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Abstract
Text-based games provide a framework for devel-
oping natural language understanding and com-
monsense knowledge about the world in reinforce-
ment learning based agents. Existing text-based
environments often rely on fictional situations and
characters to create a gaming framework and are
far from real-world scenarios. In this paper, we in-
troduce ScriptWorld: a text-based environment
for teaching agents about real-world daily chores
and hence imparting commonsense knowledge. To
the best of our knowledge, it is the first interac-
tive text-based gaming framework that consists of
daily real-world human activities designed using
scripts dataset. We provide gaming environments
for 10 daily activities and perform a detailed anal-
ysis of the proposed environment. We develop RL-
based baseline models/agents to play the games in
ScriptWorld. To understand the role of lan-
guage models in such environments, we leverage
features obtained from pre-trained language mod-
els in the RL agents. Our experiments show that
prior knowledge obtained from a pre-trained lan-
guage model helps to solve real-world text-based
gaming environments.

1 Introduction
Text-based games in reinforcement learning have attracted
research interests in recent years [Hausknecht et al., 2020;
Küttler et al., 2020]. These games have been developed to
impart Natural Language Understanding (NLU) and com-
monsense reasoning capabilities in Reinforcement Learning
(RL) based agents. A typical text-based game consists of
a textual description of states of an environment where the
agent/player observes and understands the game state and
context using text and interacts with the environment us-
ing textual commands (actions). For successfully solving
a text-based game, in addition to language understanding,
an agent needs complex decision-making abilities, memory,
planning, questioning, and commonsense knowledge [Côté et
al., 2018]. Existing text-based gaming frameworks (e.g., Jeri-
cho [Hausknecht et al., 2020]) provide a rich fictional setup
(e.g., treasure hunt in a fantasy world) and require an agent

Figure 1: Different descriptions for the Washing Dishes script
scenario.

to take complex decisions involving language and fantasy
world knowledge. However, the existing text-based frame-
works are created using a fixed prototype and are often dis-
tant from real-world scenarios involving daily human activ-
ities. Though these frameworks aim to provide a rich train-
ing bench for enhancing NLU in RL algorithms, the fictional
concepts in these games are not well grounded in real-world
scenarios, making the learned knowledge non-applicable to
the real world. In contrast, for trained RL algorithms to be
of practical utility, they should be trained in real-world sce-
narios that involve daily human activities. Humans carry out
daily activities (e.g., making coffee, going for a bath) without
much effort by making use of implicit Script Knowledge.
Formally, Scripts are defined as sequences of actions de-
scribing stereotypical human activities, for example, cook-
ing pasta, making coffee, etc. [Schank and Abelson, 1975].
Scripts entail knowledge about the world. For example, when
someone talks about “Washing Dishes”, there lies an implicit
knowledge of fine-grained steps which would be present in
the activity. By just saying, “I washed dishes on Thursday,”
a person conveys the implicit knowledge about the entire
process (Fig. 1). The detailed implicit understanding of a
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task not only helps to learn about an activity but also facil-
itates taking suitable actions depending on the environment
and past choices. Moreover, for learning a new task, humans
can quickly and effortlessly discover new skills for perform-
ing the task either by their knowledge about the world or by
reading (a manual) about it. With the aim to promote simi-
lar learning behavior in RL agents, in this paper, we propose
ScriptWorld, a new text-based game environment based
on real-world scenarios involving script knowledge.
The motivation for creating ScriptWorld environment is
threefold. Firstly, ScriptWorld environment is based on
the concept of scripts that encapsulates commonsense and
procedural knowledge about the world. The environment
is designed to enable agents to learn this knowledge while
participating in the game. Scripts have non-linear struc-
ture [Wanzare et al., 2016]. A script scenario can be de-
scribed in multiple ways with linguistic variation across dif-
ferent descriptions. Fig. 1 shows different descriptions for
the washing dishes scenario. Moreover, at the level of ex-
ecution, the order of events/actions within the script can
vary across different descriptions of a scenario. For exam-
ple, some events may be skipped, and the order of events
might vary. Hence, learning script knowledge is challeng-
ing. Taking into account the variability in descriptions of a
scenario, an agent needs to learn the prototypical order of
events and needs to abstract out the meaning of different ver-
bal descriptions of an action. Secondly, ScriptWorld be-
ing a text-based environment about everyday scenarios, pro-
vides an opportunity for grounded language learning and un-
derstanding. Language phenomena do not happen in isola-
tion, but the semantics are grounded in the real world [Hill
et al., 2017]; ScriptWorld provides the environment to
establish and learn that grounding. Lastly, there have been
extensive studies that have explored the cognitive basis of
script knowledge in humans [Miikkulainen and Elman, 1993;
Modi, 2017]. ScriptWorld involves the acquisition of
script knowledge. Consequently, it provides an opportunity
to compare the behavior of a trained RL agent with humans
providing further insights into the cognitive aspects.
In a nutshell, we make the following contributions:

