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Abstract

Event Causality Identification (ECI) aims to iden-
tify the causality between a pair of event mentions
in a document, which is composed of sentence-
level ECI (SECI) and document-level ECI (DECI).
Previous work applies various reasoning models to
identify the implicit event causality. However, they
indiscriminately reason all event causality in the
same way, ignoring that most inter-sentence event
causality depends on intra-sentence event causality
to infer. In this paper, we propose a Progressive
graph Pairwise Attention network (PPAT) to con-
sider the above dependence. PPAT applies a pro-
gressive reasoning strategy, as it first predicts the
intra-sentence event causality, and then infers the
more implicit inter-sentence event causality based
on the SECI result. We construct a sentence bound-
ary event relational graph, and PPAT leverages a
simple pairwise attention mechanism, which at-
tends to different reasoning chains on the graph.
In addition, we propose a causality-guided training
strategy for assisting PPAT in learning causality-
related representations on every layer. Extensive
experiments show that our model achieves state-
of-the-art performance on three benchmark datasets
(5.5%, 2.2% and 4.5% F1 gains on EventStoryLine,
MAVEN-ERE and Causal-TimeBank). Code is
available at https://github.com/HITsz-TMG/PPAT.

1 Introduction
Event Causality Identification (ECI) seeks to identify the
causal relation between two events in text. For example, as
shown in Figure 1, in the sentence “The strong 6.1-magnitude
quake left hundreds more injured ...”, the ECI model should
identify the causality between “quake” and “injured”. ECI
presents the causal structure of text, which is beneficial to
a wide range of applications in natural language processing
(NLP), including future event forecasting [Hashimoto, 2019],
machine reading comprehension [Berant et al., 2014], and
question answering [Oh et al., 2016].

∗Corresponding author.

On July 03, an earthquake killed six children
and left 14 others trapped when a mosque
collapsed during a Koran reading session in  
······ 
The strong 6.1-magnitude quake left hundreds
more injured as it rocked a region that was
devastated by the quake-triggered tsunami of
2004.  
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coreference relation (earthquake, injured)

(quake, injured)

(quake, earthquake)

intra-sentence event pair
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Figure 1: Example of ECI and SERG. The purple lines denote target
causal relations. The coreference relation assists reasoning, denoted
by the blue line. In SERG, the nodes of intra- and inter-sentence
event pairs are in blue and green respectively. The orange edges
denote a reasoning chain.

ECI consists of two parts: sentence-level ECI (SECI) [Liu
et al., 2020] which aims to identify the intra-sentence event
causality, and document-level ECI (DECI) [Gao et al., 2019]
which aims to identify the inter-sentence event causality. Pre-
vious studies [Phu and Nguyen, 2021; Chen et al., 2022]
do not explicitly distinguish intra- and inter-sentence event
causality and use the same model to learn their representa-
tion, yet intra- and inter-sentence causality are expressed dif-
ferently. Most intra-sentence event causality are explicitly ex-
pressed with causal cues in local context. Take Figure 1 as an
example, the causality of intra-sentence event pair “(quake,
injured)” could be identified easily with the causality indi-
cator “left”. However, inter-sentence event causality is more
implicitly expressed with multiple sentences, and needs to be
inferred from intra-sentence event causality. As shown in Fig-
ure 1, based on the above intra-sentence event causality and
coreference relation “(quake, earthquake)”, we can propagate
the causality via the coreference chain and infer that the event
pair “(earthquake, injured)” also has causality.

In this paper, we aim to address the above issue by pre-
senting a novel Progressive Graph Pairwise Attention Net-
work (PPAT). PPAT applies a progressive reasoning strat-
egy, i.e., it first predicts the intra-sentence causality with local
context, and then reasons the inter-sentence causality based
on the previous SECI prediction, taking the dependence of
inter-sentence causality on intra-sentence causality into con-
sideration. For the implementation of progressive reasoning,
we construct a Sentence boundary Event Relational Graph
(SERG). Each node of SERG denotes an event pair, and
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two nodes that share one event have two directed edges con-
necting with each other. Specially, the intra-sentence nodes
only connect with the intra-sentence nodes in SERG. Fig-
ure 1 shows an example. The intra-sentence node (in blue)
does not have edges directed from inter-sentence nodes (in
green), while inter-sentence nodes can aggregate information
from the intra-sentence node via directed edges. The edges
model the interaction between directly related node pairs that
share the same event, and encourage PPAT to reason the intra-
sentence event causality on the local patterns.

