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Abstract
Dynamic early exiting has been proven to improve
the inference speed of the pre-trained language
model like BERT. However, all samples must go
through all consecutive layers before early exit-
ing and more complex samples usually go through
more layers, which still exists redundant compu-
tation. In this paper, we propose a novel dy-
namic early exiting combined with layer skipping
for BERT inference named SmartBERT, which
adds a skipping gate and an exiting operator into
each layer of BERT. SmartBERT can adaptively
skip some layers and adaptively choose whether
to exit. Besides, we propose cross-layer con-
trastive learning and combine it into our training
phases to boost the intermediate layers and classi-
fiers which would be beneficial for early exiting. To
keep the consistent usage of skipping gates between
training and inference phases, we propose a hard
weight mechanism during training phase. We con-
duct experiments on eight classification datasets of
the GLUE benchmark. Experimental results show
that SmartBERT achieves 2-3× computation reduc-
tion with minimal accuracy drops compared with
BERT and our method outperforms previous meth-
ods in both efficiency and accuracy. Moreover, in
some complex datasets like RTE and WNLI, we
prove that the early exiting based on entropy hardly
works, and the skipping mechanism is essential for
reducing computation. Our codes are available at:
https://github.com/HuBoren99/SmartBert.

1 Introduction
In recent years, large-scale pre-trained language mod-
els(PLMs) such as BERT [Devlin et al., 2019], GPT [Rad-
ford et al., 2018], ALBERT [Lan et al., 2019], and XLNET
[Yang et al., 2019] RoBERTa [Liu et al., 2019] have made
significant progress in the field of natural language process-
ing(NLP). However, these models usually require large com-
putation resources. It is difficult to deploy these models in
the case of limited resources. To reduce redundant com-
putation, various approaches have been proposed, including
network pruning [Li et al., 2016; He et al., 2017], weight

quantization [Jacob et al., 2018], knowledge distillation [Hin-
ton et al., 2015; Sanh et al., 2019; Jiao et al., 2019] and
dynamic early exiting [Xin et al., 2020; Liu et al., 2020;
Schwartz et al., 2020].

In this work, we mainly focus on dynamic early exiting
methods. Such methods do not change the original network
structure, and they only add some light plugins in the origi-
nal network to decide whether early exit or not in each layer
which can reduce plenty of computation while keeping com-
parable performance.

Although current dynamic early exiting technology has
shown excellent characteristics, samples must go through all
consecutive layers before early exiting, and complex samples
have to go through nearly all layers. That is, complex samples
have more redundant computation. In the field of computer
vision, Highway Network [Srivastava et al., 2015] and Skip-
Net [Wang et al., 2018b] have proved that redundant compu-
tations exist in neural networks and some blocks (layers) can
be skipped directly. Motivated by these works, we assume
that some layers also can be skipped directly before early ex-
iting for BERT to further reduce computation.

In this paper, firstly, we introduce a novel dynamic early
exiting combined with layer skipping technique for BERT in-
ference named SmartBERT, which plugs a skipping gate and
an exiting operator into each layer of BERT and performs
adaptive inference based on the principle of the higher prior-
ity of skipping than exiting. We use the widely used PLM
BERT [Devlin et al., 2019] as the backbone, and our method
can be extended to other PLMs.

Secondly, in order to address the inconsistent usage of
skipping gates between the train and inference stage, we
design a hard weight mechanism. For adopting the trans-
formation from soft to hard, we proffer a special training
way. Thirdly, we propose cross-layer contrastive learning and
combine it into our training phases to boost the intermediate
layers and classifiers to achieve more efficient computation.
Moreover, We conducted experiments on eight classification
datasets of the GLUE benchmark[Wang et al., 2018a], which
shows that SmartBERT achieves 2-3× computation reduction
with minimal accuracy drops compared with BERT and has
a better performance than other dynamic early exiting mod-
els at the same computational cost. We also prove skipping
mechanism is highly effective in some complex datasets like
RTE and WNLI.
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Our main contributions can be summarized as follows:
• We propose a novel dynamic early exiting method com-

bined with layer skipping for BERT inference. And we
design a hard weight mechanism and a special training
way for consistent usage and better training respectively.