• We introduce a new interactive text-based gaming en-
vironment, ScriptWorldconsisting of games based
on script descriptions provided by human annotators
for performing realistic daily chores. We perform a
detailed analysis of the proposed environment and re-
lease the environment and agents: https://github.com/
Exploration-Lab/ScriptWorld.

• We propose and experiment with a battery of Rein-
forcement Learning (RL) agents based on pre-trained
Language Models (LM) as baselines for solving the
ScriptWorld environment. The experiments show
that pre-trained LMs, when combined with RL agents,
give reasonable performance, pointing towards scope for
improvement and inclusion of prior knowledge.

2 Related Work
Text Based Games. Text-based games are divided into
three main categories based on how an agent/player might

issue (take) commands (actions): Parser-based, Choice Base,
and Hyper Text Based [He et al., 2016]. The player issues
a command in Parser-based games by typing in the input,
and an inbuilt parser parses it. In Hypertext-based games,
the player issues a command by selecting one of the Hy-
perlinks present in the prompt. In choice-based games, the
player chooses the command from a list of options in ad-
dition to the state description. Parser-based games are lim-
ited since these can only parse sentences that adhere to pre-
defined grammar and vocabulary. Giving flexibility for free-
form text suffers from the exponentially increasing action
space. ScriptWorld uses choice-based approach (also see
§6). Moreover, in general, choice-based games are more
popular among humans than parser-based games [He et al.,
2016]. Côté et al., 2018 have introduced TextWorld sand-
box environment, a Python-based framework in which the
user can build parser-based game worlds of varying difficulty
along with in-game objects and goal states while monitoring
states and assigning rewards. Language diversity and com-
plexity of action space are limited in TextWorld. In con-
trast, ScriptWorld (created using human written texts)
overcomes these issues by generating ample alternative path-
ways to complete a task. The complexity and variability in
ScriptWorld help to develop better language understand-
ing capabilities in agents. Other Text-based game frame-
works have been proposed, such as TWC (TextWorld Com-
monsense) [Murugesan et al., 2020], and Question Answer-
ing with Interactive Text (QAit) [Yuan et al., 2019] build on
TextWorld. Similarly, Hausknecht et al., 2020 have intro-
duced a new framework called Jericho, which facilitates us-
ing man-made Interactive Fiction Games as learning environ-
ments for agents to train and learn.

Scripts. Scripts have been an active area of research for
the last four decades. As evident from the definition (§1),
scripts encapsulate commonsense and procedural knowledge
about the world and hence are an ideal source for training
agents to learn about the world. Several computational mod-
els have developed for modeling script knowledge, inter alia,
[Regneri et al., 2010; Frermann et al., 2014; Modi, 2016;
Modi and Titov, 2014; Rudinger et al., 2015; Jans et al., 2012;
Pichotta and Mooney, 2016; Modi et al., 2017]. A number
of corpora have also been created, e.g., InScript [Modi et
al., 2016], DeScript [Wanzare et al., 2016], McScript [Oster-
mann et al., 2018a; Ostermann et al., 2018b], and ProScript
[Sakaguchi et al., 2021]. Researchers have also examined
script knowledge from the perspective of language modeling
[Sancheti and Rudinger, 2022].