Moreover, different from previous work that uses graph
neural networks to simply aggregate representations of neigh-
borhood nodes (i.e., event pairs) [Phu and Nguyen, 2021;
Chen et al., 2022], PPAT applies a simple pairwise atten-
tion mechanism, which aggregates neighbors at a reason-
ing chain level instead of node level. Take Figure 1 as
an example. When the node of “(earthquake, injured)” is
the target node to be reasoned, its two neighbors form a
premise node pair if they contain the same event that the tar-
get node does not contain, e.g., nodes of “(quake, injured)”
and “(quake, earthquake)”. Then the causality of the target
node could be reasoned via the following reasoning chain:
Cause(quake, injured) ∧ Coreference(earthquake, quake) →
Cause(earthquake, injured). Therefore, the reasoning model
should regard the premise node pair as a whole part and ag-
gregate neighbors at a reasoning chain level. To this end, our
proposed pairwise attention mechanism can capture interac-
tion between the target node and its premise node pairs, thus
attending to the possible reasoning chains and inferring the
target causality.

In addition, we propose a causality-guided training strategy
for PPAT. Since node representations on every layer of PPAT
will be served as auxiliary information for reasoning on the
next layer, it is important for every layer of PPAT to learn
causality-related node representations, so we apply an addi-
tional loss to provide causality supervision on every layer and
assist PPAT to have better reasoning performance.

To summarize, our contributions can be listed as:
• We propose a novel progressive graph pairwise atten-

tion network (PPAT), which reasons progressively on
the sentence boundary event relational graph. To the
best of our knowledge, we are the first to capture the
dependence of inter-sentence causal reasoning on intra-
sentence causality.

• We propose a pairwise attention mechanism, a simple
yet effective approach to attending to reasoning chains
on the graph for causality propagation.

• Extensive experiments on three ECI datasets show that
PPAT significantly outperforms previous state-of-the-art
methods, demonstrating the effectiveness of our method.

2 Related Work
Early feature-based methods for SECI mainly focus on de-
signing better causality features or using external resources
to improve performance, including the lexicon of causality
indicators [Mirza, 2014; Hidey and McKeown, 2016], tem-
poral patterns [Mirza, 2014; Ning et al., 2018], event se-
mantics [Riaz and Girju, 2014a; Riaz and Girju, 2014b],

event co-occurrence [Do et al., 2011; Hu et al., 2017], and
weakly supervised data [Hashimoto, 2019]. As Pre-trained
Language Models (PLMs) have achieved great success in a
wide range of NLP tasks, many SECI work shows promising
performance gains based on PLMs [Kadowaki et al., 2019;
Liu et al., 2020; Zuo et al., 2020].

In recent years, more and more studies pay attention to
document-level NLP tasks, such as event argument extrac-
tion [Li et al., 2021] and relation extraction [Yao et al.,
2019]. Recent ECI work focuses on global inference: Gao
et al. [2019] use Integer Linear Programming (ILP) to model
global causal structures; RichGCN [Phu and Nguyen, 2021]
utilizes several NLP tools (e.g., dependency parser) and ex-
ternal corpus for building event graphs, and uses graph con-
volutional network [Kipf and Welling, 2017] for reasoning.
ERGO [Chen et al., 2022] achieves state-of-the-art (SOTA)
performance with a graph transformer on an event relational
graph for high-order interaction of event relations. Compared
with previous work, our model focuses on reasoning progres-
sively and attending to reasoning chains, with no need for
sophisticated graph design, external NLP tools or external
knowledge.

3 Methods
As illustrated in Figure 2, the overall architecture consists
of two tiers: (1) A document encoder yields event contex-
tual representations, then concatenates the event representa-
tions for initial event pair representations. (2) The intra- and
inter-sentence pairwise attention layers reason the event pair
causality representation progressively, and then a classifier
predicts causality based on the learned representations.

