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Abstract
Pruning has been extensively studied in
Transformer-based language models to improve
efficiency. Typically, we zero (prune) unimportant
model weights and train a derived compact model
to improve final accuracy. For pruned weights,
we treat them as useless and discard them. This
usually leads to significant model accuracy degra-
dation. In this paper, we focus on attention head
pruning as head attention is a key component
of the transformer-based language models and
provides interpretable knowledge meaning. We
reveal the relationship between pruned attention
heads and retained heads and provide a solution
to recycle the discarded knowledge from the
pruned heads, named peer distillation. We also
develop an automatic framework to locate the
to-be-pruned attention heads in each layer, freeing
the time-consuming human labor in tuning hyper-
parameters. Experimental results on the General
Language Understanding Evaluation (GLUE)
benchmark are provided using BERT model. By
recycling discarded knowledge from pruned heads,
the proposed method maintains model performance
across all nine tasks while reducing heads by over
58% on average and outperforms state-of-the-art
techniques (e.g., Random, HISP, L0 Norm, SMP).

1 Introduction
Transformer-based language models [Devlin et al., 2018;
Yang et al., 2019] have been proven to be highly effective in
learning universal language representations and applicable to
downstream tasks with slight fine-tuning, as opposed to other
machine learning methods [Hochreiter and Schmidhuber,
1997; He et al., 2016; Zhou et al., 2020]. These models tend
to suffer from high computational cost and memory usage
due to their large model size. To downsize the transformer
models, head pruning, a sub-category of weight pruning tech-
nique has been widely investigated [Michel et al., 2019;
Kovaleva et al., 2019; Voita et al., 2019; Lee et al., 2020].
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Figure 1: Automatic head pruning based on Peer Distillation (Prun-
ing is designed for heads selection and peer distillation for model
performance preservation)

Head pruning usually requires iterative but independent
sparsification and retraining operations, which usually re-
sults in a significant drop in model accuracy. Specifically,
during sparsification, head masks are updated to select redun-
dant heads for pruning. During retraining, the retained atten-
tion heads are updated to recover the previous model accu-
racy [Michel et al., 2019; Voita et al., 2019]. We observe that
such a workflow usually leads to a significant drop in model
accuracy. The reason behind the drop in model accuracy is
the “knowledge” loss from the pruned attention heads.

In this paper, we propose a counter-traditional pruning
strategy, peer distillation, and reveal that the knowledge
learned in advance but discarded from the pruned atten-
tion heads plays a crucial role in maintaining model accu-
racy. The pruned attention heads contain useful grammati-
cal and semantic information to maintain model performance
and provide valuable guidance for the training of the retained
heads. We also develop an automatic framework to locate the
to-be-pruned attention heads in each layer, freeing the time-
consuming human labor in tuning hyperparameters. Figure 1
illustrates the “peer distillation” process, where we recycle
the knowledge from pruned heads to retained heads. To our
best knowledge, peer distillation is the first attempt to recycle
pruned knowledge and mitigate accuracy degradation. Bene-
fiting from the recycled knowledge, the accuracy of the model
is better maintained at higher model sparsity. Furthermore,
peer distillation accelerates pruning convergence by pruning
more attention heads while maintaining model accuracy.

Our contributions are as follows:
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• We provide an automatic head pruning approach that
achieves the best accuracy-sparsity tradeoff by reformulat-
ing the head pruning optimization. Specifically, we define
a straightforward gating function for head pruning and pro-
pose a softplus STE function to address the mixed integer
back propagation. Additionally, we provide head pruning
visualizations to show the variable choice of model sub-
structures during pruning.

• We propose the peer distillation strategy to recycle the dis-
carded knowledge from the pruned heads. Specifically, we
distill the pruned heads into the retained heads for each
transformer layer. Since the pruned head maintains im-
portant “knowledge” to preserve the model accuracy, this
strategy helps the retained head absorb this “knowledge”
and thus be more capable of maintaining model accuracy.

Experimental results on nine GLUE benchmark
tasks [Wang et al., 2018] show that we achieve high
compression rates with zero or minor accuracy degradation.
The pruned models outperform the original ones with
only 41.71% heads left on average. In extreme cases, our
proposed method can prune 99.3% (143 of the 144) heads
without accuracy degradation on WNLI dataset. On average,
we could prune 79.74% heads with only 0.82% accuracy
degradation. Compared with other differentiable head
pruning, e.g. [Xiao et al., 2019], peer distillation increases
the head sparsity by 22.17% with the same model accuracy
on MRPC dataset. The method provides an efficient tool to
analyze and reduce the redundancy of multi-heads and is
suitable for other attention-based models.

