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Abstract

Self-training (ST) has come to fruition in language
understanding tasks by producing pseudo labels,
which reduces the labeling bottleneck of language
model fine-tuning. Nevertheless, in facilitating
semi-supervised controllable language generation,
ST faces two key challenges. First, augmented by
self-generated pseudo text, generation models tend
to over-exploit the previously learned text distribu-
tion, suffering from mode collapse and poor gener-
ation diversity. Second, generating pseudo text in
each iteration is time-consuming, severely deceler-
ating the training process. In this work, we propose
KEST, a novel and efficient self-training framework
to handle these problems. KEST utilizes a kernel-
based loss, rather than standard cross entropy, to
learn from the soft pseudo text produced by a
shared non-autoregressive generator. We demon-
strate both theoretically and empirically that KEST
can benefit from more diverse pseudo text in an ef-
ficient manner, which allows not only refining and
exploiting the previously fitted distribution but also
enhanced exploration towards a larger potential text
space, providing a guarantee of improved perfor-
mance. Experiments on three controllable genera-
tion tasks demonstrate that KEST significantly im-
proves control accuracy while maintaining compa-
rable text fluency and generation diversity against
several strong baselines.

1 Introduction
Recent years have witnessed the excellence of Pretrained
Language Models (PLMs) [Liu et al., 2019; Dong et al.,
2019; Radford et al., 2019; Raffel et al., 2020] in Natural
Language Processing (NLP). However, these PLMs still rely
on increasingly more labeled instances for fine-tuning with
growing model size [Yogatama et al., 2019], hampering their
effectiveness under insufficient data [Zhang et al., 2021].
To solve this problem, a promising approach is Self-training
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(ST) [Scudder, 1965; Yarowsky, 1995; Grandvalet and Ben-
gio, 2004], a classic semi-supervised learning [Chapelle et
al., 2006] paradigm. ST minimizes the prohibitively ex-
pensive human labeling by iteratively pseudo-annotating un-
labeled data with a classifier which is then retrained with
the augmented labels. In this way, ST benefits from a vast
number of unlabeled instances and extends the generalization
bound [Wei et al., 2021b; Zhang et al., 2022], boosting a wide
spectrum of tasks like Image Classification [Han et al., 2019;
Xie et al., 2020], Speech Recognition [Park et al., 2020],
and Natural Language Understanding (NLU) [Mukherjee and
Hassan Awadallah, 2020; Vu et al., 2021; Li et al., 2021].

Nonetheless, it is unresolved how to incorporate ST into
the data-intensive attribute-controllable Natural Language
Generation (NLG), i.e., generate a textual sequence satisfy-
ing the input attribute label, as opposed to NLU. Since model
inputs now are discrete labels, massive high-quality unlabeled
target text (e.g., movie reviews for sentiment-controllable
NLG) is essential to construct pseudo label-text pairs, which
is impractical in low-resource domains, impeding the broad
application of ST [Du et al., 2021]. Consequently, classical
ST only works for a few generation tasks with adequate plain
text, like Sequence Labeling [Wang et al., 2020] and Machine
Translation [He et al., 2020; Jiao et al., 2021].

With limited unlabeled text, a potential approach to further
improve ST performance is to leverage the generative ability
of NLG models and produce synthetic (pseudo) text [Yang et
al., 2020; Schick and Schütze, 2021] from given labels be-
sides pseudo labels from text. In this case, unfortunately, two
major challenges arise. i) Over-exploitation: Augmented by
self-generated text, NLG models are forced to repeatedly fit
the already learned text distribution. This gradually homog-
enizes the generated pseudo text and causes a shrunken (col-
lapsed) generalization boundary, resulting in decreased con-
trollability and generation diversity. ii) Training decelera-
tion: We need to re-generate all pseudo text in each ST itera-
tion with updated model parameters, which interrupts the par-
allelism of Transformer [Vaswani et al., 2017]-based models,
severely decelerating training and impairing practicality.

To tackle these challenges, we propose a novel self-training
framework, Kernel Distance Based Efficient Self Training
(KEST), for improving semi-supervised controllable NLG.
Instead of learning from generated pseudo textual sequences
with traditional cross-entropy loss, KEST directly fits the ap-
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proximated text distribution from the last iteration in the em-
bedding space. Such an objective not only relaxes the con-
straint imposed by the previous ST iteration but also encour-
ages diverse outputs of the current model, addressing Chal-
lenge (i). Besides, we design a non-autoregressive genera-
tion schema to produce soft representations of pseudo text
(rather than hard strings) in parallel, greatly reducing time
cost and handling Challenge (ii). Furthermore, such a soft
text is naturally a kind of noisy pseudo data [He et al., 2020;
Xie et al., 2020], which helps the model denoise errors and
propagate local smoothness [Wei et al., 2021b; Chen et al.,
2021]. Our method can be theoretically interpreted as ex-
ploring a larger potential text space, leading to an extended
generalization boundary and improved controllability while
maintaining comparable generation quality. 1

In summary, our contributions are as follows:
• We dig into the over-exploitation problem of applying

self-training to controllable NLG and propose a novel
kernel-based ST framework to address this problem.

• We design a non-autoregressive generation schema to
reduce the time cost of producing pseudo text for self-
training, making ST more practical for real scenarios.

• We theoretically show that KEST could explore a larger
potential text space and demonstrate through exhaus-
tive experiments that our model significantly improves
controllability with competitive generation diversity and
quality, further exploring the capacity frontier of PLMs.