3.1 Document Encoder
Given a document D = {wi}LD

i=1 containing LD words with
event mention set N (|N | = N ), Document Encoder aims to
represent all event pairs. We use BERT [Devlin et al., 2019]
and Longformer [Beltagy et al., 2020] respectively as a basic
encoder to obtain contextualized embeddings. For the docu-
ment longer than the length limitation of encoder, we use a
dynamic window to encode the entire document. Specifically,
we divide D into overlapping spans according to a fixed step
and input them to the encoder separately.

We apply the levitated marker [Zhong and Chen, 2021] to
represent the event mentions in the document. Specifically,
for each event mention, we add two marker tokens (i.e., t1 and
t2) to the end of text. t1 will share position embedding with
the first token of the event mention, and t2 will share position
embedding with the last token of the event mention. By set-
ting the attention matrix, the original document tokens cannot
attend to the marker tokens, and each marker pair can only
attend to the corresponding event mention tokens. We also
insert “[CLS]” at the start of document (“<s>” for Long-
former). The input text for BERT encoder could be written as
follows:

S = [CLS], w1, w2 · · · eventi · · ·wLD · · · ti1, ti2 · · ·

where wx denotes the x-th words of document, ti1 and ti2
are the levitated markers associated with the event mention
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Figure 2: The overall architecture of our PPAT (left) and the detail of pairwise attention (right). With initial event pair representations from
the document encoder, the intra- and inter-sentence pairwise attention layers consecutively update representations. The pairwise attention
mechanism finds all possible reasoning chains of the target node in Sentence boundary Event Relational Graph (SERG), uses target node
representation as query (Q) and reasoning chain representations as key (K) and value (V) for the attention block.

eventi, LD is the length of document. We use BERT or
Longformer to encode S and then obtain the representation
of eventi, denoted as ei, as follows:

ei =
H(ti1) +H(ti2)

2
⊕H([CLS]) (1)

where ⊕ denotes concatenation, H(∗) denotes the contextu-
alized word embedding computed by the encoder. Then the
raw representation of the event pair (eventi, eventj), i.e. rij ,
can be obtained by the following equation:

rij = ei ⊕ ej ⊕ (ei ∗ ej) (2)

where ei and ej are the representation of eventi and eventj
respectively, ∗ means pointwise product.

3.2 Progressive Reasoning Strategy
As stated in Section 1, the intra- and inter-sentence event
causality should be reasoned separately. We thus propose
a progressive reasoning strategy for learning the high-order
relation of event pairs. Furthermore, we build a sentence
boundary relational event graph (SERG) G = {V, E} for con-
straining event pair interaction, where V is the set of nodes
and E is the set of edges.

With the initial node representations from the document
encoder as input, PPAT first reasons sentence-level causality
with single layer, and then reasons document-level causality
with three layers. The output representations in the last layer
is used for causality prediction. Note that the three layers for
document-level reasoning share parameters. Here we only
introduce the input and output of PPAT on each layer, leaving
the details of graph pairwise attention to Section 3.3.

For the node of (eventi, eventj), after updating its rep-
resentation at layer l, we obtain the input node embedding
for the next layer, i.e., nl+1

ij , by concatenating causality pre-
diction, a binary intra-sentence marker and the updated node
representation in layer l:

nl+1
ij = vlij ⊕ plij ⊕ aij (3)

where ⊕ denotes concatenated operations. vlij is the node rep-
resentation output in the l-th layer. aij is 1 if (eventi, eventj)
is an intra-sentence event pair, otherwise aij is 0. plij is the
predicted causality possibility of (eventi, eventj) in the l-th
layer. We use a binary classifier to predict the causality of
nodes in each layer.

plij = softmax(vlijWc) (4)

where Wc is the parameter weight matrix in the linear clas-
sifier. Before the first step of reasoning (i.e., l = 0), the node
embedding is initialized by the raw event pair representation
rij from the document encoder.

