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Abstract

Entity alignment (EA) aims to find the equivalent
entity pairs between different knowledge graphs
(KGs), which is crucial to promote knowledge
fusion. With the wide use of temporal knowl-
edge graphs (TKGs), time-aware EA (TEA) meth-
ods appear to enhance EA. Existing TEA mod-
els are based on Graph Neural Networks (GNN)
and achieve state-of-the-art (SOTA) performance,
but it is difficult to transfer them to large-scale
TKGs due to the scalability issue of GNN. In
this paper, we propose an effective and efficient
non-neural EA framework between TKGs, namely
LightTEA, which consists of four essential com-
ponents: (1) Two-aspect Three-view Label Prop-
agation, (2) Sparse Similarity with Temporal Con-
straints, (3) Sinkhorn Operator, and (4) Temporal
Iterative Learning. All of these modules work to-
gether to improve the performance of EA while re-
ducing the time consumption of the model. Ex-
tensive experiments on public datasets indicate that
our proposed model significantly outperforms the
SOTA methods for EA between TKGs, and the time
consumed by LightTEA is only dozens of seconds
at most, no more than 10% of the most efficient
TEA method.

1 Introduction
Knowledge graphs (KGs) describe the real world with struc-
tured facts. A fact consists of a head entity, a tail entity, and a
relation connecting them, which can be formally represented
as a triple (eh, r, et), such as (George Porter, hasWonPrize,
Nobel Prize in Chemistry). KGs have been widely used in
information retrieval [Dietz et al., 2018], question answer-
ing [Lan et al., 2021], and recommedation systems [Guo et
al., 2022].
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Figure 1: Example of the wrong alignment between similar entities
in different temporal knowledge graphs.

Existing KGs ignore the temporal information which indi-
cates when a fact occurred. In the real world, some facts only
happened at a specific time. Therefore, Wikidata [Vrande-
cic and Krötzsch, 2014] and YOGO2 [Hoffart et al., 2013]
add temporal information to represent the KGs more accu-
rately, and some event KGs [Lautenschlager et al., 2015;
Leetaru and Schrodt, 2013] also contain the timestamps in-
dicating when the events occurred. In the temporal knowl-
edge graphs (TKGs), a fact is expanded into a quadruple
(eh, r, et, τ), where τ represents the timestamps.

Entity alignment (EA) seeks to find the same entities in
the real world between different KGs, which is important
for knowledge fusion between multi-source and multi-lingual
KGs. In recent years, the embedding-based EA methods
[Sun et al., 2020] have been widely investigated, which rep-
resent the entities in the low-dimensional vector space, and
calculate the similarity of these vectors to obtain the equiv-
alent entity pairs. Earlier EA methods [Chen et al., 2017;
Sun et al., 2017] are based on the translation model. How-
ever, since the inability of such models to effectively capture
graph structures, graph neural networks (GNN)-based mod-
els [Wang et al., 2018; Mao et al., 2020a] emerge and achieve
superior performance. Due to the scalability limitation of
GNN [Wu et al., 2022], these models are not suitable for
large-scale KGs. LightEA [Mao et al., 2022b] significantly
enhances the efficiency of EA by utilizing a three-view label
propagation instead of GNN.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5021



Despite the success of the above EA methods, they all ig-
nore the temporal information in the KGs, thus may lead to
wrong alignment between similar entities in different KGs.
Take Figure 1 as an example. There are two subgraphs from
YAGO and Wikidata. George Porter in TKG1 and Harray
Kroto in TKG2 have similar structure and relations. Both of
them have the same neighbors (Copley Medal, Nobel Prize in
Chemistry, and Michael Faraday Prize) and relations (has-
WonPrize in TKG1 is same as award recieved in TKG2).
George Porter has another neighbor Davy Medal and rela-
tion hasWonPrize. Existing EA methods disregard temporal
information of KGs and may wrongly take George Porter and
Harray Kroto as an equivalent entity pair.