2 Related Work
Controllable Natural Language Generation. Attribute-
controllable NLG seeks to make the generated text sat-
isfy user-specified attributes e.g., sentiment, topic and
style [Keskar et al., 2019; Dathathri et al., 2020] while keep-
ing satisfactory generation quality, which could benefit var-
ious downstream applications. With the impressive gener-
ation ability of PLMs, a common practice for controllable
NLG is fine-tuning a PLM conditioned on attribute labels
with attribute-text paris [Keskar et al., 2019; Gururangan et
al., 2020]. However, as the scale of PLMs keeps increas-
ing, insufficient labeled data becomes a new obstacle to fine-
tuning [Yogatama et al., 2019; Zhang et al., 2021]. To al-
leviate this problem, another line of methods, called Plug-
in Control, has been established, which manipulates the out-
put generation probability of models to encourage attribute-
related tokens. The manipulation is achieved broadly through
two paradigms: updating cached hidden states [Dathathri
et al., 2020] or reshaping the output distribution guided
by off-the-shelf attribute classifiers [Krause et al., 2021;
Yang et al., 2023] or conditional PLMs [Liu et al., 2021] at
inference time without fine-tuning. Despite reduced labeling
costs, with weak/sparse attribute signals, these methods usu-
ally hurt control accuracy or generation fluency.
Self-training. Self-training (ST) [Yarowsky, 1995; Grand-
valet and Bengio, 2004] has recently found renewed inter-
est and exhibited notable advantages of augmenting PLM

1Code and appendices are available at https://github.com/
peterfengyx/KEST.

fine-tuning. This paradigm iteratively produces pseudo la-
bels for massive unlabeled data and reduces labeling bottle-
neck, facilitating varied downstream tasks where massive un-
labeled in-domain text exists, including NLU [Vu et al., 2021;
Du et al., 2021; Bhat et al., 2021; Chen et al., 2021], Im-
age Classification [Han et al., 2019; Xie et al., 2020; Sohn
et al., 2020], Speech Recognition [Park et al., 2020; Kahn et
al., 2020], and Neural Machine Translation (NMT) [Zhang
and Zong, 2016; He et al., 2020; Jiao et al., 2021]. Besides
classical ST, diverse follow-up modifications have been de-
veloped for further improvement, which generally fall into
two lines. The first line, i.e., sample selection, selects only
a part of unlabeled instances in terms of (1) model confi-
dence to avoid over-noisy pseudo labels [Sohn et al., 2020;
Bhat et al., 2021], (2) prediction uncertainty to obtain in-
formative instances and enhance performance on the hard
ones [Mukherjee and Hassan Awadallah, 2020; Jiao et al.,
2021], or (3) label balance to benefit minority classes [Wei et
al., 2021a]. The other line is noisy labeling [He et al., 2020;
Xie et al., 2020], which injects synthetic noise into the pseudo
data, e.g., token shuffle or image distortion to propagate local
smoothness and improve model robustness. Despite remark-
able progress, as discussed in Sec.1, these ST methods are
unsuitable for attribute-controllable NLG because of the two
challenges identified earlier.

Non-Autoregressive Generation (NAG). Relevant to our
work, NAG aims to simultaneously generate all target tokens
rather than one by one to increase the inference speed. NAG
was first proposed in NMT [Gu et al., 2018; Ma et al., 2019]
and then applied to broader scenarios like Text Summariza-
tion [Liu et al., 2022] and Text-to-Speech Synthesis [Chien
and Lee, 2021]. All the tasks are learned with encoder-
decoder architectures, relying on long input sequences (e.g.,
source language) to provide rich initial context information.
However, it is still challenging to leverage NAG for our task
since the inputs are only attribute labels and short prompts.

Unlike all the works mentioned above, we take a further
step to investigate the challenges of incorporating ST with
controllable NLG and propose a practical NAG method to
generate soft pseudo text, which is then learned in a kernel
space, leading to a novel and efficient ST framework.

3 Method
3.1 Formulation and Overview
Let xi denote a textual sequence and yi an attribute label.
Assume we have a labeled dataset Dl = {xi, yi}Nl

i=1, and an
unlabeled in-domain set Du={xi}Nu

i=1 where Nu ≫ Nl. Our
goal is to learn an attribute-controllable generator Gag(y) =
Pθ(x|y) (parameterized by θ) to generate high-quality text x,
matching the given label y. In addition, we endow the gen-
erator with the ability of multi-task generation. Concretely,
the model is reused and jointly trained to generate (a) pseudo
text x̂ in a non-autoregressive manner, depicted as Gnag(y),
for further augmenting self-training, and (b) pseudo labels ŷ
for x ∈ Du, namely, a classifier C=Pθ(y|x).

During the self-training phase, besides the pseudo label
pairs (x, ŷ), KEST also learns the pseudo text pairs (x̂, y)
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in the kernel space to simultaneously cover more unseen in-
stances and extend the previously fitted distribution (Sec.3.4),
handling Challenge (i). All the pseudo text x̂ is produced
through NAG efficiently, handling Challenge (ii).