• We propose cross-layer contrastive learning into the
training phase to boost the intermediate layers and clas-
sifiers, which is beneficial for early exiting.

• Our method can achieve 2-3x computation reduction
with comparable performance and outperforms previ-
ous methods in both efficiency and accuracy. In some
complex datasets like RTE and WNLI, our method can
save the quantity of computation time (2-4x) compared
to current early existing methods while achieving better
performance.

2 Related Work
2.1 Model Compression
Many pre-trained language models (PLMs) have emerged in
the last few years. Although these PLMs have achieved high
scores in many NLP tasks, their inference time is slow, and
the cost of calculation is expensive. One of the most represen-
tative models is BERT [Devlin et al., 2019], which has made
remarkable improvements in many NLP tasks. However, the
inference speed of BERT is criticized. Therefore, a series of
methods of model compression have been proposed to solve
the above problems. Knowledge distillation [Hinton et al.,
2015] aims to transfer knowledge from the teacher model to
the student model, which is applied in DistillBERT [Sanh et
al., 2019] and TinyBERT [Jiao et al., 2019]. ALBERT [Lan
et al., 2019] uses sharing parameters to greatly reduce the
number of parameters and memory consumption. Q8BERT
[Zafrir et al., 2019] use symmetric linear quantization [Jacob
et al., 2018] to reduce the number of bits about the param-
eters of BERT. For Pruning, [Gordon et al., 2020] mainly
remove the unimportant part based on gradients of weights.
Although these methods can improve the inference time of
BERT, they can not adaptively change the architecture of the
model according to the complexity of each sample. For ex-
ample, simple samples must go through all layers for these
methods. However, these samples may only go through early
layers in early exiting models.

2.2 Adaptive Inference
Adaptive inference can adaptively change the architecture of
the model according to the complexity of samples. DeeBERT
[Xin et al., 2020] chooses whether to early exit according to
the entropy of the output distribution on each layer. Fast-
BERT divides the early exiting classifiers into student clas-
sifiers and the teacher classifier, and then trains all student
classifiers through self-distillation. FastBERT also uses the
early exit based on entropy. FastBERT and DeeBERT can
adaptively adjust the model size according to different sam-
ples. However, samples need to go through all layers before
early exiting, and if they are complex enough, they need to go
through the whole model. Hence, we introduce cross-layer
contrastive learning to obtain more powerful classifiers and
use layer skipping mechanism to reduce redundancy further.

2.3 Contrastive Learning
Recently, contrastive learning (CL) has made significant
progress in various domains. Especially, unsupervised CL
can exploit a bulk of unlabelled data to train a model with
generalization which can even surpass the model trained un-
der supervised training in some situations. The aim of CL is
to maximize the agreement between positive views which are
jointly sampled and disparting negative views in the represen-
tation space. Pioneering works were mainly proposed in the
CV domain [He et al., 2020; Chen et al., 2020]. Then in the
graph domain, there are plentiful follow-up works [You et al.,
2020; Zhu et al., 2022] which borrow ideas from pioneering
works. However, in the field of natural language processing,
there are few inventive works [Gao et al., 2021] that have
shown up in recent years. The main difficulty in NLP do-
main is that augmentation is hard to design. Besides, previous
works mainly focus on the quality of the final representations
which may neglect the intermediate layers. But in our work,
we hope each layer can be competent for good classification
to early exit. So, we propose cross-layer contrastive learning
in our method for both the first stage and the second train-
ing stage. In the cross-layer contrastive learning, we do not
rely on data augmentation and assume that each token should
have similar semantics across the consecutive layers because
their representations do not change drastically. The same to-
kens will be treated as positive pairs in the consecutive layers,
otherwise they shall be negative pairs.