Recently, time-aware methods [Xu et al., 2021; Xu et al.,
2022] emerge to improve the performance of EA between
TKG. STEA [Cai et al., 2022] adopts a simple GNN with
a temporal information matching mechanism and achieves
state-of-the-art (SOTA) performance. All of these TEA meth-
ods are based on GNN [Wu et al., 2022], which has an in-
herent defect: the GNN is trained using the gradient descent
algorithm and takes much time to converge to the optimal
solution. Therefore, to promote the development of EA be-
tween TKGs, a straightforward approach is to combine the
advantages of EA and TEA methods.

To this end, we propose an effective and efficient non-
neural EA framework between TKGs, namely LightTEA,
which consists of four key components: (1) Two-aspect
Three-view Label Propagation. We combine relational-aspect
and temporal-aspect three-view label propagation (LP) to im-
prove the performance of EA. In this module, GNN is re-
placed by LP, which does not require gradient propagation
to train the neural networks, greatly reducing the time con-
sumption of the model. (2) Sparse Similarity with Temporal
Constraints. Instead of calculating the similarity of all en-
tities, we only retrieve the top-k nearest neighbors of each
entity to find the equivalent entity pairs, which saves the time
complexity and space complexity of calculation. By utilizing
the temporal information of each entity as the constraints of
entity similarity, the EA performance is also improved. (3)
Sinkhorn Operator. To further promote the model’s effec-
tiveness, we regard the EA problem as a one-to-one assign-
ment problem and use the Sinkhorn operator to solve it. The
Sinkhorn operator is a fast and completely parallelizable al-
gorithm and only takes seconds to converge to the optimal
solution. and (4) Temporal Iterative Learning. Several stud-
ies have demonstrated that iterative learning effectively en-
hances EA and helps address the lack of alignment seeds in
the real scenario. We adopt a temporal iterative learning strat-
egy, which utilizes the additional temporal information of en-
tities to get more credible alignment pairs for augmenting the
training set to obtain better alignment results. In general, this
paper presents the following contributions:

• We propose an effective and efficient TEA framework
that consists of four essential components: (1) Two-
aspect Three-view Label Propagation, (2) Sparse Simi-
larity with Temporal Constraints, (3) Sinkhorn Operator,
and (4) Temporal Iterative Learning. All of these mod-
ules work together to improve the performance of EA
while reducing time consumption.

• The proposed TEA framework combines the strengths
of the latest SOTA EA and TEA models and addresses
the limitations of current EA models that do not effec-
tively utilize time information, as well as the scalability
constraints of TEA models due to GNN usage.

• Extensive experiments on public datasets indicate that
our proposed model significantly outperforms the SOTA
methods for EA between TKGs, and the time consumed
by LightTEA is only dozens of seconds at most, no more
than 10% of the most efficient TEA method.

2 Related Work

2.1 Entity Alignment

The purpose of EA is to find the equivalent entity pairs
from different KGs. EA usually adopts embedding-based
approaches, which are divided into two sub-categories:
translation-based and GNN-based models.

Translation-based models regard the relations as the trans-
lation from the head entities to the tail entities, such as
(heh + hr ≈ het). MTransE [Chen et al., 2017] is the early
entity alignment model based on TransE [Bordes et al., 2013],
which maps two KGs into different vector spaces and consid-
ers the entities with similar positions in the two vector spaces
as equivalent pairs. In addition to learning the structure em-
beddings of entities based on TransE with the relation triples,
JAPE [Sun et al., 2017] joins the attribute embedding and
structure embedding of entities to align entities. BootEA [Sun
et al., 2018] obtains the alignment-oriented KG embeddings
and proposes a bootstrapping process by adding likely align-
ment entities into training data iteratively to improve the per-
formance of EA.

GNN-based models promote EA by utilizing the graph
structure of KGs. GCN-Align [Wang et al., 2018] en-
codes the entities into a unified vector space via GCN [Kipf
and Welling, 2017] and aligns the entities with their struc-
ture embeddings and attribute embeddings. However, GCN-
Align does not effectively utilize the relation of KGs.
MRAEA [Mao et al., 2020a] learns the entity embeddings
through a relation-aware self-attention GNN to obtain the
alignment entities. RREA [Mao et al., 2020b] proposes a
GNN with relational reflection to get the relation-specific em-
beddings and uses an iterative strategy to enhance EA.