3.3 Graph Pairwise Attention
In order to introduce reasoning chain-level information into
representation learning, we propose a graph pairwise atten-
tion for SERG. As shown in the right part of Figure 2,
when (eventi, eventj) is the target node to be reasoned,
its premise node pairs are defined as ((eventi, eventk),
(eventj , eventk)), where 0 ≤ k < N , k ̸= i ̸= j. Then
we perform a pairwise self-attention mechanism to measure
the importance of each premise node pair for the target node:

attenij,k =
(nijWq)((nik ⊕ njk)Wk)

T

√
d

(5)

where nij is the input node embedding of (eventi, eventj)
described in Section 3.2, Wq,Wk are parameter weight ma-
trices,

√
d is a scaling factor and d is the hidden size.

Then we normalize the attention coefficients:

αij,k = softmaxij(attenij)

=
maskij,k exp(attenij,k)∑

z∈N−
ij
maskij,z exp(attenij,z)

(6)

where N−
ij is the event mention set without eventi and

eventj . The attention mask maskij,k is 1 if node of (eventi,
eventj) have edges directed from the premise node pair, i.e.,
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(eventi, eventk) and (eventk, eventj), otherwise maskij,k
is 0. After obtaining the normalized attention coefficients
αij,k, we aggregate relational knowledge from each reason-
ing chain:

vlij =
∑

k∈N−
ij

αij,k((nik ⊕ njk)Wv) (7)

where Wv is the parameter weight matrix.
Following Vaswani et al. [2017], we also perform multi-

head attention to combine the information from different rep-
resentation subspaces. The final output embedding of node
(eventi, eventj) can be represented as:

vlij =
( C∥∥∥

c=1

∑
k∈N−

ij

αij,k((nik ⊕ njk)Wv)
)
Wo, (8)

where ∥ and ⊕ are both concatenation operation, C is the
number of heads, Wo is the parameter weight matrix.

3.4 Training Objective
Following Chen et al. [2022], we adopt the focal loss [Lin et
al., 2017] to address the imbalance of positive and negative
examples, as most of the event pairs have no causal relations:

FL(p̂) = −β(1− p̂)γ log(p̂) (9)

where p̂ is the predicted possibility of right label, β is a
weighting factor to balance the huge number of negative ex-
amples. γ(γ ≥ 0) is a focusing parameter.

We calculate the main loss Lm with the predicted causality
possibility at the last layer (i.e., pLij):

Lm =
∑

(i,j)∈M

FL(pLij) (10)

where M is the event pair set, L is the number of layers.
We adopt a causality-guided training strategy to assist

PPAT to learn causality-related representation on each layer.
Specifically, we use the predicted causality possibility on
each layer plij computed from Equation 4 and calculate the
focal loss as follows:

Lc =
∑

0≤l≤L−1

(λl
∑

(i,j)∈Ml

FL(plij)), (11)

where λl is loss weight in the l-th layer. Ml is the focused
event pair set in the l-th layer (in the first layer Ml is intra-
sentence event pair set, otherwise Ml is inter-sentence event
pair set). PPAT’s final loss is given by:

L = Lm + Lc (12)

4 Experiments
4.1 Datasets and Evaluation Metrics
We evaluate PPAT on three datasets: EventStoryLine (version
0.9) [Caselli and Vossen, 2017], MAVEN-ERE [Wang et al.,
2022] and Causal-TimeBank [Mirza, 2014].

EventStoryLine contains 258 documents across 22 topics,
5334 event mentions, 10347 intra-sentence event pairs and
60232 inter-sentence event pairs (1770 and 3885 of them have
causal relations respectively). Following previous work [Gao
et al., 2019; Chen et al., 2022], we use documents in the
last two topics as development set, and employ 5-fold cross-
validation on the remaining documents.
MAVEN-ERE contains 3555 documents, 85912 event
mentions, 97521 intra-sentence event pairs and 1226168
inter-sentence event pairs (16044 and 47108 of them have
causal relations respectively). Since the original test set does
not contain gold labels, we divide the development set into a
new development set and a new test set, both of which contain
348 documents. As MAVEN-ERE is a relatively new dataset,
we reproduce the SOTA method and several strong baselines.
Causal-TimeBank contains 183 documents, 6811 event
mentions, 7608 intra-sentence event pairs (300 of them have
causal relations). Following previous work [Liu et al., 2020;
Chen et al., 2022], we employ 10-fold cross-validation eval-
uation for intra-sentence event pairs. Note that the number
of inter-sentence causal event pairs is quite small (only 20 of
252084 inter-sentence event pairs). Following the above pre-
vious work, we only evaluate the performance of SECI on
Causal-TimeBank.
Evaluation Metrics We adopt Precision (P), Recall (R)
and F1-score (F1) as evaluation metrics, same as previous
work [Gao et al., 2019; Phu and Nguyen, 2021; Chen et al.,
2022].