RL Agents. Narasimhan et al., 2015 have introduced an
RL-based architecture called LSTM-DQN that learns the ac-
tion policies and state representations of parser-based games.
A number of other agents have been proposed for text-
based environments, e.g., He et al., 2016 have introduced
DRRN (Deep Reinforcement Relevance Network) architec-
ture, KG-DQN architecture [Ammanabrolu and Riedl, 2019;
Ammanabrolu and Hausknecht, 2020; Adhikari et al., 2020;
Chaudhury et al., 2020; Adolphs and Hofmann, 2020; Yin
and May, 2019; Yao et al., 2020]. Singh et al., 2022 intro-
duce a pretrained language model finetuned on the dynamics
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Scenario Nodes Deg. Paths

Taking a Bath 525 3.7 3.1e + 27
Baking a Cake 542 3.6 4.0e + 26

Flying in an Airplane 528 3.6 2.6e + 30
Going Grocery Shopping 544 3.7 2.3e + 26

Going on a Train 427 3.7 3.1e + 21
Planting a Tree 373 3.7 1.6e + 16
Riding on a Bus 376 3.8 1.0e + 17

Repairing Flat Bicycle Tire 402 3.4 8.4e + 18
Borrowing Book from Library 397 3.7 3.1e + 19

Getting a Haircut 528 3.7 4.0e + 28

Table 1: The table compares graphs of different scenarios present in
ScriptWorld. Deg. represents the average degree for the nodes
in the scenario graph.

of the game to equip the agent with language learning capa-
bilities as well as acquire real-world knowledge. Our baseline
agents come close to Singh et al., 2022.

3 ScriptWorld Environment
ScriptWorld tries to bridge the gap between real-world
scenarios (via Scripts) and text-based games for RL by creat-
ing a suitable environment. We take into consideration three
design choices for developing the environment: 1) Complex-
ity: The game environment should be complex enough to
test an RL algorithm’s capacity to capture, understand and
remember reasonable steps required for performing a daily
chore. 2) Flexibility: For an environment to help develop
and debug RL algorithms, it becomes imperative to consider
flexibility as a feature. The environment should be flexible
regarding difficulty levels and handicaps (hints) to provide
a good test bench for reinforcement learning algorithms. 3)
Relation to Real-World scenarios: The environment should
consist of activities/tasks grounded in the real world and well
understood among humans.

DeScript. Given the nature of Script knowledge, we use a
scripts corpus referred to as DeScript [Wanzare et al., 2016]
for creating ScriptWorld environment. DeScript is a cor-
pus having a telegram-style sequential description of a sce-
nario in English (e.g., baking a cake, taking a bath, etc.) De-
Script is created via crowd-sourcing. For a given scenario,
crowd-workers write a point-wise and sequential short de-
scription of various events involved in executing the scenario
(this one complete description is called an ESD (Event Se-
quence Description)). Fig 1 shows an example of 5 ESDs
for the Washing Dishes scenario. DeScript collects data
for 40 daily activities (scenarios), and 100 ESDs (written by
different crowd-sourced workers) are collected for each sce-
nario. Additionally, for a given scenario, semantically similar
events from different ESDs are manually aligned by human
annotators (more details about data collection and annotations
are present in Wanzare et al., 2016). The alignment annota-
tion is done for 10 scenarios (Table 1 gives the list of sce-
narios). In the present version of ScriptWorld, we only
include these 10 scenarios with gold alignment. Another line
of work can be to consider sequence alignment algorithms
[Chatzou et al., 2016] to align sequences for the remaining
30 scenarios. However, as observed in initial experiments,
the error rate of alignment algorithms gets propagated to the
graph formation leading to a less reliable environment. We

leave the automatic alignment of the remaining 30 scenarios
for future work. The gold alignments in the DeScsript corpus
contain cluster annotations of similar events across multiple
ESDs into a single abstract, generalized event. For example,
Fig. 2 depicts the scenario, Get Medicine, where similar
events from ESDs written by different people are clustered to
form generalized event categories. Further, the combined set
of events and the relation between the ESDs is leveraged to
construct a graph (as explained later) where each node rep-
resents an abstract event. To the best of our knowledge, the
proposed method is the first novel approach to create an envi-
ronment (based on script knowledge) that could be useful for
training RL agents.
The ScriptWorld environment is created from scratch us-
ing Python. A typical game begins by providing a quest (goal)
to the agent. The quest/goal is a one-line description of the
scenario (e.g., plant a tree). The agent is also provided with
initial observations (in English). Since it is a choice-based
game, at each step in the game, the agent is also presented
with a list of actions/choices (in English) that it could opt
to advance towards the goal. Based on the action selected
by the agent, it is awarded a zero/positive/negative reward
at each step. Every correct action takes the agent closer to
task completion, whereas every wrong action results in a de-
viated path. (also see App. A, the appendix is available at
https://github.com/Exploration-Lab/ScriptWorld).