The above methods focus on encoding the entity embed-
dings and aligning the entities by calculating the similarity of
their embeddings, DATTI [Mao et al., 2022a] applies a de-
coding process using the adjacency and inner correlation iso-
morphisms of KGs to the advanced methods and gains sig-
nificant performance improvements. LightEA [Mao et al.,
2022b] adopts a three-view label propagation approach for
entity alignment instead of using GNN and achieves compa-
rable performance with SOTA EA methods while taking only
one-tenth of the time consumption of those methods.

Although these methods have significantly advanced the
development of EA, they all have the limitation of neglecting
the temporal information in KGs.
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Figure 2: The framework of LightTEA.

2.2 Time-aware Entity Alignment
Recently, the research on TKGs has developed rapidly, and
TEA methods have also sprung up. TEA-GNN [Xu et al.,
2021] is the first TEA method using temporal information in
KGs. It introduces a time-aware attention mechanism to learn
entity embedding based on GNN and constructs five datasets
extracted from ICEWS, YAGO3, and Wikidata to evaluate
the model. TREA [Xu et al., 2022] utilizes a temporal re-
lational attention mechanism to integrate relational and tem-
poral features of entities from the neighborhood and adopts
the margin-based multi-class log-loss (MML) with sequen-
tial time regularizer to train the model. TREA is the most
efficient TEA model since the MML can achieve fast con-
vergence. STEA [Cai et al., 2022] presents a simple GNN
to learn the entity embeddings and uses a temporal informa-
tion matching mechanism to calculate the time similarity of
entities. Then it balances the time similarity and embedding
similarity of entities to obtain the equivalent pairs.

By using the temporal information, the TEA methods
achieve better performance. However, since the experimental
datasets are much smaller than real-world KGs, these meth-
ods focus on improving performance and ignore efficiency.
Although TREA utilizes MML to accelerate convergence, all
TEA methods are based on GNN [Wu et al., 2022] and suf-
fer from scalability issues. So we propose an effective and
efficient TEA framework to address the limitations.

3 Problem Formulation
A TKG can be formalized as G = (E,R, T,Q), where E,
R and T are the sets of entities, relations, and timestamps
respectively, Q ⊂ E ×R×E × T denotes the set of quadru-
ples. A quadruple stores the real-world fact and can be pre-
sented as (eh, r, et, τ), where eh, et ∈ E. Given two TKGs
G1 = (E1, R1, T1, Q1), G2 = (E2, R2, T2, Q2), and align-
ment seeds set S = {(e1i , e2j )|e1i ∈ E1, e2j ∈ E2, e1i ≡
e2j} where ≡ denotes equivalence. EA task aims to find new
equivalent entity pairs between G1 and G2 based on S. C is
the set of reference entity pairs used for evaluation. Specif-
ically, a uniform time set T ∗ = T1 ∪ T2 is constructed by
merging the timestamps in the two time sets. Therefore, the
two TKGs can be renewed as G1 = (E1, R1, T

∗, Q1) and
G2 = (E2, R2, T

∗, Q2) sharing the same set of timestamps.

4 The Proposed Approach
The LightTEA framework can be described as three phases
with time similarity enhancement. (1) For pre-alignment
phase, we use two-aspect three-view label propagation to
learn the labels of entities. (2) For alignment phase, we
first compute the sparse similarity with temporal constraints,
then translate the EA problem to the assignment problem
and utilize the Sinkhorn operator to resolve it. (3) For post-
alignment phase, we adopt a temporal iterative learning strat-
egy to enhance EA. Figure 2 shows the framework of Light-
TEA.

4.1 Two-aspect Three-view Label Propagation
Inspired by LightEA [Mao et al., 2022b], we extend the three-
view label propagation to two-aspect (relational-aspect and
temporal-aspect) three-view label propagation, which can en-
hance EA with temporal information while not increase the
time and space complexity.