4.2 Implementation Details
We employ BERT-BASE-UNCASED [Devlin et al., 2019] or
Longformer-base [Beltagy et al., 2020] as the encoder. The
models are optimized with AdamW [Loshchilov and Hutter,
2019] with the learning rate of 1e-5 and weight decay of 0.01.
We use the linear warmup with 0.1 warmup ratio. We apply a
dynamic window to encode the entire document. The window
length is 512 for BERT and 2048 for Longformer, and the
shift step is 120 for BERT and 500 for Longformer. We train
the model for 128 epochs on EventStoryLine, 64 on Causal-
TimeBank and MAVEN-ERE. We choose the best checkpoint
on the development set for testing. As token-level attention
cannot be set on Longformer, we use the solid marker, i.e.
inserting marker tokens before and after the event mention,
and set “<s>” and the marker tokens as global tokens. The
loss weight λl are set as 2, 6, 0.1, 0.3 for l from 0 to 3. We
run all the experiments on a single NVIDIA A100 GPU.

4.3 Baselines
SECI baseline We compare PPAT with the following SECI
methods: (1) KMMG [Liu et al., 2020] leverages external
knowledge and proposes a mention masking generalization
method for accurate reasoning. (2) KnowDis [Zuo et al.,
2020] uses a knowledge-enhanced data augmentation method
to tackle the data lacking problem. (3) LSIN [Cao et al.,
2021] uses a descriptive graph induction module for exploit-
ing external structural knowledge. (4) LearnDA [Zuo et al.,
2021b] proposes a knowledge-guided dual learning method
for data augmentation. (5) CauSeRL [Zuo et al., 2021a]
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Model
EventStoryLine (SECI) EventStoryLine (DECI) EventStoryLine (Overall)

P R F1 P R F1 P R F1

OP 10.5 99.2 19.0 3.0 40.7 5.5 10.5 99.2 19.0
LR+ 22.5 98.6 36.6 8.4 99.5 15.6 27.9 47.2 35.1
LIP 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9

KMMG 41.9 62.5 50.1 - - - - - -
KnowDis 39.7 66.5 49.7 - - - - - -
LSIN 47.9 58.1 52.5 - - - - - -
LearnDA 42.2 69.8 52.6 - - - - - -
CauSeRL 41.9 69.0 52.1 - - - - - -

BERT 47.8 57.2 52.1 36.8 29.2 32.6 41.3 38.3 39.7
Longformer* 71.7 47.5 57.2 56.1 38.6 45.7 60.9 41.4 49.3
RichGCN 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6
ERGO 49.7 72.6 59.0 43.2 48.8 45.8 46.3 50.1 48.1
ERGO* 57.5 72.0 63.9 51.6 43.3 47.1 48.6 53.4 50.9
PPAT (ours) 62.1±1.5 68.8±1.2 65.3±1.0 54.0±1.9 50.2±1.4 52.0±0.3 56.8±1.8 56.0±1.1 56.4±0.3
PPAT (ours)* 60.7±1.2 70.5±1.7 65.2±0.4 48.9±3.7 49.8±1.6 49.3±1.2 52.9±3.0 56.3±1.1 54.5±1.0

Table 1: Main result on EventStoryLine. The best results are in bold, * denotes model with Longformer encoders. SECI baselines listed in
Section 4.3 cannot handle DECI task, and thus labeled as “-” in DECI and overall results.