2 Related Works and Background
Related Works. The redundancy of the multi-head mecha-
nism has been discovered and investigated. [Michel et al.,
2019; Kovaleva et al., 2019] first discusses duplicated atten-
tion head patterns. [Raganato et al., 2020] presents that
models with fixed single attention head for each layer would
nicely preserve model accuracy. [An et al., 2020] analyzes
head redundancy from a Bayesian perspective and explains
the causes of such redundancy.

Different attention head pruning algorithms are developed.
[Michel et al., 2019] prunes attention head greedily based on
predefined head importance metric but the pruned heads can
never be recovered during training. [Kovaleva et al., 2019]
shows the attention head redundancy and manually disables
attention heads to improve model performance. [Voita et al.,
2019] employs Gumbel softmax to relax the head pruning
problem to be a differentiable subnetwork searching problem
but more experiments and discussion are expected to prove
its effectiveness. [Lee et al., 2020] applies deep Q-learning to
automatically prune attention heads but the search time can be
comparatively long. More recently, a self-supervised meta-
pruning framework (SMP) [Zhang et al., 2021] is designed
by combining head importance scoring and Gumbel softmax
pruning through representation distance minimization.
Challenges. Accuracy degradation is inevitable during and
after head pruning. While performing head pruning, since
the pruned heads will no longer participate in the training
process, the output of the model will change significantly,

resulting in an irreversible accuracy loss. During pruning,
the retained heads have to recover the model accuracy with-
out any auxiliary information, which is extremely difficult,
especially when the pruning granularity (single weight, row,
column, head, etc.) is large.
Multi-head Attention. Self-attention plays an important
role in Transformer-based language models. In Transformer
layers, multiple attention heads work in parallel. The self-
attention is calculated based on Query (Q), Key (K), and
Value (V ) matrices and the attention score matrix is calcu-
lated as follows:

A = Softmax(
Q ∗KT

√
Dk

) (1)

where A is the attention score matrix and Dk is the dimension
of matrix K.

The multi-head attention mechanism uses different matrics
of (Q, K, V ) to learn different representation subspaces. Af-
ter concatenating the derived attention heads, a feed-forward
layer is utilized to project the concatenation:

Hi = Ai ∗ Vi

= Softmax(
Qi ∗KT

i√
Dk

) ∗ Vi

= Softmax(
(X ∗WQ

i ) ∗ (X ∗WK
i )T√

Dk

) ∗ (X ∗WV
i )

(2)

MH = MultiHead(Q,K, V ) = Concati(Hi) ∗WO (3)

where X denotes the input of the i-th attention head, WQ
i ,

WK
i , and WV

i are attention matrices, WO is projection ma-
trix, and Hi denotes attention head.

Transformer-based model relies on multiple encoder lay-
ers. For each layer, the output is formulated as follows:

O = Norm(ResConnect(MH)) (4)

where O is the output of the transformer layer, Norm(·) is
the layer normalization function, ResConnect(·) denotes the
residual connection [Devlin et al., 2018].

3 Peer Distillation for Automatic Head
Pruning

We propose the peer distillation head pruning framework for
automatic head selection and model performance preserva-
tion as shown in Fig. 2. First, differentiable head pruning is
performed to select heads by automatically updating binary
gates. Then, the discarded “knowledge” related to the pruned
heads is recycled and peer distillation is performed to distill
the discarded “knowledge” into the derived compact model.
It is worth noting that the pruning and peer distillation opera-
tions are performed in the same training loop.
Differentiable Head Pruning. In this section, we propose a
differentiable method for head pruning. Unlike pruning meth-
ods with hard constraints [Han et al., 2015; Boyd et al., 2011;
Li et al., 2016; Li et al., 2020], our method obtains model
sparsity by updating the gate parameters. This leads to two
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Figure 2: Peer distillation head pruning framework

important benefits: first, we do not have to set expected spar-
sity for each layer and can obtain model sparsity automati-
cally; second, without hard constraints, the pruning process
prunes the model more “smoothly” and nicely remains model
accuracy. This makes the retraining process not a necessity
and leads to faster training convergence.