Specifically, the TKG requires a four-order tensor A ∈
R|E|×|E|×|R|×|T | to fully describe the adjacency relations.
As shown in Figure 3(a), we regard TKG as two three-order
tensor AR ∈ R|E|×|E|×|R| and AT ∈ R|E|×|E|×|T |, there
are five-view in TKGs: AER ∈ R|E|×|R|, ARE ∈ R|R|×|E|,
AEE ∈ R|E|×|E|, ATE ∈ R|T |×|E|, and AET ∈ R|E|×|T |,
which represent the adjacency relations from head entity to
relation, relation to tail entity, head entity to tail entity, times-
tamps to tail entity, head entity to timestamps, respectively.
Then, we use the relational-aspect and temporal-aspect three-
views label propagation to update the labels of entities, rela-
tions, and timestamps (as shown in Figure 3(b)).

The relational-aspect three-views label propagation can be
presented as follows:

L(n+1)
e = AEE ·L(n)

e +AER ·L(n)
r (1)

L(n+1)
r = ARE ·L(n)

e (2)

where Le ∈ R|E|×|d|, Lr ∈ R|R|×|d| are label matrixs of
entities and relations, · means the dot product. Following
LightEA, we regard each pair of alignment entities as an in-
dependent class, and independently sample random vectors
on the d-dimensional hyper-sphere to approximate the one-
hot label vectors for representing the alignment seeds, so we
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Figure 3: Illustrations of Two-aspect Three-view Label propagation. a) Regarding TKG as two three-order tensors in terms of relational and
temporal aspects, which include five types of adjacency relationships. b) Label propagation from e3 to e1 using the two-aspect three-view
approach.

set l(0)ei = l
(0)
ej = random(d) ∀(ei, ej) ∈ S. For the enti-

ties in the candidate set C, we initialize the label of them as
l
(0)
ek = l

(0)
el = 0 ∀(ek, el) ∈ C, and the initial label matrix of

relations is also set to all-zero L
(0)
r = 0.

The final label of entity ei in the relational aspect is the
concatenation of label vectors in all steps:

lrei = [l(0)ei ||l(1)ei ||...||l(n−1)
ei ||l(n)ei ] (3)

The temporal-aspect three-views label propagation can be
expressed as follows:

L(n+1)′

e = AEE ·L(n)′

e +AET ·L(n)
t (4)

L
(n+1)
t = ATE ·L(n)′

e (5)

where L
′

e ∈ R|E|×|d|, and the initializtion label matrix of
L

(0)′

e is the same as L
(0)
e . Lt ∈ R|T |×|d| is label matrix of

timestamps and is initialized to L
(0)
t = 0.

We concatenate the label vectors of all steps as the final
label of entity ei in the temporal aspect:

ltei = [l(0)
′

ei ||l(1)
′

ei ||...||l(n−1)′

ei ||l(n)
′

ei ] (6)

Finally, the label of entity ei is the balanced result of the
two aspect labels:

lei = (1− α)× lrei + α× ltei (7)

where α is a hyper-parameter to balance the label of relational
aspect and temporal aspect.

4.2 Temporal Information Similarity Calculation
Recent research( [Cai et al., 2022]) suggests that the temporal
information similarity can enhance the EA between TKGs,
so we calculate the time similarity matrix and use it in the
alignment and post-alignment phase.

First, we collect all timestamps of entities. Then we calcu-
late the time similarity steiej of ei and ej by the following:

steiej =
2× v

k + q
(8)

where v denote the number of same items of ei and ej , k and
q are the numbers of timestamps of ei and ej , respectively.

4.3 Sparse Similarity with Temporal Constraints
After obtaining the labels of entities, we calculate the simi-
larity of entities by their labels in a sparse way with temporal
constraints.

Early studies [Chen et al., 2017; Wang et al., 2018;
Xu et al., 2021] calculate the embedding similarity (Co-
sine, Euclidean, or Manhattan distance) of all entities to find
the equivalent entity pairs. The calculation complexity is
O(|E|2d), and the space complexity of the similarity ma-
trix is O(|E|2). LightEA [Mao et al., 2022b] notices that the
similarity of many entities is very small and infinitely close
to zero. Even if these smaller values are removed initially,
it does not significantly affect the alignment results. There-
fore, instead of calculating the similarities between all enti-
ties, we only retrieve the top-k nearest neighbors for each
entity by approximate nearest neighbor (ANN) algorithms 1.
It only takes several seconds to find the top-k nearest neigh-
bors, and the space complexity of the sparse similarity matrix
is O(|E|k), k ≪ |E|.