3.2 Multi-task Generator
To further enhance the performance and efficiency of our
model, we design a multi-task generator to produce the de-
sired text x, Pseudo Label (PL) ŷ, and Pseudo Text (PT) x̂
jointly based on a shared PLM.
Autoregressive Text Generation. To obtain high-quality
attribute-specified generated text x, we optimize the gener-
ator Gag in an autoregressive manner as follows:

Lag = − 1

N

∑
(x,y)∈D

[
L∑

j=1

logPθ(x
j |x<j , y)], (1)

where xj means the j-th token in x, L is the length of x, D
is the training set with N samples. We will show later how to
construct D for different training phases.
Pseudo Label Generation. We also make our model simul-
taneously learn a classifier C by minimizing:

Lc = −
1

N

∑
(x,y)∈D

logPθ(y|x). (2)

Eq. (2) enables our model to make full use of available
unlabled text x ∈ Du to produce pseudo labels by ŷ =
MLP (Encoder(x)), helping regularize the training and im-
prove the generalization bound [Wei et al., 2021b].
Non-autoregressive Pseudo Text Generation. With insuf-
ficient unlabeled text, we could produce pseudo text for fur-
ther improvement and then speed up the repetitive PT gener-
ation via NAG. However, as shown in Sec. 2, an input con-
sisting of just y is too uninformative to guide the generation,
hampering convergence and causing extremely noisy PT. To
mitigate this problem, we resort to the Masked Language
Model (MLM) [Devlin et al., 2019] to train the NAG gen-
erator Gnag and conduct generation. Define m ∼ B(L, pm)
as a mask indicator vector, where B is the Bernoulli distri-
bution. Given a text x, we replace part of the tokens in
it with the MASK symbol and get the masked one x\m =
[x1, · · · ,MASK, · · · ,xL], where xj = MASK iff mj = 1.
Then we optimize the following loss for NAG:

Lnag=−
1

N

∑
(x,y)∈D

[
L∑

j=1

I(mj=1) logPθ(x
j |x\m, y)],

(3)

where I is the indicator function and the masking probability
pm can be adjusted as the noise level. In this way, our model
only needs to predict partial tokens according to the rich con-
text x\m, which is easier to learn, reducing the time complex-
ity of PT generation fromO(L) toO(1) (see Fig. 2). Besides,
the pseudo text x̂ = Gnag(x\m, y) naturally introduces mod-
erate noise in terms of re-predicted tokens while maintaining
satisfactory fluency due to the unaltered high-quality ones.

Such a flexible corruption acts as a kind of weak augmenta-
tion [Chen et al., 2021] which enhances the exploitation and
outperforms typical synthetic noise (e.g., token dropout) [He
et al., 2020].

The final loss is computed as follows:

L =λcLc + λagLag + λnagLnag (4)

where λc, λag , and λnag are hyper-parameters.

3.3 Kernel-based Learning
As we discussed in Sec. 1, learning from self-generated
pseudo text x̂ with the standard cross-entropy loss forces the
current model Pθ to over-exploit and is shackled to the pre-
viously learned one Pθ′ (Sec. 3.4), resulting in a shrunken
generalization boundary and decreased controllability.

To break such constraints, we make the current model Pθ

directly fit the previous one Pθ′ . For this goal, we leverage
Maximum Mean Discrepancy (MMD) [Gretton et al., 2012], a
well-known kernel-based probability measure, and minimize
the following empirical loss for all generated pseudo text:

Lker =
1

N(N − 1)

∑
x̃i,x̃j∈Do,i̸=j

k(x̃i, x̃j)

− 2

N2

∑
x̃i∈Do,x̂j∈Dpt

k(x̃i, x̂j),

(5)

where Dpt = {x̂i}Ni=1 is set of pseudo text, Do = {x̃i}Ni=1 is
set of text generated by Gag(x̂i, y) (or Gnag(x̂\m

i , y)) in the
self-training phase. k is the kernel function, for which we take
the RBF kernel here, that is, k(x̃i, x̃j) = exp

(
−∥x̃i−x̃j∥2

2σ2

)
and σ is the bandwidth.

This MMD loss is an unbiased estimator and model pa-
rameters can be learned through back-propagation. We will
demonstrate in Sec. 3.4 that such an objective could relax the
constraint imposed by the previous model Pθ′ and encourage
more diverse outputs.
Soft Pseudo Text (SPT). When optimizing Eq. (5), we
need to calculate the l2-distance between two text xi and
xj . Simply using hard text (one-hot representations) has two
drawbacks. First, the signal would be too sparse since most
dimensions are zeros in the vector. Second, the sampled dis-
crete xi (a point in the text space) causes information loss and
forces us to sample numerous points to cover a small neigh-
borhood region in the space. Therefore, we further propose to
generate soft pseudo text. We use the feature representation
of the text x, e(x) = P (x)×E∈RL×d, where P (x)∈RL×V

are the generation probabilities of each token xi on the vocab-
ulary, and E ∈RV×d is the word embedding matrix. V and
d are vocabulary and embedding sizes, respectively. Then we
change Eq.(1) and Eq. (3) to:

L
′

ag = Lker if x ∈ Dpt else Lag

L
′

nag = Lker if x ∈ Dpt else Lnag.
(6)

In this way, we avoid losing relevant semantics information
in the pseudo text, make the model fit a smoother distribution
and further extend the generalization boundary (see Table 3).
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Algorithm 1 Training Process of KEST
Input: Labeled set Dl, unlabeled set Du

Output: The trained model Pθ

1: Jointly train base model Gag , Gnag , C on Dl by optimiz-
ing Eq.(4), store the best G0ag , G0nag , C0.