Graph Formation. DeScript provides set of aligned
ESDs (ESi

1 , ESi
2 , . . . , ESi

N ) for a scenario Si. Each ESD
E ik consists of sequence of short event descriptions:

e
(Ei

k)
1 , e

(Ei
k)

2 , . . . e
(Ei

k)
n . Gold alignment in DeScript results in

events in different ESDs that are semantically similar, get-
ting linked to each other, i.e., clustered together. For exam-
ple, for the Washing Dishes scenario, events “put dishes

in sink” (e(E
Wash
1 )

1 ) in EWash
1 and “take dirty dishes to sink”

(e(E
Wash
2 )

1 ) in EWash
2 are linked (clustered) together. Aligned

events (from different ESDs) are used to create a graph having
nodes as the event clusters (of aligned events) and directed
edges representing the prototypical order of the events. In
particular, a directed edge is drawn from node p to q if there
is at least one event in node p that directly precedes an event
in node q. We refer to the created event node graph as the
compact graph (Fig. 3), compact graphs for other scenarios
are in App. A. The alignment annotations in the DeScript also
group multiple sets of actions that belong to the same event.
For example, an event “go to the terrace” can be performed
in two sets of sequenced steps by different annotators. 1) call
the elevator→ step in elevator→ step out at the top floor, and
2) find stairs→ climb stairs→ reach top floor. We leverage
the presence of such instances in the graph node to enrich the
complexity of our environment. We split each event node in
the compact graph into two nodes, the entry event node and
the exit event node. Further, multiple action sequences re-
sult in parallel paths for reaching the exit node from the entry
node (see also App. A). For instance, the above example will
result in two parallel paths, where a player or an agent has
to decide at the entry node to either take the elevator or the
stairs. If players choose to take the stairs, they are expected to
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Figure 2: The figure shows a simplified version of the scenario, Get Medicine, and the process of creating an environment graph (right
diag.) from the ESDs (left diag.) and aligned events (middle diag.) for the scenario. The green directed edges in the environment graph
represent the correct paths, and the red edges denote the environment transition when a wrong option is selected.

follow the next set of actions to reach the terrace. Moreover,
all the sub-steps in this event now result in multiple graph
nodes. We refer to this graph as the scenario graph (see App.
A). This helps to capture the variability in performing daily
chores, making the environment more realistic. Though the
DeScript corpus provides clustered events for every scenario,
after graph creation, we found that a few of the ESDs present
in the corpus were inconsistent, not fitting the commonsense
reasoning for a procedure. We also observed that some of
the ESDs written by annotators are too small and describe the
task in generic terms. Such ESDs, when considered in graph
formation, result in direct paths to the final goal node, making
the game less complex. We remove all such inconsistencies
from the graph by manual inspection, making it more reliable
for capturing script knowledge and keeping the realism intact
for the environment. The compact graph serves as an initial
starting point for creating the scenario graph. The agents are
trained on a scenario graph.
To quantitatively capture the complexity of scenarios in
ScriptWorld, we calculate the total number of paths
reaching the end node from the start node. We first com-
pute the total number of paths in the compact graph using
a depth-first traversal. Further, we extend the computation
by adding the number of parallel paths present for each en-
try and exit event node in the scenario graph. TotalPaths =
T∑

pk=0

N∏
i=1

ni
(pk), where T is the total number of paths in a

compact graph, N represents the total number of nodes in
a path pk and ni(pk) denotes the number of splits for the ith
node. Table 1 shows the total number of paths. As evident
from the table, the number of paths in each of the scenar-
ios is enormous and demonstrates the highly complex nature
of the environment. Overall, the scenario Flying in an
Airplane turns out to be the most complex one in terms of
the number of correct possible paths. This is possibly due to
more variability in carrying out this activity.