3 Methodology
In this section, we first introduce the architecture of
SmartBERT, which combines the early exiting mechanism
and layer skipping mechanism. Secondly, we will illus-
trate how to combine cross-layer contrastive learning into the
training phase to obtain powerful classifiers. Lastly, we intro-
duce a hard weight mechanism and a special training way for
skipping gates, further keeping the consistent usage of skip-
ping gates between the training and inference phases.

3.1 Preliminaries
Given an input sentence S = {w1,w2, . . . ,wN} ∈ RN×W ,
N and L stand for the number of tokens and encoder layers
respectively. Xi ∈ RN×D represents the output of the ith

encoder layer E i(·). X0 stands for the output of embedding
layer. Gi(·) and Ci(·) represent the skipping gate and classi-
fier, and the superscript means they are inserted in ith layer.

3.2 Model Design
Different to [Liu et al., 2020; Xin et al., 2020] whose each
layer will introduce one exiting classifier, we additionally
plug a skipping gate into each layer. In order to understand
SmartBERT better, we will first introduce the skipping gates
and then introduce exiting classifiers.

The skipping gate aims to decide whether to execute or
bypass the current layer like Figure 1.

With the skipping gate Gi(·), the output of ith encoder
block can be defined as

Xi = Gi(Xi−1)Xi−1 + (1− Gi(Xi−1))E i(Xi−1), (1)
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Figure 1: The skipping gate has p(skip) probability to skip the cur-
rent transformer layer and has p(not skip) probability not to skip.
In the inference phase, when p(skip) is greater than p(not skip), the
gate will choose to skip, otherwise not to skip.

where Gi(Xi−1) ⊆ [0, 1] is the output of the ith skipping gate
which represents the probability of skipping the current layer.
In the training phase, Gi(Xi−1) is a continuous value in the
range 0 to 1. However, in the inference phase, Gi(Xi−1) is
a discrete value that is 0 or 1, and the inconsistent usage of
skipping gates between the training and inference phase will
be discussed in Section 3.5.

Next, we will introduce early exiting classifiers. All early
exiting classifiers use the early exiting mechanism based on
the entropy, and we define the output of classifiers as

zi = Ci(Xi), (2)

where zi ∈ R1×C represents the probability of each category.

3.3 Training
SmartBERT is composed of pre-trained BERT, skipping
gates, and early exiting classifiers. For stability, we use two
stages training strategy for the model, and different stages
will train different parts of the model. In this section, we
will illustrate two stages separately.

First Training Stage
In the first stage, we train skipping gates and fine-tune pre-
trained BERT in a joint way. Other components will be fixed
except the last classifier, as shown in Figure 2a. The total loss
of the first stage consists of three main parts: classification
error, the sloth of skipping, and cross-layer contrastive loss.
It can be formalized as

Lfirst = LCE(z
L,y) +

λ
n∑

i=1

Gi(Xi)
+ ηLcontra 1, (3)

where the first term represents the classification error(e.g.,
cross-entropy loss) like Equation 2. The second term indi-
cates the sloth of skipping. In order to encourage the gates to
skip to some extent rather than only considering the perfor-
mance, we introduce the second term as a regular term. To
enlarge the output of skipping gates. And λ, η ∈ [0, 1] are
scaling factors that are used to balance the influence of the
regular terms on the loss. The third term represents a cross-
layer contrastive loss, which mainly aims to obtain a more
powerful BERT in this stage.

