021 - 06/30/2022
SP500 O 478 10/18/2006 - 06/30/2007 07/01/2007 - 12/31/2007 01/01/2008 - 11/20/2013
HS300 272 01/02/2020 - 12/31/2020 01/01/2021 - 06/30/2021 07/01/2021 - 06/30/2022

Table 1: Datasets descriptions

SP500 N SP500 O HS300
Categories Baselines CW APY CW APY CW APY

Market Index2 0.89 -0.11 1.22 0.03 0.86 -0.15

Static/Dynamic
Estimation Methods

FHM 0.63 -0.37 0.21 -0.23 0.63 -0.38
CCM 0.68 -0.32 0.91 -0.02 0.55 -0.47

DCC-GARCH 0.59 -0.41 0.12 -0.30 0.58 -0.43
Sparse Correlation Matrix

Estimation Methods
Hard Thresholding 0.61 -0.39 0.15 -0.28 0.79 -0.22

Graphical Lasso 0.84 -0.16 1.04 0.01 0.75 -0.26

Deep Prediction Model ADNN 0.86 ± 0.024 -0.14 ± 0.024 1.68 ± 0.465 0.09 ± 0.054 0.92 ± 0.004 -0.08 ± 0.004

HDCF
(Our)

HDCF 0.87 ± 0.003 -0.13 ± 0.003 1.99 ± 0.015 0.12 ± 0.001 0.91 ± 0.019 -0.09 ± 0.019
HDCF-flow 0.87 ± 0.004 -0.13 ± 0.004 1.84 ± 0.036 0.12 ± 0.038 0.89 ± 0.003 -0.11 ± 0.001
HDCF-hash 0.86 ± 0.005 -0.14 ± 0.005 1.78 ± 0.022 0.10 ± 0.002 0.87 ± 0.004 -0.13 ± 0.005

Improvement3 1.16% 7.14% 18.45% 33.33% -1.09% -12.50%
p-value4 0.000 0.000 0.000 0.000 0.000 0.002

SP500 N SP500 O HS300
Categories Baselines MD AVO MD AVO MD AVO

Market Index 0.24 0.25 0.54 0.20 0.28 0.20

Static/Dynamic
Estimation Methods

FHM 0.39 0.16 0.81 0.20 0.43 0.21
CCM 0.34 0.17 0.29 0.16 0.46 0.18

DCC-GARCH 0.42 0.15 0.88 0.18 0.46 0.20
Sparse Correlation Matrix

Estimation Methods
Hard Thresholding 0.41 0.16 0.85 0.19 0.33 0.19

Graphical Lasso 0.23 0.20 0.25 0.27 0.28 0.21

Deep Prediction Model ADNN 0.23 ± 0.017 0.22 ± 0.012 0.38 ± 0.150 0.15 ± 0.075 0.27 ± 0.006 0.13 ± 0.008

HDCF
(Our)

HDCF 0.22 ± 0.002 0.19 ± 0.001 0.22 ± 0.007 0.25 ± 0.0000 0.28 ± 0.002 0.19 ± 0.000
HDCF-flow 0.22 ± 0.003 0.19 ± 0.000 0.23 ± 0.016 0.25 ± 0.001 0.28 ± 0.007 0.20 ± 0.001
HDCF-hash 0.23 ± 0.004 0.20 ± 0.000 0.26 ± 0.004 0.26 ± 0.000 0.30 ± 0.002 0.20 ± 0.002

Improvement 4.35% -26.67% 12.00% -66.67% -3.70% -46.15%
p-value 0.000 0.000 0.000 0.001 0.000 0.000

Table 2: Results of all methods on four metrics (mean ± std, computed across 10 runs). Note that Bold values depict the best results.

Implementation details. We implement all experiments
using PyTorch and conduct the experiments on an NVIDIA
RTX 3090 GPU. We tune the hyper-parameters of HDCF and
baseline models to their best values for a fair comparison.
We adopt Adam [Kingma and Ba, 2014] as the optimizer
for training. We set window size as 7, batch size as 16, and
learning rate as 1e− 6. The number of affine coupling layers
is set as 10. We set the sparsity control coefficient α = 0.6,
0.6, and 0.3 on SP500 N, SP500 O, and HS300, respectively.
The expected return E in portfolio construction is set as 0.
Metrics. We use four standard metrics to measure portfo-
lios’ performance, which are widely used in portfolio tasks
[Liang et al., 2021; Shen and Wang, 2017; Zhu et al., 2020].

2The index is S&P 500 (ˆGSPC) in SP500 O and SP500 N
datasets, and CSI 300 (000300.SH) in HS300.

3Improvement of HDCF over the best-performing baselines.
4The improvement over the best-performing baselines is signifi-

cant based on paired t-test at the significance level of 0.05 (p-value
with paired t-test).

Cumulative wealth (CW) and Annualized Percentage Yield
(APY) measure the portfolios’ returns. Maximum drawdown
(MD) and Annualized Volatility (AVO) measure the port-
folios’ drawdown and volatility risks. Generally speaking,
higher CW and APY indicate better performance; lower MD
and AVO indicate better performance.