In order to achieve sparse attention heads, we define the
pruning loss consisting of model accuracy loss and model
sparsity loss. The head pruning problem can be formulated
by the following steps: first, we introduce the attention head
mask M , in which M is composed of lists of binary variables
representing the status of their corresponding heads and can
be defined as:

Mij =

{
0, if corresponding head is pruned;
1, otherwise.

(5)

where i and j denote the index of attention head and layer,
respectively, and Mij denotes the pruning status of the head.

Second, inspired by the early works on neural network
quantization and pruning [Hubara et al., 2016; Xiao et al.,
2019], we employ learnable discrete functions called straight
through estimators (STEs) g to describe the head mask M
and thus M can be formulated as:

Mij = g(W ′
ij) =

{
0, if W ′

ij ≤ 0

1, if W ′
ij > 0.

(6)

where W ′
ij is the auxiliary parameter to control the open and

close of the binary gates, the binary head mask Mij is rep-
resented as a step function g with a continuous auxiliary pa-
rameter W ′

ij .

Third, we formulate the head pruning problem as:

min
W ′
Lp = min

W ′
LA(W

′;W ) + µ ·
∑

g(W ′), (7)

where Lp is the pruning loss to update auxiliary parameters
W ′, LA is the model accuracy loss with model weight W ,
and µ is the penalty factor.

However, due to the binary nature of g(W ′) and the con-
tinuous weights W values, the problem described in Eq. 7 is
a mixed integer programming problem, which brings difficul-
ties in optimizing it directly using back-propagation.

To update the sparse head structure, we introduce coarse
gradients [Hubara et al., 2016] to make the binarized function
g differentiable. Coarse gradients provide a good approxi-
mation for updating parameter W ′ through back-propagation
and could ensure that the update direction of W ′

ij gradient re-
flects the accuracy and sparsity objectives of the model [Xiao
et al., 2019].

Different coarse gradients have been practiced and dis-
cussed in literature [Srinivas et al., 2017; Yin et al., 2019].
We use Softplus STE in [Xiao et al., 2019] and the auxiliary
parameter W ′ can be updated as:

W ′ ←−W ′ − lrg ∗
∂Lp

∂W ′
(8)

Lp

∂W ′ =
∂Lp

∂M
∗ ∂M

∂W ′ =
∂Lp

∂M
∗ Softplus(W ′) (9)

where lrg is the learning rate of the optimizer to update W ′.
Knowledge Recycling. To connect the separate sparsifica-
tion and training stages, and preserve the “knowledge” of
the pruned heads, we introduce knowledge recycling and
peer distillation. After differentiable pruning, we obtain
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the binary head mask M and thus a compact model with
fewer attention heads. Previous research [Hu et al., 2018;
Voita et al., 2019; Lee et al., 2020; Wang et al., 2020;
Huang et al., 2022] just discarded the pruned heads and
trained the remaining model parameters directly. However,
this will introduce significant accuracy loss. By introducing
knowledge recycling, we provide the opportunity to main-
tain and make full use of the existing knowledge in the entire
model to boost model performance.

We select head attention score matrix, A, and layer out-
put, O, as representations of head knowledge. A contains
the abstraction of the input and the relationship extraction be-
tween input tokens. As an interface with other model layers,
the layer output, O, integrates the effective information of all
heads and directly reflects the impact of head pruning.

To update the model weight W and model structure (repre-
sented by auxiliary parameters W ′), two back-propagations
are performed. For each iteration (one batch of input), the
knowledge recycling process is performed by four steps:

Step1: We do model forward to derive the complete knowl-
edge of the dense model according to Eq. 1, 4, and 5:

Ac = Softmax(
Q ∗KT

√
Dk

) ∗M (10)

Oc = Norm(ResConnect(MH))

= Norm(ResConnect(Concati(Ai ∗M ∗ Vi) ∗WO))
(11)

where M is the current head mask, Ac and Oc are the com-
plete head attention score matrix and layer output before up-
dating M , respectively. Initially, M is an all-ones matrix.

Step2: By leveraging differentiable head pruning in Eq. 8,
we update M and derive the structure of the pruned model
according to Eq. 6 and 5.

Step3: For the derived pruned model with updated M , we
do model forward to derive the retained knowledge (Ar, Or),
where Ar and Or are the retained attention score matrix and
layer output after updating M , respectively.