In cross-layer contrastive learning (CCL), we assume that
each token should have similar semantics across the consec-

utive layers because their representations do not change dras-
tically. The experiments in Appendix C can support our mo-
tivation. The same tokens will be considered as positive pairs
across consecutive layers. Otherwise, they shall be deemed
to be negative pairs. The CCL loss in the first training stage
can be formulated as

Lcontra 1 =
1

N

1

L− 1

L−1∑
i=1

N∑
m=1

− log
es(pi

m,pi+1
m )/τ∑N

k=1 e
s(pi

m,pi+1
k )/τ

,

(4)

where pi
m = f(xi

m), xi
m represents the mth word represen-

tation in the ith layer. f(·) is a projection function that maps
representations to another latent space where the contrastive
loss is calculated. s(x, y) represents a score function (e.g., co-
sine similarity), and τ is temperature parameter. In this train-
ing stage, we only boost the transformer layer by the cross-
layer contrastive loss.
















 

















 













Figure 2: The processes of two-stage training stages and inference
phase. (a) and (b) show the first and second stages of training, re-
spectively. Note that different components will be trained in differ-
ent stages. (c) shows the fast inference process. In each layer, the
skipping will decide whether to skip the current layer. If it chooses
to skip, then the input directly enters the next gate. Otherwise, the
input will be fed into the current layer, and the corresponding clas-
sifier will decide whether to exit.

Second Training Stage
In the second stage, the trained parameters of the first stage
will be frozen, and all classifiers except the last one will be
trained as shown in Figure 2b. In order to obtain more power-
ful classifiers, we also adopt CCL into the second training
phase. Specifically, the token representations obtained by
frozen transformer layers will be fed into classifiers firstly.
Secondly, we extract the hidden states that only go through
the first layer (i.e., self-attention layer) of classifiers, and
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these hidden states will be fed into the projection head to map
them into the space where contrastive loss is occupied. Lastly,
the contrastive loss (i.e., InfoNCE loss) is employed. Figure 3
shows the overall pipeline. The CCL loss in the second train-
ing stage can be formalized as

ℓ(ĥi
m, ĥi+1

m ) = − log
es(ĥi

m,ĥi+1
m )/τ∑N

k=1 e
s(ĥi

m,ĥi+1
k )/τ

, (5)

where ĥi
m = f(hi

m),hi
m = Self-Attention(Xi)[m],

Self-Attention(·) represents a self-attention function and [m]
means we only select m-th token. Other notations have the
same meanings as in Equation 4. Enumerating all tokens in
all layers, the overall loss is:

Lcontra 2 =
1

N

1

L− 1

L−1∑
i=1

N∑
m=1

ℓ(ĥi
m, ĥi+1

m ). (6)

In this way, the exiting classifiers can help each other in the
consecutive layers, which will assist our model early exiting.
In detail, our classifier is similar to [Liu et al., 2020], which
consists of one attention layer and one linear layer. Each to-
ken in the i-th layer will acquire its high-level representation
Hi through the attention layer. Through Equation 5, the self-
attention layer will be boosted so that we can empower the
classifier to produce more confident results which are helpful
for early exiting based on entropy.

p
ro

je
ct

o
r

p
ro

je
ct

o
r

Self-attention

Transformer i

Transformer i+1

Figure 3: The pipeline of cross-layer contrastive learning in the sec-
ond stage. The green line (i.e., the same token in the consecutive
layers) indicates positive pairs, and red lines (i.e., otherwise) repre-
sent negative pairs.

For keeping consistent with the inference phase,
SmartBERT uses the output of skipping gates to update
the hidden states of the current layer like Equation 1. Next,
we define the loss of each classifier as

Li
CE = LCE(z

i,y). (7)
In the second stage, the loss function is the sum of the cross-
entropy loss of classifiers with cross-layer contrastive loss:

Lsecond =
L−1∑
i=1

Li
CE + ηLcontra 2. (8)

3.4 Inference
After finishing the two-stage training, SmartBERT can take
advantage of skipping gates and early exiting to accelerate
inference considering the complexity of samples. Only when
the output of skipping gates is greater than or equal to 0.5, the
model will decide to skip. The specific formula follows:

Xi =

 Xi−1 , if Gi(Xi−1) ≥ 0.5

E i(Xi−1) , if Gi(Xi−1) < 0.5
(9)

When skipping gates choose not to skip, the current early ex-
iting classifier will be used, and all classifiers use an early
exiting mechanism based on the entropy: Exit , if Entropy(zi) < S

Continue , otherwise
(10)

where zi represents a categorical distribution of the ith classi-
fier, and S is the entropy threshold for early exiting, which is
set manually. The entire inference algorithm is in Appendix
A.