Different from LightEA, we use the time similarity ma-
trix as a constraint to obtain the sparse similarity of entities.
Specifically, we get the sparse similarity matrix Sl ∈ R|E|×k

by the ANN algorithms with the labels of entities and find
the related time similarity of these entities, the final sparse

1In LightTEA, we use the FAISS framework [Johnson et al.,
2021] for approximate vector retrieval
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Datasets |E1| |E2| |R1| |R2| |T ∗| |Q1| |Q2| |S| |C|
DICEWS-1K/200 9,517 9,537 247 246 4,017 307,552 307,553 1,000/200 7,566/8,366
YAGO-WIKI50K-5K/1K 49,629 49,222 11 30 245 221,050 317,814 5,000/1,000 44,172/48,172

Table 1: Statistics of DICEWS-1K/200 and YAGO-WIKI50K-5K/1K. | · | denotes the numbers.

similarity of entities is as follows:

S′ = (1− β)× Sl + β × St (9)

where β is the hyper-parameter for balancing the label simi-
larity and time similarity of entities.

4.4 Sinkhorn Operator
Existing TEA methods [Xu et al., 2021; Xu et al., 2022; Cai
et al., 2022] simply calculate the similarity of the entities to
obtain the equivalent entity pairs in the alignment phase. To
further improve the effectiveness of the model, we adopt the
Sinkhorn operator in the alignment phase to enhance EA.

LightEA [Mao et al., 2022b] regards the EA problem as a
one-to-one assignment problem to improve the performance
of EA. The goal of the assignment problem is to find the opti-
mal strategy to obtain the maximum profit and can be formu-
lated as follows:

arg max
P∈P|E|

⟨P , S⟩F (10)

where P is a permutation matrix that has exactly one entry of
1 in each row and each column and 0s elsewhere. P|E| is the
set of |E| × |E| permutation matrices, S ∈ R|E|×|E| is the
similarity matrix of entities, and ⟨·⟩F represents the Frobenius
inner product.

The Sinkhorn operator proposes a fast and completely par-
allelizable algorithm for the assignment problem. It itera-
tively normalizes rows and columns of the similarity matrix:

Sinkhorn0(S) = exp(S),

Sinkhornm(S) = Nc(Nr(Sinkhorn
m−1(S))),

Sinkhorn(S) = lim
m→∞

Sinkhornm(S)

(11)

where Nr(S) = S ⊘ (S1N1⊤N ), Nc(S) = S ⊘ (1N1⊤NS)
are the row and column-wise normalization operators, ⊘ de-
notes the element-wise division, 1N represents a column vec-
tor of ones, and m is the iterations. The time complexity of
Sinkhorn is O(m|E|2).

We also regard the EA problem as an assignment problem
and employ the Sinkhorn operator to obtain the approximate
solution:

arg max
P∈P|E|

⟨P , S′⟩F

= lim
t→0+

Sinkhorn(S′/ t)
(12)

where S′ ∈ R|E|×k is the sparse similarity matrix with tem-
poral constraints, which is calculated by equation (9), t is
the temperature. In this way, the performance of EA im-
proves significantly, and the computational complexity drops
to O(m|E|k).

4.5 Temporal Iterative Learning
Iterative Learning is proposed by BootEA [Sun et al., 2018]
to address the problem of fewer alignment seeds and enhance
the performance of EA. It is also called a semi-supervised
alignment strategy which continuously selects possible entity
pairs to augment the training data through an iterative method
in the post-alignment phase.

To promote EA, we adopt temporal iterative learning. Dif-
ferent from STEA [Cai et al., 2022], which adopts a bi-
directional iterative strategy, we simply choose the entity and
its nearest neighbor whose similarity value is greater than the
threshold 2 as the alignment pairs and add them to the training
set for the next iteration.

5 Experiments
We conduct the experiments on a workstation with a GeForce
RTX 3090 GPU and an AMD EPYC 7502 32-Core Proces-
sor CPU, 128GB memory. The codes and datasets will be
available on GitHub 3.