Environment Creation. We create the game environment
using scenario graphs. For each state in the environment, the

agent is required to pick the correct action (choice) from the
available options. Since the created scenario graph contains a
wide variety of suitable actions grouped in a node, we sample
the right choice from the available actions in a node. Note
that sampling of correct actions happens randomly at every
visit, making the environment highly dynamic. To create in-
correct choices, we exploit the temporal nature of the sce-
nario graphs. As a scenario graph contains the sequence of
actions to perform a specific sub-task, all actions in nodes
(both past as well as future nodes are considered) that are far
from the current node become invalid for the current state.
For selecting this node distance, we manually experiment
with different node distances and find the different distances
(d1, d2, . . . d10) suitable for sampling the invalid actions, i.e.,
for a scenario i, we consider all nodes at a distance greater
than di hops from the current node (Table in App. A shows
various distances chosen for each of the scenarios). This strat-
egy of sampling the invalid choices makes the environment
more complex as all the options are related to the same sce-
nario, and an understanding of event order in a task is required
to achieve the goal.

Rewards (Performance Scores): For all the scenarios, ev-
ery incorrect action choice results in a negative reward of -1,
and every correct choice returns a 0 reward. For task comple-
tion, the agent gets a reward of 10, i.e., a player gets a max-
imum reward of 10 at the end of each game if they choose a
correct sequence of actions. The choice of zero rewards for
correct action helps RL algorithms explore multiple correct
ways of performing a task, capturing the generalized proce-
dural knowledge required for a specific task. The game ter-
minates when an agent chooses 5 successive wrong actions.

Flexibility: To introduce flexibility in ScriptWorld, we
consider two settings in a game. 1) Number of choices: At
each step, the number of choices presented to an agent can be
changed (1 correct choice and the rest all incorrect). As the
number of options increases, it becomes more challenging for
an agent to choose the right action. 2) Number of backward
hops for wrong actions: We choose the number of backward
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Algorithm DQN A2C PPO RPPO

handicap w/o handicap handicap w/o handicap handicap w/o handicap handicap w/o handicap

Shopping 9.60 ( ± 0.62) -7.28 (± 13.15) 9.90 (± 0.30) -9.81 (± 14.71) 9.84 (± 0.39) -4.78 (± 10.79) 9.71 (± 0.57) 8.79 (± 4.15)
Bus 8.98 (± 0.79) -1.47 (± 11.16) 9.89 (± 0.34) -7.37 (± 17.09) 9.93 (± 0.25) 1.50 (± 7.50) 9.97 (± 0.17) 9.32 (± 1.24)
Train 9.21 (± 2.07) -3.10 (± 11.16) 9.89 (± 0.31) -8.13 (± 14.99) 9.75 (± 0.49) -1.13 (± 9.47) 9.56 (± 0.80) 8.19 (± 4.70)

Library 9.51 (± 0.68) -1.94 (± 9.87) 9.88 (± 0.32) -3.03 (± 9.84) 9.90 (± 0.30) 1.12 (± 7.31) 9.89 (± 0.31) 8.41 (± 4.77)
Haircut 9.88 (± 0.35) -9.30 (± 12.93) 9.89 (± 0.34) -5.87 (± 12.28) 9.85 (± 0.38) -4.30 (± 10.84) 9.63 (± 0.64) 6.32 (± 5.29)
Cake 9.32 (± 0.84) -4.13 (± 9.22) 9.48 (± 0.92) -7.58 (± 13.18) 9.87 (± 0.34) -4.46 (± 12.32) 9.78 (± 0.48) 7.18 (± 4.97)

Bicycle 9.50 (± 0.75) 0.07 (± 7.89) 9.95 (± 0.22) -3.49 (± 12.39) 9.90 (± 0.33) 1.17 (± 6.93) 9.74 (± 0.57) 7.85 (± 5.12)
Tree 9.94 (± 0.24) -0.15 (± 7.83) 9.86 (± 0.44) -3.54 (± 12.56) 9.98 (± 0.14) 1.43 (± 7.29) 9.96 (± 0.19) 8.88 (± 3.23)

Airplane 9.68 (± 0.75) -4.21 (± 12.39) 9.86 (± 0.35) -8.66 (± 12.66) 9.86 (± 0.40) -4.74 (± 11.08) 9.54 (± 0.73) 6.85 (± 6.12)
Bath 9.68 (± 0.61) -6.49 (± 13.23) 9.75 (± 0.57) -10.02 (± 15.95) 9.84 (± 0.37) -5.35 (± 11.19) 9.45 (± 0.82) 6.35 (± 5.59)