3.5 Hard Weight Mechanism
In the previous sections, we have introduced SmartBERT
training and inference. However, we find the inconsistent
usage of skipping gates between the training and inference
phase. Specifically, in the training phase, the output of skip-
ping gates is a continuous probability value between 0 and 1
like Equation 1, and in the inference phase, we will discretize
the output of skipping gates like Equation 9 for acceleration.
To reduce the impact of inconsistent usage of skipping gates,
we introduce a hard-weight mechanism for skipping gates in
the training phase. And the hard weight mechanism is differ-
entiable, we use the trick:

Ghard = 1Gsoft≥0.5
− G̃soft +Gsoft, (11)

where 1Gsoft≥0.5
is an indicator function which returns 1 if

Gsoft≥0.5 otherwise 0, and G̃soft is the result of truncating the
gradient of Gsoft. With this trick, we achieve two things:
(1) makes the output value exactly one-hot (since we add
then subtract soft value), (2) makes the gradient equal to
the soft gradient (since we strip all other gradients). In the
training phase, we define the output of skipping gates as the
soft weight Gsoft. To keep the consistent usage of skipping
gates between training and inference phases, we turn the soft
weight Gsoft into discrete values (0 or 1), and keep the gradi-
ent equal to Equation 12. In this way, the output of the skip-
ping gate becomes a discrete skipping decision in the training
phase, which is consistent with the inference phase:

Ghard =

{
1 , fp, Gsoft ≥ 0.5
0 , fp, Gsoft < 0.5

Gsoft , backward pass
(12)

where fp represents forward pass, Gsoft is the soft weight and
Ghard is the hard weight.
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3.6 A Special Training Way for Skipping Gates
Although the hard weight mechanism can reduce the impact
of inconsistent usage of skipping gates, directly using the
hard weight mechanism will lead to some layers can not be
well fine-tuned because they may be skipped. However, these
layers may be used in the inference phase, which will result
in unsatisfactory performance. To ensure all layers can be
trained and keep the consistent usage of skipping gates in the
training and inference phase, we introduce a special training
way from soft weight mechanism to hard weight mechanism
for skipping gates.

We use the transition from the soft weight mechanism to
the hard weight mechanism to address the above problems.
First, we use the soft weight mechanism to warm up all
skipping gates and transformer layers and then use the hard
weight mechanism to train them. Moreover, the soft weight
mechanism aims to fine-tune these layers, and the hard weight
mechanism is used for keeping the consistent usage of skip-
ping gates between training and inference phases.

4 Experiments
4.1 Baselines
We compare our method with three baselines:

• BERT. A large-scale pre-trained language model based
on Transformer, which is used as the backbone of our
methods. In experiments, we only use the BERT-base
model pre-trained by Google. [Devlin et al., 2019]

• DistillBERT. It is a smaller transformer-based model by
distilling the BERT. [Sanh et al., 2019]

• Early exiting model. The dynamic early exiting method
for BERT is an effective method to accelerate BERT in-
ference. We choose some classical methods like Dee-
BERT [Xin et al., 2020] and FastBERT [Liu et al.,
2020] as our baselines, which use the early exiting
mechanism based on entropy.

4.2 Datasets
To verify the effectiveness of our methods, We conduct
experiments on eight classification datasets of the GLUE
benchmark[Wang et al., 2018a], including SST-2 [Socher et
al., 2013], CoLA [Warstadt et al., 2019], MRPC [Dolan and
Brockett, 2005], MNLI [Williams et al., 2017], QQP, QNLI
[Rajpurkar et al., 2016], RTE [Bentivogli et al., 2009], and
WNLI [Levesque et al., 2012].