The calculation formulas of all four metrics are as follows:
(1) Cumulative wealth (CW) is the total returns yielded

from a portfolio strategy: CWT =
∏T

i=1(1+ ri), where ri is
the net return at round t.

(2) Annualized Percentage Yield (APY) measures the av-
erage wealth increment that one portfolio strategy could
achieve compounded in a year, which is defined as APYT =
y
√
CWT − 1, where y is the number of years corresponding

to T trading rounds.
(3) Maximum Drawdown (MD) measures the decline from

a historical peak in the cumulative wealth, which is defined
as MDT = maxt∈(0,T )[max[0,maxi∈(0,t) CWi − CWt]].

(4) Annualized Volatility (AVO) is the annualized standard
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deviation of daily returns and multiplied by
√
AT , where

AT is the average trading rounds of annual trading days and
AT = 252 for all three datasets.

5.2 Performance on Return
To answer question Q1, we present the CW and APY val-
ues achieved by HDCF and the six comparison methods in
Table 2. Firstly, HDCF achieves the highest CW value and
APY value in SP500 N with average improvements of 1.16%
and 7.14%, respectively, over the best-performing compari-
son methods, and in SP500 O with average improvements of
18.45% and 33.33%. Compared with the deep learning model
ADNN, a real-value correlation matrix prediction model us-
ing the large length of historical returns (in the paper: 230
days) as input, HDCF utilizes returns only in the past seven
days to forecast the binary correlation matrix. With a smaller
overhead, the difference between all metrics values in HS300
is no more than 0.01.

Compared with baselines in three groups respectively, we
can get the following three conclusions. Firstly, compared
with static methods, HDCF models the dynamics of corre-
lations and thus can adapt to ever-changing markets. Com-
pared with dynamic methods without deep learning, HDCF
can learn richer features to make predictions accurate enough
for asset management. Secondly, HDCF outperforms esti-
mation methods under sparsity assumption because it is dif-
ficult to find a suitable threshold value in these approaches
to constrain the sparsity of the correlation matrix, and a tiny
estimation error can significantly worsen the prediction re-
sults. Thirdly, on SP500 N with 511 stocks and SP500 O
with 478 stocks, HDCF is superior to ADNN, even when the
historical window size is small, which demonstrates that our
structural assumptions can fully utilize the limited samples in
high-dimensional settings to achieve better accuracy.

5.3 Performance on Risk
To answer Q2, we present the risk (MD) and annualized
volatility (AVO) achieved by HDCF and the six comparison
methods in Table 2. In terms of risk, i.e., estimating AVO and
MD, HDCF outperforms most static/dynamic and sparse cor-
relation matrix estimation methods. In SP500 N and HS300,
most of the metric values in HDCF differ no more than 0.1
from ADNN. It is worth noting that HDCF achieves minor
standard deviations in all three datasets, demonstrating that
our model is robust.

5.4 Ablation Study
Since our predicted correlation matrix is a binary hash repre-
sentation, we compare HDCF with two hash-based ablation
methods: HDCF-hash and HDCF-flow. The experimental
results for the ablation study are shown in Table 2, in which
HDCF achieves the best performance on CW, APY, MD, and
AVO compared with the other two methods, with average im-
provements of 4.66%, 12.68%, 5.12%, and 3.14%, respec-
tively. On the one hand, compared with HDCF-flow, im-
provement in structural preservation mechanism can get high-
quality hash representation for the correlation matrix. On the
other hand, compared with the relaxation method of HDCF-
hash to control the quantization error, normalizing flows can
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Figure 2: Comparisons of HDCF and all baselines in terms of train-
ing time and testing time in seconds in log-scale.

obtain hash representation closer to the real-valued represen-
tation and more easily optimized.

5.5 Computation Efficiency
Recall that one of the primary motivations of our proposal
is to recruit hash representation for more efficiency, which
is essential in large covariance-based correlation matrix pre-
diction. This section examines the efficiency of the corre-
lation matrix prediction by HDCF and six baselines on three
datasets SP500 N, SP500 O, and HS300. We record runtimes
for all methods in the training and testing phases, i.e., training
times and testing times. Note that for deep learning models,
the training time refers to the runtime over several epochs to
train the model until convergence on the training dataset, and
the testing time refers to the runtime to test on the test set.

As is illustrated in Figure 2, HDCF is significantly faster
than the six comparison methods and maintains high effi-
ciency consistently across the three datasets with varying
numbers of stocks, achieving an average speed improvement
factor of 18 in training time and 392 in testing time. This
observation demonstrates the efficiency benefit of the hash-
based correlation prediction model for high-dimensional sce-
narios.

6 Conclusions and Future Work
In this paper, we propose a novel dynamic correlation ma-
trix forecasting method named HDCF to estimate dynamic
stock correlations and reduce portfolio risk. HDCF is a
deep hashing-based model incorporating normalizing flows
to obtain high-quality hash representations and facilitate reg-
ularizers to impose structural constraints. Empirical stud-
ies demonstrate HDCF is not only effective for the portfo-
lio decision task but also efficient in small-sample and high-
dimensional settings. For future work, we will study how to
incorporate side information, e.g., stock graphs, news, and so-
cial media, to model stocks’ dynamic correlations in portfolio
selection.
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