Table 2: The table shows performance scores (averaged over multiple runs) of various agents for all the scenarios (number of choices = 2).
The number in brackets shows the standard deviation of the score. Paraphrase Albert Small V2 is used as the LM
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Figure 3: The figure shows the “compact graph” created for the
scenario Going on a Train.

hops as another game setting that decides how many hops to
displace whenever a wrong action is selected. When an agent
selects an incorrect choice, its location is displaced by hop-
ping it backward in the temporal domain, and this back-hop
distance is another parameter in the environment. In our ex-
periments, agents played with the environment with a back-
hop distance of 1. Due to the presence of parallel paths in the
graph, an agent hops to a previous node in case of incorrect
action and may not follow the same path again, which acts
as a penalty. For the start node, since backward hop is not
possible, the agent remains at the same position; however,
both positive and negative choices are re-sampled, and con-
sequently, observations change. These parameters introduce
flexibility in our environment, giving the freedom to create a

suitable test bench for RL algorithms.
Handicaps (Hints): Text-based games are often challenging
for RL agents playing from scratch. To mitigate the com-
plexity issue, we introduce a version of the game with hints
(referred to as handicaps) for each state. The hint for a state
provides a short textual clue for the next action to take at the
current state. The presence of hints in the environment makes
the gameplay relatively easier. Hints are generated automat-
ically using GPT2 [Radford et al., 2019]. Scenario title con-
catenated with state node event description (separated by a
full-stop) is given as the prompt to GPT2 for generating a
large number of hints, and then a hint is sampled from them.
We manually examined the hints to ensure they did not repeat
(verbatim) any of the existing actions. To introduce variabil-
ity, one could also stochastically decide to show a hint, e.g.,
by sampling from a Bernoulli distribution at each state. How-
ever, in this paper, we consider only the setting where hints
are shown at every state. We leave this for future work.
Comparison with other text-based environments:
ScriptWorld environment is different from the existing
text-world-based environments (e.g., Text World, Jericho,
TWC, QAit). The primary novelty of ScriptWorld comes
from the inclusion of realistic scenarios made by leveraging
ESDs written by human annotators, and this requires proce-
dural knowledge to solve the game. The complexity (Table
1) of the ScriptWorld is much more than the existing
environments, requiring the agent to remember past events
and actions. We provide more details about ScriptWorld
and compare it with other environments in App. A.

4 RL Baselines
In the ScriptWorld environment, for every state, the en-
vironment returns a sample of a possible set of choices.
Since these choices provide feedback related to the current
state, the agent must keep track of all the observations re-
ceived after a particular choice. This property typically re-
sembles the Partially Observable Markov decision processes
(POMDP) [Kaelbling et al., 1998], where the agent can never
observe the complete state of the environment. Formally,
ScriptWorld is defined by (S,A,Ω, R, γ), where S is the
set of environment states (nodes in the scenario graph), andA
is the set of all actions (choices), Ω is the set of observations,
i.e., description of various actions, R is the reward obtained
and γ is the discount parameter. The goal of an agent is to
learn a policy π(a | s), i.e., a mapping from a set of obser-
vations to actions leading to an optimal choice in a particular
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Figure 4: The figure shows the performance comparison of multi-
ple RL algorithms on scenario Repairing a Flat Bicycle
Tire on setting (without handicap, choices=2). Paraphrase Albert
Small V2 is used as the LM. The plot shows moving average of per-
formance curves across various episodes