4.3 Experimental Setup
The experiments are done on an NVIDIA 2080Ti GPU. We
adopt the same parameters for BERT, DeeBERT, FastBERT,
and SmartBERT. In experiment, these models use the pre-
trained parameters(bert-base-uncased) released by the Hug-
ging Face Transformer Library [Wolf et al., 2019]. In the
pre-trained parameters, the number of transformer layers, the
dimension of hidden states, and the max length of the in-
put sentence are set to 12, 768, and 128. We use AdamW
[Kingma and Ba, 2014] to train these models with a default
batch size of 32. For each task, we select the best fine-tuning
learning rate(among 1e-5,2e-5,5e-5).

In the first stage of SmartBERT, we train the model with 5
epochs and select one with the best accuracy for the second
stage. In the second stage, we adopt cross-layer contrastive
learning to train the classifiers and train these classifiers for
4 epochs. We slightly tune the hyper-parameters across the
different tasks.

Following prior work, our batch size of inference is set to
1 in the inference phase.

In inference, We followed FastBERT and used FLOPs as
an indicator to evaluate the computational cost. Generally
speaking, the size of the FLOPs reflects the inference speed
of the model, and the smaller the FLOPs of the model are,
the shorter the inference time will be. Table 2 presents the
computational cost of each operation within the SmartBERT,
which shows that the computational cost of the Skipping Gate
and Classifier is much lower than the Transformer Layer.

4.4 Main Results
We evaluate these models in eight classification datasets of
the GLUE benchmark and select different entropy thresholds
to test the performance and sample-averaged FLOPs for Dee-
BERT, FastBERT and SmartBERT. We set three different
entropy thresholds for early exiting models and compare the
results with other baselines in Table 1. The results of the
experiment show that our model achieves 2-3× computation
reduction with minimal accuracy drops and even has a better
performance than BERT. In the results, due to DistillBert can-
not adaptively change the model architecture according to the
sample complexity, it has a fixed computational complexity.
In other words, the computational cost of DistillBert is inde-
pendent of sample difficulty. In fact, the difficulty of each
dataset is different, and in more datasets, our method has a
better performance than DistillBert.

In Figure 4, we set several entropy thresholds and com-
pare different models’ tradeoffs in accuracy and computa-
tional cost on some GLUE datasets. From Figure 4, we con-
clude that:

1. Compared with FastBERT and DeeBERT, SmartBERT
have a better performance at the same computational
cost, which proves our model is more effective than
other approaches.

2. In all datasets, the scores(accuracy/F1 score/FLOPs) of
these models start to decline when the computational
costs reach certain values which verify the redundant
computation in original BERT, and SmartBERT domi-
nates the performance under different computation costs
comparing with FastBERT and DeeBERT.

4.5 Effectiveness of Skipping Mechanism
The early exiting mechanism is based on the entropy of the
corresponding classifier output. However, previous methods
hardly reduce computation cost when samples are complex
and difficult enough. Because the entropy of classifier output
will be extremely high that leads to most exiting classifiers do
not exit early. In Table 1, we can see that even if the threshold
S is set as 0.5, the DeeBERT and FastBERT still have an ex-
tremely high computational cost for RTE and WNLI dataset,
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Dataset/
Model MRPC SST-2 QNLI QQP MNLI MNLI-mm CoLA RTE WNLI

F1 FLOPs
(cost) Acc FLOPs

(cost) Acc FLOPs
(cost) F1 FLOPs

(cost) Acc FLOPs
(cost) Acc FLOPs

(cost) Mcc FLOPs
(cost) Acc FLOPs

(cost) Acc FLOPs
(cost)

BERT 88.5 21744M
(100%) 93.2 21744M

(100%) 88.1 21744M
(100%) 84.4 21744M

(100%) 84.6 21744M
(100%) 84.8 21744M

(100%) 50.8 21744M
(100%) 61.0 21744M

(100%) 56.3 21744M
(100%)