2: for epoch← 1 to MaxEpoch do
3: for xi in Du do
4: ŷi = Cepoch−1(xi)
5: end for
6: Build pseudo labeled dataset Dpl = {xi, ŷi}
7: Sample a subset Dpseudo from Dl ∪Dpl

8: for (xi, yi) in Dpseudo do
9: Sample mask vector m.

10: x̂i = Gepoch−1
nag (x

\m
i , yi)

11: end for
Build pseudo text dataset: Dpt = {x̂i, yi}

12: Train Gepoch−1
ag , Gepoch−1

nag , and Cepoch−1 on
{Dpt, Dpl, Dl} by optimizing Eq.(4) and Eq.(6),
update the parameter to Gepochag , Gepochag , and Cepoch.

13: end for

over-exploit

hard noisy
pseudo text

explore

soft noisy
pseudo text

Classical ST

enhanced diversity

KEST

( , )Q x y
( , )P x y

' ( , )P x y


( , )k P U

Figure 1: The illustration of KEST advantages.

Following the practice of self-training in NLU [Vu et al.,
2021], we start ST from a strong base model tuned on Dl and
use the full unlabeled Du to produce pseudo labels, rather
than select part of the data with certain criteria as in [Mukher-
jee and Hassan Awadallah, 2020; Jiao et al., 2021]. The PLM
word embedding E is frozen during self-training. The com-
plete KEST process is described in Alg. 1.

3.4 Further Analysis of KEST
To better understand the advantages of KEST, we provide the
following two results.
Lemma 1. The optimization of classical self-training is
equivalent to minimizing (1− α) ∗KL[Q(x, y)||Pθ(x, y)] +
α ∗KL[Pθ′ (x, y)||Pθ(x, y)], where Q is the real joint distri-
bution of text and label, Pθ and Pθ′ are models estimated at
the current and last ST iteration, respectively, KL is the Kull-
back–Leibler divergence, and α is the ratio of pseudo text.

From Lemma 1, we can see that classical ST approxi-
mates the text distribution and fits the current model into

the previously learned one. Since KL[Pθ′ (x, y)||Pθ(x, y)] =∫∫
Pθ′ (x, y) log

P
θ
′ (x,y)

Pθ(x,y)
dxdy, failing to assign enough prob-

ability mass to a point (x, y) in Pθ′ will bring extremely
larger loss. Consequently, Pθ is more inclined to cover Pθ′

rather than explore Q, causing over-exploitation.
In contrast, we give a theorem of our KEST:

Theorem 1. Minimizing the training objective of KEST is
equivalent to minimizing the following:

KL [Q(x, y)||Pθ(x, y)]

+MMD2 [Pθ′(x, y)||Pθ(x, y)]

−2 ∗ EPθU [k(x, u)] ,

(7)

where U is a noise distribution.
Proof. See Appendix B.
In Theorem 1, our KEST fits the true distribution Q by KL

divergence to cover the real space as large as possible while
fitting Pθ′ with MMD. Considering Eq.(5), we can see this
loss not only regularizes Pθ by Pθ′ , but also diversifies Pθ via
increasing the l2-distance of generated text ∥xi − xj∥2, and
enhances exploration through fitting a noise distribution and
disturbing Pθ, further pushing the generalization boundary.

4 Experiments
4.1 Tasks
We conduct exhaustive experiments on three controllable
generation tasks, described below:
Sentiment control with prompt. We evaluate the senti-
ment controllability on the IMDb movie review dataset [Maas
et al., 2011]. Following [Dathathri et al., 2020], we use their
15 prompts and another 85 prompts sampled from IMDb (100
in total) as model input. We generate 10 samples for each
prompt and each sentiment.
Topic control w/o prompt. We use the AGNews dataset
[Zhang et al., 2015] to evaluate topic controllability. We
assess our model’s ability to generate from scratch on this
dataset and sample 300 generations for each topic.
Text detoxification. We use the Jigsaw Toxicity Dataset for
training, and use the 203 “challenging” prompts (toxicity<
0.5) from [Gehman et al., 2020] to generate 10 non-toxic sen-
tences for each prompt, following [Qian et al., 2022].

For IMDb, we sample 5% of the training samples as la-
beled data and directly take their provided unlabeled set.
Since there is no separate unlabeled text in AGNews, we sam-
ple 3% of training samples as labeled data and use the others
as unlabeled ones. For a fair comparison, we keep the ratio of
labeled/pseudo/unlabeled text to 1:1:30. More details of the
dataset are provided in Appendix A.2.

4.2 Experimental Settings
We use UniLM-base-cased [Dong et al., 2019] as the shared
classifier and generator. We use AdamW [Loshchilov and
Hutter, 2019] with learning rate = 5e-5, warm-up steps = one
epoch, and batch size = 8 for optimization. The top-p (p =
0.9) sampling method is used for decoding in evaluation. We
set λc = λag = λnag = 1.0 in Eq. (4) across all tasks. More
implementation details are provided in Appendix A.1.
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Sentiment Topic

O-PPL ↓ M-PPL ↓ F1 ↑ Dist ↑ S-BLEU ↓ O-PPL ↓ M-PPL ↓ F1 ↑ Dist ↑ S-BLEU ↓
Test set 25.14 − 96.20 48.27 43.34 31.04 − 94.89 67.24 23.31
GPT2 (raw) 13.20 38.39 68.50 35.91 58.79 16.94 74.41 52.17 46.88 45.55