Step4: To preserve the model performance, we do peer dis-
tillation (described in the following subsection).
Peer Distillation. Traditional Knowledge Distillation
(KD) method distills “knowledge” from the original model
(teacher) to another model (student). For transformer-based
models, different heads in the same layer work in parallel to
provide abstract representations of input. The pruned heads
could provide additional learned model information, which is,
however, discarded during the training of the compact model.

The proposed Peer Distillation (PD) method distills the
“knowledge” from the pruned model structure to the retained
model structure in the same layer. Specifically, the retained
heads learn to fit the matrices of head attention score before
pruning (teacher) and the objective is defined as:

PDloss1 =

N∑
j=1

S∑
i=1

MSE(Ac
ji, A

r
ji) (12)

where N is the number of transformer layer of the model
(e.g. 12 for BERTBASE model), S is the number of atten-
tion heads of a transformer layer(e.g. 12 for BERTBASE

Algorithm 1 Peer distillation head pruning procedure

Input: pretrained tranformer-based model TM, head pruning op-
timizer OPH, weight optimizer OPW

Output: updated model weight W and head masks M
1: for every layer Lj in TM do
2: for every head Hi in Lj do
3: Create and initialize auxiliary parameters W′

ij

4: end for
5: end for
6: for every training iteration do
7: Do model forward to derive head attention socre Ac and layer

output Oc in Eq. 10 and 11
8: Calculate head pruning loss Lp = in Eq. 7
9: Update W′ through back propagation by minimizing Lp us-

ing OPH

10: Detach Ac and Oc from the computation graph to avoid gra-
dient calculation

11: Update head masks M in Eq. 6
12: Do model forward to derive head attention socre Ar and layer

output Or in Eq. 10 and 11 with updated head masks M
13: Calculate the mixed loss Lm in Eq. 14
14: Update W through back propagation by minimizing Lm us-

ing OPW

15: end for

model), MSE(·, ·) is the mean squared error loss function,
Ac

ji and Ar
ji are the i-th attention score matrices (formulated

in Eq. 10) in the j-th layer before and after differentiable
pruning, respectively.

We also distill the layer outputs from the unpruned to re-
tained heads to better maintain the original model knowledge.
The objective is defined as:

PDloss2 =

N∑
j=1

MSE(Oc
j , O

r
j ) (13)

where Oc
k and Or

k are the outputs (formulated in Eq. 11) of
the k-th layer before and after differentiable pruning, respec-
tively.

Finally, we formulate the parameter update problem of the
derived compact model as follows:

min
W
Lm = min

W
LA(W ;W ′) + λ · (PDloss1 + PDloss2) (14)

where Lm is the mixed loss to update model weights W and λ
is the penalty factor. PDloss1 and PDloss2 are peer distilla-
tion losses with arguments W (including WQ, WK , WV and
WO) according to Eq. 2 and 3. To notice, while calculating
Eq. 14, all model parameters, W , will be updated.

By minimizing the mixed loss, Lm, the retained model pa-
rameters are updated to preserve the model accuracy. The
previously discarded model information of the pruned heads
plays as a “teacher” and transfers its “knowledge” to the “stu-
dents” (i.e. retained heads).

Algorithm 1 illustrates the peer distillation head pruning
procedure. We conduct head pruning and peer distillation
in the same training loop and update the model weight and
structure in parallel. To notice, we detach the derived dis-
carded knowledge Ac and Oc (“teacher” in the peer distilla-
tion method) from DNN graph to ensure that only weights of
the compact model are updated.
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Pruning Method MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
None [Devlin et al., 2018] 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
Random [Zhang et al., 2021] 82.43 90.34 - 91.83 52.37 85.33 80.88 65.77 -
HISP [Michel et al., 2019] 81.69 86.88 - 91.85 54.84 85.96 81.12 65.34 -
L0 Norm [Voita et al., 2019] 79.70 85.82 - 91.74 52.10 85.80 77.45 62.45 -
SMP [Zhang et al., 2021] 83.36 90.96 - 92.31 57.26 85.99 85.04 67.87 -
Peer Distillation (Ours) 83.66 91.07 91.25 92.89 60.39 86.94 88.62 65.7 56.34

Table 1: Head pruning methods comparison of evaluation accuracy among the 9 GLUE benchmark tasks with 50% head sparsity.