5.1 Datasets
To comprehensively evaluate the effectiveness and efficiency
of the proposed model, we experiment on two widely used
public datasets. The statistics of these datasets are listed in
Table 1.

(1) DICEWS-1K/200 [Xu et al., 2021] is constructed
from the event knowledge graph ICEWS05-15 which con-
tains events during 2005 to 2015. It consists of two subsets
with different alignment seeds 1K/200.

(2) YAGO-WIKI50K-5K/1K [Xu et al., 2021] extracts
the equivalent entities with temporal information from YAGO
and Wikidata. There are two subsets, one with 5K alignment
seeds and the other with 1K.

5.2 Baselines
In the experiments, we compared our proposed model with
two categories of advanced entity alignment methods:

(1) Supervised methods: JAPE [Sun et al., 2017],
AlignE [Sun et al., 2018], GCN-Align [Wang et al., 2018],
MRAEA [Mao et al., 2020a], LightEA* [Mao et al., 2022b],
TEA-GNN [Xu et al., 2021], TREA [Xu et al., 2022],
and STEA* [Cai et al., 2022]. JAPE, AlignE, GCN-
Align, MRAEA, and LightEA* are EA methods, TEA-GNN,
TREA, and STEA* are TEA methods.

(2) Semi-supervised methods: BootEA [Sun et al., 2018],
RREA [Mao et al., 2020b], LightEA [Mao et al., 2022b],
STEA [Cai et al., 2022]. BootEA, RREA, and LightEA are
EA methods, STEA is a TEA method.

2The threshold is 0.8 in LightTEA.
3https://github.com/lcai2/LightTEA
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DICEWS-1K DICEWS-200 YAGO-WIKI50K-5K YAGO-WIKI50K-1K
Categories Methods MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Supervised MTransE .150 .101 .241 .104 .067 .175 .332 .242 .477 .033 .012 .067
JAPE .198 .144 .298 .138 .098 .210 .345 .271 .488 .157 .101 .262
AlignE .593 .508 .751 .303 .222 .457 .800 .756 .883 .618 .565 .714
GCN-Align .291 .204 .466 .231 .165 .363 .581 .512 .711 .279 .217 .398
MRAEA .745 .675 .870 .564 .476 .733 .848 .806 .913 .685 .623 .801
LightEA* .833 .785 .918 .779 .721 .878 .960 .948 .979 .902 .878 .945

TEA-GNN .911 .887 .947 .902 .876 .941 .909 .879 .961 .775 .723 .871
TREA .933 .914 .966 .927 .910 .960 .958 .940 .989 .885 .840 .937
STEA* .941 .928 .960 .941 .927 .961 .954 .935 .986 .916 .887 .966

LightTEA* .959 .952 .970 .955 .949 .966 .990 .986 .997 .977 .969 .989
p-value 2e-7 3e-7 2e-6 5e-7 1e-7 5e-5 6e-9 1e-9 7e-7 2e-9 5e-10 4e-8

Semi-supervised BootEA .670 .598 .796 .614 .546 .737 - - - - - -
RREA .840 .795 .917 .823 .773 .911 .913 .887 .955 .870 .836 .929
LightEA .875 .838 .936 .878 .842 .937 .963 .951 .980 .951 .938 .970

STEA .954 .945 .967 .954 .943 .968 .974 .961 .992 .962 .943 .989

LightTEA .960 .954 .970 .963 .958 .972 .992 .988 .997 .992 .988 .997
p-value 2e-4 2e-5 4e-4 4e-6 2e-6 5e-5 2e-7 2e-8 5e-5 1e-8 2e-9 2e-6

Table 2: Experimental results on all datasets. - means the results are not obtained. The best results are written in bold. Underline indicate the
sub-optimal results. The p-value is the result of one sample t-test between LightTEA*/LightTEA and their corresponding strong baselines.

The main experiment results of these methods reported
in the paper are from STEA (SOTA TEA method), except
the latest SOTA EA method LightEA. The experiments of
LigthEA are implemented on its open-source code. For a fair
comparison, LightTEA has two corresponding versions: (1)
LightTEA* is the supervised version. (2) LightTEA is the
semi-supervised version with iterative learning.