Model
MAVEN-ERE (SECI) MAVEN-ERE (DECI) MAVEN-ERE (Overall)
P R F1 P R F1 P R F1

BERT 43.7 5.9 10.5 29.4 12.3 17.4 30.8 10.7 15.9
Longformer* 48.4 8.1 14.0 29.8 12.9 18.0 31.9 11.7 17.1
ERGO 42.9 40.9 41.9 27.9 41.7 33.5 30.5 41.5 35.2
ERGO* 40.7 58.1 47.9 28.2 40.8 33.6 31.3 45.1 37.0
PPAT (ours) 37.9±4.1 66.7±1.3 47.7±0.4 32.6±0.9 39.3±0.8 35.6±0.3 34.2±1.4 46.2±3.5 39.2±0.3
PPAT (ours)* 42.2±1.6 58.4±3.2 49.0±1.4 31.2±0.8 41.3±2.1 35.5±0.6 34.1±0.9 45.5±2.0 39.0±0.2

Table 2: Main result on MAVEN-ERE. The best results are in bold, * denotes models that apply Longformer encoders.

proposes a self-supervised method to learn context-specific
causal patterns from external causal statements.

ECI baseline We compare PPAT with the following ECI
methods, which can handle both SECI and DECI: (1)
OP [Caselli and Vossen, 2017] is a heuristic rule that as-
signs causal relations to neighboring events. (2) LR+ and
LIP [Gao et al., 2019] are feature-based methods to con-
struct document-level structures with various resources. (4)
BERT [Devlin et al., 2019] is a baseline that consists of the
BERT encoder and a linear classifier. (5) Longformer [Belt-
agy et al., 2020] is a baseline that consists of the Longformer
encoder and a linear classifier. Due to the lack of reported re-
sults, we report the performance of our implementation. (6)
RichGCN [Phu and Nguyen, 2021] proposes a document-
level event interaction graph built with various NLP tools
and heuristic rules, and uses a graph convolutional network
(GCN) for transitivity. (7) ERGO [Chen et al., 2022] pro-
poses an event relational graph and a graph transformer for
high-order event relational interaction. On EventStoryLine
and Causal-TimeBank, ERGO achieves the current SOTA
performance on both SECI and DECI.

4.4 Main Result

We report the main results on EventStoryLine, MAVEN-ERE
and Causal-TimeBank in Table 1, 2 and 3 respectively. We
break down the results on EventStoryLine and MAVEN-ERE
into the SECI setting (i.e., intra-sentence event pairs) and
DECI setting (i.e., inter-sentence event pairs). From the re-
sults, we have the following observations:

(1) As shown in Table 1, 2 and 3, our two versions of
PPAT both outperform all baselines on three benchmarks in
all settings. Compared with ERGO (Longformer-base), the
previous SOTA method, PPAT (BERT-base) achieves the best
F1 score on EventStoryLine (+1.4 on SECI, +4.9 on DECI
and +5.5 on ECI) and MAVEN-ERE (+1.1 on SECI, +2.0 on
DECI and +2.2 on ECI); PPAT (Longformer-base) achieves
the best F1 score on Causal-TimeBank (+4.5 on SECI). The
improvement demonstrates the effectiveness of PPAT.

(2) From Table 1 and 2, on the EventStoryLine and
MAVEN-ERE, although PPAT (Longformer-base) has com-
petitive SECI performance with PPAT (BERT-base), it per-
forms worse than PPAT (BERT-base) on DECI. The reason
might be: (i) PPAT has introduced document-level interaction
via graph pairwise attention network, so the ability of Long-
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Model
Causal-TimeBank (SECI)

P R F1

OP 3.0 40.7 5.5

KMMG 36.6 55.6 44.1
KnowDis 42.3 60.5 49.8
LSIN 51.5 56.2 52.9
LearnDA 41.9 68.0 51.9
CauSeRL 43.6 68.1 53.2

BERT 47.6 55.1 51.1
Longformer* 63.6 55.3 59.2
RichGCN 39.7 56.5 46.7
ERGO 58.4 60.5 59.4
ERGO* 62.1 61.3 61.7
PPAT (ours) 62.5±2.2 62.4±2.4 62.4±1.1
PPAT (ours)* 67.9±1.7 64.6±0.3 66.2±0.7

Table 3: Main result on Causal-TimeBank. The best results are in
bold, * denotes models that apply Longformer encoders. Note that
Causal-TimeBank only supports SECI task.