state. In some algorithms (e.g., DQN: Deep Q-Network), in-
stead of learning the policy, the agent learns q-values, which
can reveal the policy. Formally, q-value (q-function)Qπ(s, a)
is the expected cumulative return if an agent starts from state
s and takes action a and thereafter follows a policy π. Re-
cent developments in RL have proposed an approximation of
π(a | s)/q-value via a parameterized model that takes state
(features) and actions (features) as input and produces the
π(a | s)/q-value as the output [Sutton and Barto, 2018]. We
follow the same approach.
Recently, Language Models (LM) have shown promising re-
sults in almost all tasks in NLP (e.g., [Sancheti and Rudinger,
2022]). For the RL baselines for the ScriptWorld en-
vironment, we consider using pre-trained SBERT language
models [Reimers and Gurevych, 2019] as a source of prior
real-world knowledge, which could be used directly by an RL
algorithm to solve the environment. We consider a general-
ized scheme where a pre-trained language model extracts in-
formation from observations, i.e., the features extracted (hi =
LM(ci)) from the available set of choices c ∈ {c1, . . . , cn}) is
used by the RL algorithms as input features. The pre-trained
language model generates embeddings (hi) corresponding to
each of the provided n options. The obtained embeddings are
concatenated (O) and passed as input to the RL algorithm,
i.e., c ∈ {c1, . . . , cn}; hi = LM(ci)

O = h1 ⊕ h2 ⊕ . . .⊕ hn
Subsequently, the RL framework generates π(a | s)/Q values
for the available set of actions. With the help of this gener-
alized architecture, we run a detailed set of experiments with
combinations of multiple language models and different RL
algorithms. In particular, we use DQN [Mnih et al., 2013],
A2C [Mnih et al., 2016], PPO [Schulman et al., 2017], and
RPPO: Recurrent PPO (PPO + LSTM). More details about
RL agents, training, and other settings are provided in App.
B. Some of the other existing works for language-based RL
algorithms use knowledge-based agents. As these KBs do not
directly adapt to our setting, we could not experiment with
these approaches. In the future, we would explore how to
make use of external knowledge to incorporate into the agent.

5 Experiments, Results and Analysis
RL Agents Performances: To benchmark the performance
of existing RL algorithms on ScriptWorld we perform
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Figure 5: The figure shows the performance of the RPPO algorithm
with various language models on scenario Repairing a Flat
Bicycle Tire on setting (with handicap, choices=2). (highlight-
ing the importance of LMs (contextual embeddings) over GloVe
(non-contextual)).

an extensive set of experiments considering various combi-
nations of language model embeddings and popular RL al-
gorithms. Due to space limitations, we report the primary
findings here, and the remaining are discussed in the App.
D. Table 2 shows the performance of various RL algorithms
in all the scenarios. The performance score is the score (to-
tal reward) achieved by an agent till the point of termination.
As ScriptWorld was designed, keeping flexibility the pri-
mary feature, in Table 2, we report the performance of RL al-
gorithms using multiple flexibility settings, i.e., with/without
handicap and action choices = 2. The performance of algo-
rithms with a handicapped version of the environment seems
to be easier when compared to a non-handicapped version,
depicting the choice of keeping the handicap feature to be
useful. For settings without any handicap provided, we found
the RPPO algorithm to beat other RL algorithms by a signif-
icant margin. Fig. 4 shows the performance of algorithms
over multiple episodes, depicting the convergence rate. We
observe that RPPO convergence is faster at a higher score,
and DQN seems unstable during initial episodes. We also
plot performance curves for all the scenarios in App. D. As
our RL framework combines language embeddings with RL
algorithms, we also highlight the effect of different language
model embeddings. We choose RPPO for reporting perfor-
mance with different language models, as in extensive ex-
perimentation, we found RPPO to perform better than other
RL algorithms on multiple environment settings. Fig. 5 re-
ports the RPPO performance with different embeddings. We
consider various types of SBERT-based embeddings (https:
//www.sbert.net/docs/pretrained models.html). To judge the
effect of contextual embeddings, we also report the RPPO
performance with GloVe embeddings [Pennington et al.,
2014]. RPPO with GloVe embeddings (non-contextualized
word representations) performs poorly, depicting the impor-
tance of the context which is captured by contextualized LMs
(more results on LMs in App. D.)
Generalization across Scenarios: In ScriptWorld since
all the scenarios belong to real-life daily activities, an in-
teresting experiment is to test the generalization capability
of an algorithm trained on a specific scenario. We chose
two similar (in terms of commonsense knowledge required to
solve) scenarios, Going on a Train and Riding on
a Bus, for this experiment. Table 3 shows the evaluation
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Figure 6: The figure shows the performance of RPPO algorithm on
scenario Repairing a Flat Bicycle Tire (without hand-
icap) on multiple choice settings, 2, 3, 4, 5 respectively.
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Figure 7: The figure shows the performance of RPPO algorithm on
scenario Repairing a Flat Bicycle Tire (without hand-
icap) on choices, 3 and, 5 with respective node coverages across
learning. The increasing coverage slope (green) and the perfor-
mance dip (blue) coincide in both settings highlighting the role of
graph coverage in algorithm’s learning.