Fine-tuned PLM
GPT2 16.40 44.02 80.44 26.34 71.00 22.22 23.46 83.08 54.93 39.93
UniLM 25.20 54.33 75.35 31.05 66.97 55.79 36.28 87.70 54.76 43.77
T5 25.69 34.97 83.77 30.03 69.57 48.33 32.12 88.43 58.06 37.01

Self-Training methods
PT 26.62 58.37 70.27 31.17 66.69 57.40 40.95 86.36 52.35 46.41
PT(noise) 30.28 62.07 75.78 31.68 65.18 58.59 45.32 85.27 53.35 46.57
PT(noise)+PL 18.92 33.53 89.73 30.94 66.84 32.36 16.64 89.70 53.79 47.95
PT(select)+PL 18.40 33.56 90.06 31.27 67.61 33.23 16.66 90.52 53.71 47.69

KEST 20.65 38.15 91.77 31.70 66.60 31.19 20.46 91.94 56.16 42.10

Table 1: Automatic evaluation results on IMDb dataset (sentiment) and AGNews dataset (topic). For each metric, the best results are in bold,
and the second-best results are underlined.

4.3 Evaluation Metrics
We mainly focus on improving control accuracy and diversity
while maintaining the generation quality in this work, con-
sidering the following four kinds of metrics. Due to the page
limit, we also provide the classification performance of KEST
in Appendix C.1.
Fluency. We evaluate generation fluency by the perplexity
of generated text measured by a GPT2-XL [Radford et al.,
2019] model, i.e., Output PPL.
Generalizability. We calculate the perplexity of each
model on each held-out test set provided in each dataset, i.e.,
Model PPL, which measures how well the model generalizes
and adapts to the unseen domain under a specified attribute.
Controllability. We evaluate the control accuracy through
classification Macro-F1 (F1) on the generated text by two
RoBERTa-large classifiers fine-tuned on the full IMDb and
AGNews data (testing F1=96% and 95%), respectively. For
toxicity evaluation, we use the Perspective API2.
Diversity. To evaluate the diversity of generated text, we
consider Dist-n [Li et al., 2016] and Self-BLEU [Zhu et al.,
2018].

More metrics details are described in Appendix A.3.

4.4 Baselines
We compare our model with the following (supervised or
semi-supervised) strong NLG baselines.
Fine-tuned PLM. We fine-tune diverse powerful PLMs on
each of the datasets, including GPT2 [Radford et al., 2019],
UniLM [Dong et al., 2019] and T5 [Raffel et al., 2020].
Self-training methods. (1) PT: the naive Self-training
[Grandvalet and Bengio, 2004], which generates pseudo text
at each epoch and updates parameters with both real and
pseudo text. (2) PT(noise): the noisy version of Self-
training [He et al., 2020], which brings synthetic noise (to-
ken drop, swap and mask) to the pseudo text for self-training.

2https://www.perspectiveapi.com/

(3) PT(noise)+PL: We combine PT(noise) with pseudo la-
beling, and fine-tune a BERT-base [Devlin et al., 2019] on
Dl to generate pseudo labels for all real unlabeled text. (4)
PT(select)+PL: The sample selection version of ST [Mukher-
jee and Hassan Awadallah, 2020]. We over-generate noisy
pseudo text and select samples by the classifier confidence
and uncertainty scores. All the self-training methods are ap-
plied to the same fine-tuned UniLM as used in KEST.

We give more details of the baseline models above in Ap-
pendix A.4.

4.5 Results
As shown in Table 1, in both sentiment (with prompt) and
topic (without prompt) controlled generation, our KEST
achieves significant improvement in control accuracy (+8.0
F1 at most) compared to fine-tuned PLMs. The generally
much higher PPL (for UniLM and T5), limited F1 improve-
ment, and severely decreased diversity (for GPT2) indicate
these PLMs either fail to be adapted to new domains (e.g.,
positive movie reviews) or overfit with inadequate labeled
data, as analyzed in [Zhang et al., 2021]. On the contrary,
thanks to the self-augmented data, KEST notably enhances
controllability as well as fluency and diversity, especially
compared to the backbone UniLM.

We also observed some interesting results considering ex-
isting self-training methods. 1) The naive self-training with
PT performed poorly in controllability and diversity, even
worse than tuned PLMs, due to the over-exploitation and
shrunken distributions as interpreted in Sec. 3.4. 2) The tra-
ditional synthetic noise (PT(noise)) slightly boosts control
accuracy and diversity, which verifies the effectiveness of
noise [He et al., 2020] again, but greatly hurts fluency and
generalizability (+3.7 O-PPL at most). This is because such
hard corruption is too noisy and makes the model diverge
far from valid attribute distributions. In contrast, KEST uti-
lizes a NAG generator to produce flexible noise, improving
local smoothness. 3) Additional pseudo-labels bring signifi-
cant improvement, especially on PPL. However, with a fixed
number of unlabeled data, the performance of these methods
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Fluency ↑ Novelty ↑ Rel. ↑
Sentiment

UniLM-PT(select)+PL 3.60 3.40 3.62∗∗

KEST 3.67 3.48 3.87

Topic
UniLM-PT(select)+PL 3.97∗∗ 4.43 4.57

KEST 4.11 4.54 4.62

Table 2: Human evaluation results on sentiment/topic-controlled
generation. We conduct the Student t-test to evaluate statistical sig-
nificance (∗∗: p-value< 0.01). The overall Cohen’s kappa score is
0.62, showing a satisfactory inter-annotator agreement.