5.3 Settings
Evaluation Metrics
Following the conventions, we adopt mean reciprocal rank
(MRR) and Hits@k (k = 1, 10) as the evaluation metrics.
MRR reports the average reciprocal of the ranks, and Hits@k
calculates the proportion of correct alignment pairs whose
rank is not greater than k. In particular, Hits@1 represents the
accuracy of the results, which is the most important indicator.
The higher the MRR and Hits@k, the better the performance.

Implementation Details
We use the fixed training set and validation set provided by
TEA-GNN. The hyper-parameters are set as follows: the di-
mension of the hyper-sphere is d = 512, the factor α is set
to 0.6 for DICEWS and 0.5 for YAGO-WIKI50K to balance
the relational-aspect and temporal-aspect label propagation,
the factor β is set to 0.4 for balancing the label similarity and
time similarity. Following LightEA, we use rounds n = 2
for two-aspect three-view label propagation, retrieve the top-
k = 500 nearest neighbors for sparse similarity, set the num-
ber of iterations of the Sinkhorn operator to m = 15, and set
the temperature to t = 0.05. The reported performances are
the averages of five independent runs.

5.4 Main Experiments
Table 2 lists the main experimental results of our proposed
model and all baselines on the four datasets. Among the
supervised methods, LightTEA* has significant improve-
ments in all metrics. Compared to the SOTA supervised

TEA method STEA*, LightTEA* improves the Hits@1 by
2.61%, 2.33%, 5.45%, and 9.22%, respectively. In the semi-
supervised methods, LightTEA outperforms all the baselines
on all datasets across all metrics. The improvements of
Hits@1 compared with STEA are 0.93%, 1.57%, 2.79%, and
4.77%, respectively. TEA methods perform better in these
two categories of methods than EA methods by using tempo-
ral information. The semi-supervised methods achieve better
performance than supervised methods, which indicates the
effectiveness of temporal iterative learning. Without itera-
tion, LightTEA* outperforms all baselines except for STEA’s
Hits@10 on DICEWS-200 with tiny gap 0.002. The high
performance of LightTEA* demonstrates that the two-aspect
three-view label propagation, the sparse similarity with tem-
poral constraints, and the Sinkhorn operator are effective in
promoting EA. We conduct one sample t-test between Light-
TEA(/LightTEA*) and their corresponding strong baselines.
All the p-value << 0.01 indicates that our proposed model
significantly outperforms all baselines.

5.5 Ablation Study
We conduct an ablation experiment on DICEWS-200 and
YAGO-WIKI50K-1K to investigate the contributions of three
critical components of LightTEA: (1) Temporal-aspect Label
Propagation (TLP), (2) Temporal Constraints (TC), and (3)
Sinkhorn Operator (SO).

DICEWS-200 YAGO-WIKI50K-1K
Methods MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

LightTEA .963 .958 .972 .992 .988 .997
w/o TLP .956 .950 .965 .989 .985 .994
w/o TC .954 .947 .965 .987 .982 .995
w/o SO .942 .933 .954 .962 .947 .986

Table 3: Ablation study of LightTEA on DICEWS-200 and YAGO-
WIKI50K-1K. w/o means without.
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Categories Methods DICEWS-200 YAGO-WIKI50K-1K
supervised TEA-GNN 1,547 5,042

TREA 128 2,655
LightTEA* 5 24

semi-supervised STEA 578 5,428
LightTEA 12 85

Table 4: Time costs of TEA methods on DICEWS-200 and YAGO-
WIKI50K-1K (seconds).

# Dimension 64 128 256 512 1024 2048

LightTEA* 0.943 0.947 0.947 0.949 0.949 0.949
LightTEA 0.948 0.954 0.956 0.958 0.958 0.958

Table 5: Hits@1 scores with different dimensions on DICEWS-200.