Models MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Ave.
BERTBASE 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
Head sparsity 45.14% 56.94% 36.81% 72.92% 54.17% 63.19% 51.67% 44.44% 99.3% 58.29%
Peer Distillation (Ours) 83.87 91.3 91.38 92.89 60.39 86.94 89.52 67.87 56.34

Table 2: Head pruning results of evaluation accuracy using our peer distillation method among the 9 GLUE benchmark tasks. Bold font
indicates that the pruned model outperforms the original one.

Models MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Ave.
BERTBASE 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
Peer Distillation (Ours) 82.9 90.28 90.15 91.77 52.46 84.96 87.99 65.5 56.34
∆ Accuracy -1.00 -0.92 -0.95 -0.93 -0.94 -0.84 -0.91 -0.90 +0.04 -0.82
Head sparsity 76.68% 86.42% 59.5% 90.5% 82.81% 91.72% 67.64% 63.11% 99.3% 79.74%

Table 3: Comparison of evaluation accuracy among the 9 GLUE benchmark tasks in extreme cases (within 1% accuracy drop).

4 Evaluation
Datasets.We test our method on GLUE benchmark [Wang et
al., 2018] and report the performance of the unpruned and
pruned models following the conventions by using accuracy
for SST-2, QNLI, MNLI, QQP, RTE and WNLI; Matthews
Correlation Coefficient (MCC) for CoLA, F1 scores for
MRPC, and Spearman for STS-B. Our pre-trained model is
the BERTBASE [Devlin et al., 2018] model. The model con-
sists of 12 attention layers and 12 heads for each layer. We
define the head sparsity as:

head sparsity =
#pruned heads

#model heads
(15)

Implementation Details. We follow the default finetuning
steps for 9 tasks according to Huggingface [Wolf et al., 2019]
and obtain baseline models after training for 4 epochs. Then,
differentiable pruning is executed for the models.
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Figure 3: Model accuracy regarding to different head sparsity on
MNLI-matched dataset

Baselines. To validate the effectiveness of our proposed
method, we introduce four baselines in our experiments. For
method Random, we report the results of 50% head sparsity
from [Zhang et al., 2021]. In [Michel et al., 2019], the Head
Importance Score for Pruning (HISP) is proposed by ranking
the head importance and removing the heads with lower im-
portance score. In our test, we calculate the head importance
and prune 50% heads with lower importance scores. Method
L0 Norm represents the Gumbel softmax based pruning
method proposed in [Voita et al., 2019]. And the Single-Shot
Meta-Pruner (SMP) is proposed by [Zhang et al., 2021] in
which head importance and Gumbel softmax based pruning
are nicely combined.

Experimental Results. We show our comparison results in
Table 1. For fairness, we compare our head pruning model ac-
curacy with state-of-the-art algorithms with fixed global head
sparsity of 50%. Compared with Random method, our pro-
posed method enjoys better model accuracy. HISP [Michel
et al., 2019] calculates head importance for pruning and suf-
fers a significant accuracy drop since the importance is not
estimated directly according to the final model performance.
Our method outperforms L0 Norm approach [Voita et al.,
2019] with a large margin in all existing 7 GLUE bench-
mark tasks. SMP [Zhang et al., 2021] improves Gumbel soft-
max based approach [Voita et al., 2019] by combining head
importance scoring and self-supervision, but the discrepancy
between model training and model testing prohibits its fur-
ther advances. Comparing with state-of-the-art head pruning
methods, peer distillation takes the lead in 7 of the 8 tasks.

To fully investigate the performance of peer distillation, we
test different sparsity levels. As shown in Fig. 3, our method
can achieve more than 80% sparsity with only 1.03% accu-
racy drop and outperforms all existing head pruning meth-
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ods. Additionally, for 8 of the 9 tasks, our pruned models
outperform the original (unpruned) models as shown in Ta-
ble 2, which is consistent with [Kovaleva et al., 2019]’s study.
More specifically, we could achieve 1.20% accuracy increase
while pruning more than 58% heads on average. Surprisingly,
the pruned model on CoLA dataset achieves 6.99% accuracy
increase after pruning 54.17% heads and the pruned model
on WNLI dataset has the same accuracy as the original one
after pruning 99.3% heads (only one head left). In extreme
cases (within 1% accuracy drop), our proposed method could
prune 79.74% heads with 0.82% accuracy drop on average as
shown in Table 3.