AGNews

O-PPL M-PPL F1 S-BLEU

KEST 31.19 20.46 91.94 42.10
−Soft 38.04 29.07 90.96 44.09

−Lker−Soft 38.98 28.77 90.81 45.02
−Lnag−Lker−Soft 39.73 28.58 90.42 44.73

−PT 38.09 28.77 90.97 44.13
−PL−PT 37.24 256.66 87.45 69.30

Table 3: Ablation study on AGNews dataset. The symbol − means
removing the settings from KEST. −Soft: using sampled hard to-
kens instead of the soft e(x). −Lker: using the cross-entropy loss
instead of Eq.(5). −Lnag: using Gag to generate pseudo text instead
of Gnag . −PT/−PL: do not use pseudo text/labels.

is limited. Besides, KEST utilizes the multi-task generator to
produce soft pseudo text in feature space, which helps cover
a larger attribute space and obtain further improvement.

Due to space limitations, we report the results and experi-
ment details of text detoxification under both automatic and
human evaluation in Appendix C.1.

4.6 Human Evaluation
To better verify the effectiveness of KEST, we also conduct
a human evaluation. For each model, we generated 100 sam-
ples on each task. We invite 6 competent annotators to score
these samples on three criteria – Fluency, Novelty, and At-
tribute Relevance in a blind review manner. As shown in
Table 2, KEST consistently outperforms the best baseline
(UniLM-PT(select)+PL) on all three metrics, which indicates
that KEST not only has better controllability over attributes
but also generates fluent and diverse texts. See Appendix A.5
for detailed evaluation descriptions and metrics.

4.7 Ablation Study
We conduct an ablation study on the AGNews dataset and
compare different KEST variants. As shown in Table 3,
we can find: 1) Soft pseudo text prominently improves PPL
and diversity, outperforming the hard one. As discussed in
Sec. 3.3, such soft PT could bring smoother noise and help
further push the learned distribution boundary. 2) Kernel-
based learning alleviates the over-exploitation problem of
the traditional cross-entropy loss and further enhances inner-
group diversity (-0.93 S-BLEU), empirically supporting The-
orem 1. 3) KEST’s NAG ability not only reduces time com-

10 20 40 80 200
4
5
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250

510

Length of the sequence

Time/s

AG
NAG

Figure 2: Comparison of decoding time of NAG and AG for 100
pseudo text batches (batch size=8) with different text lengths.

BERT…CLS…embedding
CE
MMD
Testing…prompt

Figure 3: BERT [CLS] embedding of generated texts from KEST
using cross-entropy (CE) and our MMD loss Lker respectively.

plexity but also slightly boosts fluency (-0.75 O-PPL). How-
ever, the diversity improvement attributed to NAG is corre-
lated to the noisy level. Only with an appropriate masking
probability pm could NAG facilitate more diverse text (see
Fig. 4). Besides, pseudo text notably promotes all metrics,
verifying our claim in Sec. 1 that such synthetic pseudo text
leads to further improvement beyond pseudo labels.

4.8 Analysis
Time Consumption. Fig. 2 shows the decoding time of our
NAG and AG generators for generating pseudo text with dif-
ferent text lengths. We found that the time costs of the AG
module increase almost linearly w.r.t. the text length. In com-
parison, our NAG generator Gnag greatly accelerates the gen-
eration of pseudo text, especially when the sequence length
is long. Furthermore, we compare the training time of KEST
using Gag and Gnag , respectively. We observe that the latter
achieves 1.2× and 1.3× speedup on IMDb and AGNews, re-
spectively, which could be further improved with a larger ra-
tio of pseudo text (e.g., the ratio could increase to 6.7× with
1/10 unlabeled data), making self-training more practical.

Effect of Kernel-based Learning. To analyze the effect of
our kernel distance loss Lker in Eq. (5), we train two models
for 5 epochs with only pseudo text given the same prompt and
starting checkpoint using the kernel loss and the traditional
cross-entropy loss, respectively. We then visualize the text
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Figure 4: Results of KEST with different levels of mask ratio in
AGNews Dataset.
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Figure 5: Generation controllability (F1) on a different number of
pseudo text on AGNews dataset.

generated with given prompts from the two models by using
corresponding BERT-large [CLS] embedding as text repre-
sentations and plot them. As depicted in Fig. 3. We can find
that the model trained with cross-entropy loss collapses in a
smaller space than the training data space. In contrast, the one
with kernel loss successfully extends the learned distribution,
which helps explore a larger potential space towards the real
one, corroborating our claim and theoretical analysis.

Effect of random mask ratio. The random mask ratio pm
is a hyperparameter that can control the noise level of gener-
ated pseudo text. Fig. 4 shows the generation performance of
KEST with different mask ratios in the AGNews dataset. We
find that a higher ratio leads to a more noisy and diverse gen-
eration. A moderately higher ratio also generally improves
controllability. However, an extremely high pm brings too
much noise and hence obstructs learning. We achieve the best
controllability with pm = 0.7, indicating a suitable mask ra-
tio is necessary to balance exploration and exploitation.