performance of RPPO on all scenarios trained on one sce-
nario. We observe that the RPPO algorithm generalizes more
across similar scenarios e.g., between Train and Bus (more
details in App. D). Results obtained in this experiment also
open up new research directions like test-time domain adap-
tation and continual learning.
Performance on different choice settings: To benchmark
the flexibility feature of choosing the number of actions in
the environment setting, we also report the results for RPPO
on various numbers of actions. Fig. 6 shows the training
curves for settings with choices = 2, 3, 4, 5, highlighting the
increasing difficulty level as the number of choices in the en-
vironment increases. We observe an interesting trend, the oc-
currence of a performance dip in all the scenarios for differ-
ent episode numbers. Notice the performance dip in Fig. 6
for all the runs with varying numbers of choices. As can be
observed, the episode for performance dip increases with the
increasing number of choices in the environment. We study
this behavior of RL algorithms in detail by analyzing the tra-
jectory followed by the RL algorithms. Fig. 7 shows the per-
centage coverage of scenario graph nodes along with rewards.
The point for a maximum dip (after which the algorithm starts
improving the score) directly coincides with the increasing
percentage of node coverage; we speculate that the algorithm
begins developing a mapping for each node after the entire
graph exploration and works on improving the node repre-

Training
Scenario

Performance on other Scenarios

Airplane Bath Bicycle Bus Cake grocery Haircut Library Train Tree

Bus -24.78 -15.07 -5.02 9.97 -23.39 -26.51 -20.85 -16.29 2.14 -21.78
Train -11.31 -13.22 -9.52 5.44 -4.42 0.22 -10.97 -6.79 9.56 -0.59

Table 3: The table shows performance on RPPO algorithm trained
one scenario and evaluated on all scenarios. RPPO trained on Bus
performs better on Train and vice versa (highlighted in red), de-
picting the generalization across scenarios.

sentation in the later episodes. Though the graph coverage
percentage is higher, it still remains a difficult task to opti-
mize for correct choice as the number of paths in the graph
is huge, and the choices generated for each node are random,
making each scenario node different at different time steps.

6 Discussion and Future Directions

ScriptWorld provides a suitable benchmark to test dif-
ferent settings as it provides flexibility to adjust the game’s
complexity. The environment has certain limitations. For ex-
ample, currently, the environment provides actions available
at any state in the form of choices and does not allow the
agent to generate actions in free-form text. This limitation is
also there in the current parser based text-games that restrict
the vocabulary size and sentence constructions that an agent
can use for interaction. Parsing and understanding free-form
text is a non-trivial task for the current state-of-the-art NLP
technologies. In the future, we plan to develop a parser-based
version (allowing free-form text) of the game, making use of
LLMs. ScriptWorld ’s current version only has 10 sce-
narios. This is mainly due to limitations from the DeScript
corpus. In future work, we will try to address this by in-
cluding more daily scenarios. Experiments show that agents
struggle in no handicap setting since they do not have any
prior knowledge about the real world. It would be interesting
to incorporate external knowledge into agents in the future
and explore the possibility of including human feedback for
learning a new scenario. Alternatively, another idea to ex-
plore would be to allow agents to gather information about
a task from the internet via search or by probing large lan-
guage models. Including multiple diverse scenarios in the
proposed environment can facilitate the validation of general-
ization and language understanding capabilities in fields like
continual learning, where a single algorithm learns various
tasks without catastrophic forgetting [Nguyen et al., 2019].

7 Conclusion

In this paper, we present a novel approach to building a text-
based game environment (ScriptWorld) involving differ-
ent daily scenarios. This is a step towards training RL agents
to develop NLU capabilities and commonsense knowledge
about the real world. We perform an extensive set of experi-
ments. Our experiments and analysis not only explore the en-
vironment in RL setting but also open up new ways in which
the environment is helpful for the research community.
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