5 Discussion of Differentiable Head Pruning
and Peer Distillation

Differentiable Head Pruning. Different from the quantified
importance scores of heads [Michel et al., 2019] for pruning,
in our method, we use learnable gate parameters to determine
the retention of the heads. Fig. 4 shows the update process
of the auxiliary parameter W ′ and head masking gate sta-
tus g(W ′) of the 144 attention heads jointly trained with the
model weights W by following three stages:

• In the initialization stage, the auxiliary parameters are ini-
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(e) W ′ after pruning
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Figure 4: Differentiable pruning process on CoLA dataset
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Figure 5: Peer distillation performance on MRPC dataset

tialized by following a truncated normal distribution with
values greater than 0 and gates are open (Fig. 4a and 4b).

• In the intermediate stage, the gate auxiliary parameters
of less important heads are receiving negative gradients.
Through training, some auxiliary parameters are below
zero (denoted in cold colored boxes in Fig. 4c, which leads
to pruning of corresponding attention heads in Fig. 4d.

• In the final stage, in Fig. 4e, more auxiliary parameters
drop below zero. The optimization converges when the
balance is achieved between the model accuracy compo-
nent and sparsity component in loss function Eq. 7.

Peer Distillation Performance. To verify the effectiveness
of the peer distillation, we conduct experiments of differ-
entiable head pruning with and without peer distillation as
shown in Fig. 5. Without peer distillation (baseline as the
starred blue curve in Fig. 5b), the head difference (PD loss)
changes slightly (±4.32%) during pruning and reveals that
the retained heads converge to a different value instead of
similar ones to the pruned heads. This proves our assumption
that the retained compact model updates independently with-
out absorbing useful knowledge from the pruned heads. With
the help of peer distillation (λ = 0.35), the PD loss is reduced
by 68.55% and the retained heads become much close to the
pruned ones. Compared with differentiable head pruning
without peer distillation, the head sparsity is increased by
22.17% as shown in Fig. 5c while the evaluation model
accuracy (F1 score) are the same (Fig. 5a). The result veri-
fies the effectiveness of the peer distillation to preserve model
performance with a shrunk model structure.
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Figure 6: Pruning ablation study: differentiable pruning optimizer
with different learning rates on CoLA dataset.

6 Ablation Study
In this section, we perform ablation study over several hyper-
parameters when doing differentiable pruning and peer distil-
lation with BERT model and check their effects.
Differentiable Pruning Learning Rate. To solve the opti-
mization problem in Eq. 7, different optimizers are utilized
to update weight and gate parameters. Specially, we use the
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Figure 7: Peer distillation ablation study: model performance with
different PD loss penalty factors
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Figure 8: Peer distillation ablation study: PD loss and head sparsity
with different PD loss penalty factors

default initial learning rate (3e-5) to update model weights.
For auxiliary parameters updating, a larger initial learning
rate, lrg , enhances the ability of the gate optimizer to ad-
just gate parameters and leads to higher sparsity. In our test,
while increasing the initial lrg , we could increase the sparsity
from 44% to 76% with only 4% performance (mcc for CoLA
dataset) drop as shown in Fig. 6. Interestingly, we observe the
obvious compete between accuracy and sparsity, since differ-
ent optimizers (weight and gate optimizer) tend to reduce the
loss function in different directions.
Peer Distillation Loss Penalty Factor. While selecting dif-
ferent knowledge loss penalty factors, λ, from 0.2 to 0.5,
we observe the similar compact model performance (values
changed within ±5.62% in F1 score and ±0.01 in final train-
ing mixed loss) in Fig. 7. However, while increasing λ, sig-
nificant head sparsity increase (Fig. 8b) is achieved due to the
reduced PD loss (Fig. 8a). To notice, the penalty factor should
not be chosen too large since it might affect the model accu-
racy loss in Eq. 14 and leads to model accuracy degradation.
In experiments, we choose λ = 0.35 for the final evaluation.

7 Conclusion
In this work, we propose a novel peer distillation head prun-
ing method. We leverage differentiable pruning to automat-
ically select heads and derive a compact model structure.
Then knowledge recycling and peer distillation are proposed
to make use of the discarded knowledge represented by the
pruned heads. The retained heads exploit the recycled knowl-
edge from the pruned heads and ensure the maintenance of
the learned knowledge and thus model accuracy. With the
help of recycled knowledge from the pruned heads, higher
head sparsity is achieved with a slight loss in accuracy. Our
results outperform the state-of-the-art head pruning results
and validate the effectiveness of our method.
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