Number of pseudo text. We evaluate KEST on varying
numbers of pseudo text, keeping all the other settings un-
changed. As shown in Fig. 5, KEST performs the best with
equal size of pseudo text and labeled data (Ratio = 1). More
pseudo text brings more noise which hurts generation quality
as the model captures more meaningless noise than seman-
tics. Too little pseudo text makes the model lose exploration
ability and thus fail to extend the learned distribution bound-
ary, causing poor control accuracy and diversity. Therefore, a
suitable ratio is essential to balance exploration and fluency.

Model Generation

UniLM
+ PT
(select)
+ PL

1) Well, some people might think that this film
is a masterpiece. They are right. The film is not
just a love story, but a love story. What I like
about this film is that it shows a different side
of women...
2) Well, some people might not like this film, but
some people might. Well, most people would
not like this movie. But the main reason I like it
so much is that it has a lot of humor...

KEST 1)Well, some people might think it’s a little over
the top and the story is really predictable, but
as I saw on TV in the early 90’s I wasn’t disap-
pointed in this movie! While the plot is kind of
predictable and the main character is supposed
to be a guy, the whole thing has been made into
a very cool and entertaining film...
2) Well, some people might think that this was
a lot like “Jaws”, or “Alien”, or something like
that. Sadly, it is not. I was lucky enough to see
it. It’s a very clever, intelligent and entertaining
film with good performances...

Table 4: Samples generated with specified positive sentiment and
input prompt ‘Well, some people might’. Words in blue/red are pos-
itive/negative indicators, respectively.

Case Study. In order to verify the generation quality and at-
tribute relevance, we present some cases sampled from differ-
ent models in Table 4. We can see that traditional ST methods
(UniLM+PT(select)+PL) suffer from repeating phrases (e.g.,
“love story” and “not like”), exhibiting poor generation diver-
sity and novelty. In contrast, KEST produces more diverse ex-
pressions thanks to kernel-based learning and smoother soft
pseudo text while staying faithful to the given positive at-
tribute. We present more generated cases on different tasks
in Appendix E.

5 Conclusion
We propose a novel KEST method to incorporate Self-
training into semi-supervised controllable NLG. KEST (1)
applies a practical multi-task generator to generate soft
pseudo text in parallel, significantly reducing decoding time
while injecting soft noise to the text; (2) uses soft kernel-
based loss to encourage exploration of the learned distribution
and increase control accuracy and generation diversity. The-
oretical analysis and empirical experiments demonstrate that
KEST acts as a combination of regularization-like exploita-
tion and attribute boundary exploration, improving control
accuracy with satisfactory generation fluency, diversity, and
accelerated training. In the future, we plan to try more ad-
vanced NAG methods to improve the generation quality of
the pseudo text.

Ethical Statement
Topic/sentiment-controlled generated text may contain
biased or offensive expressions. Besides, our model can
produce more plausible texts that could be utilized to create
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fake news and disinformation. However, these generated
texts can also be used as pseudo data in data augmentation
for fact-checking and fake news detection and thus have the
potential to improve current fact-checking models.
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Marasović, Swabha Swayamdipta, Kyle Lo, Iz Belt-
agy, Doug Downey, and Noah A. Smith. Don’t stop
pretraining: Adapt language models to domains and tasks.
In ACL 2020, pages 8342–8360, Online, July 2020.

[Han et al., 2019] Jiangfan Han, Ping Luo, and Xiaogang
Wang. Deep self-learning from noisy labels. In ICCV
2019, pages 5138–5147, 2019.

[He et al., 2020] Junxian He, Jiatao Gu, Jiajun Shen, and
Marc’Aurelio Ranzato. Revisiting self-training for neural
sequence generation. In ICLR, 2020.

[Jiao et al., 2021] Wenxiang Jiao, Xing Wang, Zhaopeng Tu,
Shuming Shi, Michael Lyu, and Irwin King. Self-training
sampling with monolingual data uncertainty for neural ma-
chine translation. In ACL 2021, pages 2840–2850, 2021.

[Kahn et al., 2020] Jacob Kahn, Ann Lee, and Awni Han-
nun. Self-training for end-to-end speech recognition. In
ICASSP 2020, pages 7084–7088. IEEE, 2020.

[Keskar et al., 2019] Nitish Shirish Keskar, Bryan McCann,
Lav R. Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for con-
trollable generation. ArXiv, abs/1909.05858, 2019.

[Krause et al., 2021] Ben Krause, Akhilesh Deepak Got-
mare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. Gedi: Gen-
erative discriminator guided sequence generation. In Find-
ings of EMNLP 2021, pages 4929–4952, 2021.

[Li et al., 2016] Jiwei Li, Michel Galley, Chris Brockett,
Jianfeng Gao, and Bill Dolan. A diversity-promoting ob-
jective function for neural conversation models. In NAACL
2016, pages 110–119, June 2016.

[Li et al., 2021] Shiyang Li, Semih Yavuz, Wenhu Chen, and
Xifeng Yan. Task-adaptive pre-training and self-training
are complementary for natural language understanding. In
Findings of EMNLP 2021, pages 1006–1015, 2021.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692, 2019.

[Liu et al., 2021] Alisa Liu, Maarten Sap, Ximing Lu,
Swabha Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts. In
ACL 2021, pages 6691–6706, Online, August 2021.

[Liu et al., 2022] Puyuan Liu, Chenyang Huang, and Lili
Mou. Learning non-autoregressive models from search
for unsupervised sentence summarization. In ACL 2022,
pages 7916–7929, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5056



[Loshchilov and Hutter, 2019] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. In ICLR,
2019.