DistillBERT 87.0 10872M
(50%) 91.5 10872M

(50%) 86.8 10872M
(50%) 82.4 10872M

(50%) 81.9 10872M
(50%) 81.8 10872M

(50%) 47.5 10872M
(50%) 59.2 10872M

(50%) 55.3 10872M
(50%)

DeeBERT
(S=0.1) 88.4 21744M

(100%) 92.4 13900M
(63%) 87.5 20008M

(92%) 84.2 17578M
(80%) 84.2 20796M

(95%) 84.3 20786M
(95%) 49.9 21840M

(100%) 59.9 21758M
(100%) 56.3 21758M

(100%)
DeeBERT

(S=0.3) 88.2 19726M
(90%) 90.3 10874M

(50%) 87.1 15770M
(72%) 83.1 14750M

(67%) 84.2 19698M
(90%) 84.1 18148M

(83%) 49.9 16850M
(77%) 59.9 21718M

(99%) 56.3 21758M
(100%)

DeeBERT
(S=0.5) 87.2 13540M

(62%) 85.2 7468M
(34%) 84.9 10502M

(48%) 74.5 8744M
(40%) 83.9 18728M

(86%) 83.1 16362M
(75%) 49.9 15130M

(70%) 59.9 21332M
(98%) 56.3 21758M

(100%)

FastBERT
(S=0.1) 88.5 22196M

(102%) 92.4 11094M
(51%) 87.5 19684M

(90%) 83.9 15808M
(72%) 83.4 19980M

(91%) 84.0 19116M
(87%) 49.8 20846M

(95%) 59.4 22196M
(102%) 56.3 22196M

(102%)
FastBERT

(S=0.3) 88.5 20278M
(93%) 90.7 6704M

(30%) 86.8 13096M
(60%) 82.9 10586M

(48%) 83.1 15468M
(71%) 83.6 15358M

(70%) 49.5 15262M
(70%) 59.4 22196M

(102%) 56.3 22196M
(102%)

FastBERT
(S=0.5) 88.3 16478M

(75%) 86.8 4076M
(18%) 84.5 7964M

(36%) 78.2 6064M
(27%) 81.3 11958M

(54%) 81.3 11020M
(50%) 44.4 12700M

(58%) 59.4 22196M
(102%) 56.3 22196M

(102%)

Ours
(S=0.1) 89.8 21390M

(98%) 93.1 9040M
(41%) 87.9 16512M

(75%) 84.1 13128M
(60%) 84.4 18436M

(84%) 84.6 18196M
(83%) 51.5 20568M

(94%) 60.6 12684M
(58%) 56.3 6768M

(31%)
Ours

(S=0.3) 89.6 17884M
(82%) 91.9 5706M

(26%) 87.0 10878M
(50%) 82.5 8610M

(39%) 83.6 14442M
(66%) 83.9 13936M

(64%) 51.3 15072M
(69%) 60.6 12684M

(58%) 56.3 6768M
(31%)

Ours
(S=0.5) 88.9 14348M

(65%) 87.7 3608M
(16%) 84.9 7020M

(32%) 78.0 5130M
(23%) 82.4 10450M

(49%) 82.0 10570M
(48%) 49.9 10468M

(49%) 60.6 12684M
(58%) 56.3 6768M

(31%)

Table 1: Comparison between baselines(BERT,DistillBERT,FastBERT,DeeBERT) and SmartBERT on the GLUE benchmark. FLOPs are
multiply–accumulate operations which represent computational complexity. S represents the entropy threshold, and cost is the computational
cost.

which means early exiting mechanism is invalid on such situ-
ations. But SmartBERT achieves a relatively large computa-
tion reduction with minimal accuracy drop, which shows the
skipping mechanism is effective.