Model SECI DECI ECI

PPAT 65.3 52.0 56.4
w/o pairwise attention 64.8 49.1 54.3
w/o progressive reasoning 64.3 44.3 49.9
w/o causality-guided training 63.1 48.6 53.2

Table 4: F1-score of ablation study on EventStoryLine.

former to encode longer text does not show much advantages.
(ii) The global attention pattern and simplified local attention
in Longformer seem not competent for inter-sentence causal-
ity reasoning.

(3) On all datasets, PPAT (Longformer-base) achieves
comparable or better performance than PPAT (BERT-base)
on SECI. A possible reason is that Longformer can capture
more abundant local context for SECI than BERT by extend-
ing token length limitation. Since the sentence-level event
interaction can be introduced through the encoder, reasoning
might be less important for SECI compared with DECI. Sim-
ply changing the encoder to a more expressive PLM could
boost SECI performance. This also verifies the intuition that
DECI is more complex to solve than SECI.

4.5 Ablation Study
We provide an ablation study of PPAT (BERT-base) on the
EventStoryLine in Table 4 to analyse the effectiveness of
components in PPAT.

(1) PPAT (w/o pairwise attention) reasons node em-
bedding via the original attention method of Transformer
[Vaswani et al., 2017]. Compared with full version of PPAT,
PPAT (w/o pairwise attention) has much poorer ability in
identifying the inter-sentence event causality (-2.9 on DECI).
It demonstrates that pairwise attention can effectively im-
prove inter-sentence causality reasoning. The performance
of SECI has a slight drop. A possible reason is that addi-

tional reasoning might be less important for SECI, since the
sentence-level event interaction has been introduced via the
encoder.

(2) PPAT (w/o progressive reasoning) reasons the intra-
and inter-sentence event pairs together in the same time on
each layer of event relational graph. Compared with remov-
ing other components, performance of PPAT (w/o progressive
reasoning strategy) decreases the most on DECI and ECI (-7.7
on DECI and -6.5 on ECI). This shows that it would be bet-
ter to predict inter-sentence causality based on well-reasoned
intra-sentence causality representation than reasoning them
together. In addition, the performance decrease of SECI ver-
ifies our hypothesis when building sentence boundary event
relational graph: inter-sentence event relational information
is unnecessary for intra-sentence causality reasoning.

(3) PPAT (w/o causality-guided training) is trained with-
out causality guided loss on each layer. We see that causality-
guided training strategy has significant improvement on both
SECI and DECI, which proves that assisting model in learn-
ing causality-related representations is universally useful.

4.6 Case Study
In this section, we conduct a case study shown in Figure 3 to
compare our PPAT (BERT-base) with current SOTA method,
i.e, ERGO (Longformer-base). We also visualize the atten-
tion score of a relatively hard case, to explore the reasoning
ability of our PPAT.

From the prediction table in Figure 3, we can observe that:
although ERGO is good at identifying sentence-level causal-
ity (e.g., case No.1 and No.2), it has limitations in reasoning
implicit inter-sentence causality. ERGO fails at identifying
the case No.7’s causality, which can be reasoned from No.1
and No.4 or from No.2 and No.5. ERGO also mistakenly
takes coreference as causality (No.3).

In contrast, PPAT correctly identify the case No.7’s causal-
ity via effective reasoning. As shown in the attention visu-
alization in Figure 3, the predicted causality possibility in-
creases from 0.41 to 0.76 after reasoning, indicating that:
(i) PPAT infers inter-sentence event causality based on in-
tra-sentence event causality as expected. (ii) PPAT infers with
several transitivity patterns. Specifically, with the causality
of “(Death, shooting)” and “(Riots, Death)”, PPAT could rea-
son that “(Riots, shooting)” has causal relation via causal-
ity transitivity pattern. Another reasoning pattern is corefer-
ence transitivity pattern: Previous work [Chen et al., 2022]
has shown PLMs could recognize coreference through sim-
ilar word semantics, e.g., “(Riots, protests)”. Together with
the causality of “(protests, shooting)”, PPAT can reason the
causality of “(Riots, shooting)”. In conclusion, the attention
visualization indicates PPAT can perform highly effective rea-
soning with progressive reasoning and pairwise attention.