[Ma et al., 2019] Xuezhe Ma, Chunting Zhou, Xian Li,
Graham Neubig, and Eduard Hovy. Flowseq: Non-
autoregressive conditional sequence generation with gen-
erative flow. In EMNLP-IJCNLP, pages 4282–4292, 2019.

[Maas et al., 2011] Andrew L. Maas, Raymond E. Daly, Pe-
ter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In
ACL 2011, pages 142–150, 2011.

[Mukherjee and Hassan Awadallah, 2020] Subhabrata
Mukherjee and Ahmed Hassan Awadallah. Uncertainty-
aware self-training for few-shot text classification. In
NeurIPS 2020, Online, 2020.

[Park et al., 2020] Daniel S. Park, Yu Zhang, Ye Jia, Wei
Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu, and
Quoc V. Le. Improved noisy student training for automatic
speech recognition. In Interspeech 2020. ISCA, Oct 2020.

[Qian et al., 2022] Jing Qian, Li Dong, Yelong Shen, Furu
Wei, and Weizhu Chen. Controllable natural language gen-
eration with contrastive prefixes. In Findings of ACL 2022,
pages 2912–2924, May 2022.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[Raffel et al., 2020] Colin Raffel, Noam Shazeer, Adam
Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer.
JMLR, 21(140):1–67, 2020.

[Schick and Schütze, 2021] Timo Schick and Hinrich
Schütze. Generating datasets with pretrained language
models. In EMNLP 2021, pages 6943–6951, 2021.

[Scudder, 1965] Henry Scudder. Probability of error of some
adaptive pattern-recognition machines. IEEE Transactions
on Information Theory, 11(3):363–371, 1965.

[Sohn et al., 2020] Kihyuk Sohn, David Berthelot, Nicholas
Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li.
Fixmatch: Simplifying semi-supervised learning with con-
sistency and confidence. NeurIPS, 33:596–608, 2020.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, pages 5998–6008, 2017.

[Vu et al., 2021] Tu Vu, Minh-Thang Luong, Quoc Le,
Grady Simon, and Mohit Iyyer. STraTA: Self-training
with task augmentation for better few-shot learning. In
EMNLP 2021, pages 5715–5731, November 2021.

[Wang et al., 2020] Yaqing Wang, Subhabrata Mukherjee,
Haoda Chu, Yuancheng Tu, Ming Wu, Jing Gao, and
Ahmed Hassan Awadallah. Adaptive self-training for

few-shot neural sequence labeling. arXiv preprint
arXiv:2010.03680, 2020.

[Wei et al., 2021a] Chen Wei, Kihyuk Sohn, Clayton Mel-
lina, Alan Yuille, and Fan Yang. Crest: A class-
rebalancing self-training framework for imbalanced semi-
supervised learning. In CVPR, pages 10857–10866, 2021.

[Wei et al., 2021b] Colin Wei, Kendrick Shen, Yining Chen,
and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. In ICLR, 2021.

[Xie et al., 2020] Qizhe Xie, Eduard H. Hovy, Minh-Thang
Luong, and Quoc V. Le. Self-training with noisy stu-
dent improves imagenet classification. CVPR 2020, pages
10684–10695, 2020.

[Yang et al., 2020] Yiben Yang, Chaitanya Malaviya, Jared
Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-
Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. Generative data augmentation for commonsense
reasoning. In EMNLP Findings, pages 1008–1025, 2020.

[Yang et al., 2023] Zonghan Yang, Xiaoyuan Yi, Peng Li,
Yang Liu, and Xing Xie. Unified detoxifying and debi-
asing in language generation via inference-time adaptive
optimization. In ICLR, 2023.

[Yarowsky, 1995] David Yarowsky. Unsupervised word
sense disambiguation rivaling supervised methods. In
ACL, pages 189–196, 1995.

[Yogatama et al., 2019] Dani Yogatama, Cyprien de Mas-
son d’Autume, Jerome Connor, Tomas Kocisky, Mike
Chrzanowski, Lingpeng Kong, Angeliki Lazaridou, Wang
Ling, Lei Yu, Chris Dyer, et al. Learning and eval-
uating general linguistic intelligence. arXiv preprint
arXiv:1901.11373, 2019.

[Zhang and Zong, 2016] Jiajun Zhang and Chengqing Zong.
Exploiting source-side monolingual data in neural ma-
chine translation. In EMNLP, pages 1535–1545, 2016.

[Zhang et al., 2015] Xiang Zhang, Junbo Jake Zhao, and
Yann LeCun. Character-level convolutional networks for
text classification. In NIPS, 2015.

[Zhang et al., 2021] Tianyi Zhang, Felix Wu, Arzoo Katiyar,
Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample BERT fine-tuning. In ICLR, 2021.

[Zhang et al., 2022] Shuai Zhang, Meng Wang, Sijia Liu,
Pin-Yu Chen, and Jinjun Xiong. How unlabeled data im-
prove generalization in self-training? a one-hidden-layer
theoretical analysis. In ICLR, 2022.

[Zhu et al., 2018] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian
Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In
SIGIR 2018, page 1097–1100, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5057


	Introduction
	Related Work
	Method
	Formulation and Overview
	Multi-task Generator
	Kernel-based Learning
	Further Analysis of KEST

	Experiments
	Tasks
	Experimental Settings
	Evaluation Metrics
	Baselines
	Results
	Human Evaluation
	Ablation Study
	Analysis

	Conclusion