To further prove the effectiveness of the layer skipping
mechanism, we disable the early exiting mechanism and only
use the layer skipping mechanism during the inference phase.
The empirical results are shown in Table 3, which proves that
the skipping mechanism is able to reduce the computational
cost compared with BERT. Moreover, combined Table 1 and
Table 3, FLOPs and Accuracy are hardly changed on the RTE
and WNLI datasets, which further proves that the early exit-
ing mechanism is invalid in difficult datasets and layer skip-
ping mechanism plays an important role in our method on
such situations.

4.6 Effectiveness of Cross-Layer Contrastive
Learning

We have introduced the cross-layer contrastive learning,
which takes the same tokens across consecutive layers as pos-
itive pairs and the different tokens across consecutive lay-
ers as negative pairs. To further evaluate the effectiveness
of contrastive learning, we compare the two cases of using
contrastive learning and not using contrastive learning. Em-

Operation FLOPs

Each Transformer Layer 1811.8M

Each Classifier 37.6M

Each Skipping Gate 37.4M

Table 2: This experiment evaluates each operation in the
SmartBERT, using FLOPs as the indicator.

Dataset/
Model SST-2 RTE WNLI

Acc FLOPs
(cost) Acc FLOPs

(cost) Acc FLOPs
(cost)

BERT 93.2 21744
(100%) 61.0 21744

(100%) 56.3 21744
(100%)

Skip 93.1 14500
(66%) 60.6 12190

(56%) 56.3 6360
(29%)

Table 3: Skip represents our methods only use the skipping mech-
anism and disable the early exiting mechanism. This experiment is
conducted on the SST-2, RTE and WNLI datasets.

pirical results are shown in Figure 5, which shows cross-layer
contrastive learning is effective for further reducing the com-
putation.

4.7 Effectiveness of Our Special Training Way
In the previous section, we introduce the soft weight mech-
anism and hard weight mechanism. Meanwhile, we propose
a special training way from soft weight mechanism to hard
weight mechanism. In the experiment, we compare three dif-
ferent training strategies: (1) soft weight mechanism: using
the continuous probability value of skipping gates for train-
ing but using the discrete value of skipping gates for infer-
ence, (2) hard weight mechanism: using the discrete value of
skipping gates for training and inference and (3) the special
training way: firstly using continuous probability value for
training, and then using the discrete value for training.

We compare these methods on the SST-2 and QNLI
datasets, and the results are shown in Figure 6. The results
prove that the special training way is effective for balancing
the inconsistent usage of skipping gates between training and
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Figure 4: Comparison between baselines and SmartBERT on SST-2, QNLI, QQP, MNLI, CoLA, MRPC, showing the influence of computa-
tional cost on performance(Accuracy/F1 score/MCC).

Figure 5: contrast represents using the cross-layer contrastive learn-
ing, w/o contrast represents not using the cross-layer contrastive
learning.

inference phases.

5 Conclusion
In this paper, we propose a novel dynamic early exiting com-
bined with layer skipping for BERT inference. To address
the inconsistent usage of skipping gates in the inference and
training phase, we propose hard weight mechanism and a spe-
cial training way. In addition, we propose cross-layer con-
trastive learning and combine it into our training phases to
boost the intermediate layers and classifiers which can fur-
ther reduce computation cost. We evaluated our model on
eight classification datasets of the GLUE benchmark. Empir-
ical results show that SmartBERT could achieve performance
comparable to BERT while significantly reducing computa-
tional cost. Compared to other dynamic early exiting models,
SmartBERT obtain better accuracy with lower computation.
Moreover, we conduct a series of ablation studies to demon-

Figure 6: Hard represents the hard weight mechanism, Soft repre-
sents the soft weight mechanism, and SP uses the special training
way from soft mechanism to hard mechanism.

strate that each component is beneficial. In the future, we will
adopt our methods to other pre-trained language models. We
also will further study the combination of other acceleration
methods and layer skipping mechanism.
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