4.7 Representation Visualization
A good performance on ECI needs good causality represen-
tations for each event pair before classifying, so in Figure 4,
to further explore the representation learning ability of PPAT,
we choose the event pair causality representations from PPAT
and then visualize them with t-SNE method [Van der Maaten
and Hinton, 2008], observing that: (i) There is an obvious gap
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Sunday, March 17, 2013 | 5 : 00 PM 
Riots Erupt Following Death of Brooklyn Teen Killed By Police
In the week following the fatal shooting of 16-year-old Kimani Gray, several protests and riots have erupted in the …

No. Event Pair Golden ERGO PPAT

1 Riots Death Yes Yes Yes

2 Riots Killed Yes Yes Yes

3 Riots protests No Yes No

4 Death shooting Yes Yes Yes

5 Killed shooting Yes Yes Yes

6 protests shooting Yes Yes Yes

7 Riots shooting Yes No Yes

8 protests Killed Yes No Yes

No.1 (Riots Death)

No.4 (Death shooting)

No.2 (Riots Killed)
No.3 (Riots protests)

No.5 (Killed shooting)

No.6 (protests shooting)

No.7 (Riots shooting)

0.49
0.24 0.13

0.001

P(Riots shooting)=0.76
layer=3

P(Riots shooting)=0.41
layer=2

Figure 3: Case study of ERGO (Longformer-base) and our PPAT (BERT-base). The text above is the original document, where events are in
bold. We focus on the five colored events and show the results of ERGO and PPAT in the table (left), where the correct predictions are in
green and the wrong ones are in red. In the graph (right), the two event pairs in a circle denote a reasoning chain, and the graph shows the
attention scores of various reasoning chains in the 3rd layer of PPAT when reasoning the No.7 case. The predicted causality possibility P of
“(Riots, shooting)” increases after passing the 3rd layer.

Text
Accused Philadelphia Kraft Foods Killer Held
For Trial 
The woman who allegedly shot and killed
two co-workers in September at the Kraft
Foods plant in Northeast Philadelphia will
face	trial on multiple counts of murder and
attempted murder. At a hearing on Tuesday,
assistant district attorney Gail Fairman
described 43-year-old Yvonne Hiller as a
“methodical killer” who waved a gun within
a foot of a security guard’s face to regain
access to the plant less than ten minutes after
she had been escorted out ...

Figure 4: Visualization (left) of event pair representations and the original text (right). The blue nodes have causal relations and the red ones
do not. The star-shaped and circle-shaped nodes denote inter- and intra-sentence event pairs respectively. Event mentions in text are in bold.

between inter-sentence event pairs (i.e., star-shaped nodes)
and intra-sentence event pairs (i.e., circle-shaped nodes),
which indicates that PPAT treats intra- and inter-sentence
event pairs differently as expected. (ii) Most causal event
pairs’ representations are gathered together, which brings a
lot convenience for later classification, showing the effective-
ness of representation learning in the pairwise attention block.
(iii) Pairs of semantically similar events (e.g., “killed” and
“murder”) are close to the causal node cluster, as they might
be helpful for reasoning and need to interact with causal event
pairs. Meanwhile, the event pairs that cannot help reasoning
(e.g. “hearing” and “killed”) are far away from causal event
pairs. This shows PPAT can utilize available relational infor-
mation for learning good representations.

5 Conclusion

In this paper, we propose a Progressive Graph Pairwise At-
tention Network (PPAT), which leverages pairwise attention
to capture reasoning chains on the sentence boundary event
relational graph. PPAT infers progressively, as it uses SECI
results to help reason implicit document-level event causality.
Our PPAT achieves SOTA performance on three widely-used
ECI datasets with significant improvements. We conduct ex-
tensive ablation experiments, case studies and representation
visualization to analyse PPAT’s effectiveness. Future work
may include extending PPAT to identification of other event
relations, especially implicit relations in need of reasoning.
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