As reported in Table 3, without temporal-aspect label prop-
agation (w/o TLP), the performance of LightTEA drops a lit-
tle, which indicates the effectiveness of the temporal-aspect
label propagation. When removing the temporal constraints
(w/o TC), the underperformance of LightTEA implies the ef-
fectiveness of the temporal constraints. Without the Sinkhorn
operator (w/o SO), the performance of LightTEA drops sig-
nificantly, demonstrating the contribution of utilizing the
Sinkhorn operator in the alignment phase to enhance EA.

5.6 Efficiency Studys
Table 4 shows the overall time costs on DICEWS-200 and
YAGO-WIKI50K-1K datasets by TEA methods from data
loading to evaluation. The results of TREA are from [Xu et
al., 2022] since it doesn’t provide the source codes. The other
results are obtained by directly running the source codes pro-
vided by the author.

It can be seen from Table 4, in the supervised time-aware
methods, TREA costs less time than TEA-GNN with MML,
which speed up the convergence. LightTEA* takes much less
time than the above two methods. The time costs of Ligth-
TEA* are 5 seconds and 24 seconds on the two datasets, re-
spectively, which are only 3.91% and 0.90% of TREA. In
the semi-supervised methods, the time costs of LightTEA
are 12 seconds and 85 seconds, which are 2.08% and 1.70%
of STEA on the two datasets, respectively. The time con-
sumed by LightTEA is no more than 10% of the most effi-
cient methods TREA. By using temporal iterative learning,
LightTEA increases the time consumption while improving
performance compared to LightTEA*. The high efficiency
of LightTEA indicates that it could be applied to large-scale
datasets for EA between TKGs.

5.7 Hyper-parameter Analysis
We conduct experiments on the following hyper-parameters
to investigate their effect on the performance of LightTEA.

(1) The dimension of hyper-sphere d. We select the dimen-
sion in the set {64, 128, 256, 512, 1024, 2048} and conduct
the experiments. The Hits@1 scores with different dimen-
sions on DICEWS-200 are shown in Table 5.

From the table we can see that as the dimension increases,
the Hits@1 score for both LightTEA and LightTEA* grad-
ually improves until it reaches their best performance at the
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Figure 4: Experimental results with different α and β on YAGO-
WIKI50K-1K.

dimension of 512. Even if the dimension is further increased,
the performance remains unchanged. This indicates that
when the dimension of the label vector is greater than 512,
it only increases memory consumption and provides no ben-
efit to performance.

(2) The balance factors α and β. We set the two factors
in range 0∼1 with interval 0.1 to investigate the impact of
different values. The experimental results with different α
and β on YAGO-WIKI50K-1K are shown in Figure 4.

α balances the relational-aspect label propagation (RLP)
and temporal-aspect label propagation (TLP). Figure 4(a)
shows the Hits@1 of LightTEA* and LightTEA with dif-
ferent α. Due to the use of temporal iterative learning, the
performance of LightTEA does not change significantly with
different α. The Hits@1 curve of LightTEA* shows that the
result of combining RLP and TLP with appropriate weight
(α = 0.5) is better than using only one of them (α = 0 or
α = 1).

β is used to balance the label similarity and time similarity.
As shown in Figure 4(b), with the increase of β, the Hits@1
first increases slowly (reaching the maximum value when
β = 0.4), and then decreases rapidly. When β = 1, Hits@1
of LightTEA with temporal iterative learning are lower than
LightTEA*, it indicates that only using time similarity to gen-
erate the possible alignment pairs and add them to the train-
ing set for the next iteration will hurt the performance of the
model.

6 Conclusion

Existing EA methods ignore the temporal information in
KGs, which may wrongly align similar entities. The TEA
methods lack scalability since the inherent defect of GNN. To
address the limitations, we proposes an effective and efficient
TEA framework that consists of four important components:
(1) Two-aspect Three-view Label Propagation, (2) Sparse
Similarity with Temporal Constraints, (3) Sinkhorn Operator,
and (4) Temporal Iterative Learning. These modules work
collaboratively to enhance the model’s performance while re-
ducing time consumption.

Extensive experiments on public datasets indicate that the
proposed model significantly outperforms the SOTA meth-
ods. The time consumed by the model is only dozens of sec-
onds at most, no more than 10% of the most efficient TEA
methods, which denotes that our model has high efficiency
and can be applied to large-scale TKGs.
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