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Abstract
Text classification is a fundamental task for nat-
ural language processing, and adapting text clas-
sification models across domains has broad appli-
cations. Self-training generates pseudo-examples
from the model’s predictions and iteratively train
on the pseudo-examples, i.e., mininizes the loss on
the source domain and the Gibbs entropy on the tar-
get domain. However, Gibbs entropy is sensitive
to prediction errors, and thus, self-training tends
to fail when the domain shift is large. In this pa-
per, we propose Meta-Tsallis Entropy minimization
(MTEM), which applies meta-learning algorithm
to optimize the instance adaptive Tsallis entropy
on the target domain. To reduce the computation
cost of MTEM, we propose an approximation tech-
nique to approximate the Second-order derivation
involved in the meta-learning. To efficiently gen-
erate pseudo labels, we propose an annealing sam-
pling mechanism for exploring the model’s predic-
tion probability. Theoretically, we prove the con-
vergence of the meta-learning algorithm in MTEM
and analyze the effectiveness of MTEM in achiev-
ing domain adaptation. Experimentally, MTEM
improves the adaptation performance of BERT with
an average of 4 percent on the benchmark dataset.

1 Introduction
Text classification plays a crucial role in language under-
standing and anomaly detection for social media text. With
the recent advance of deep learningf [Kipf and Welling, 2017;
Devlin et al., 2019], text classification has experienced re-
markable progress. Despite the success, existing text clas-
sification approaches are vulnerable to domain shift. When
transferred to a new domain, a well-performed model under-
goes severe performance deterioration. To address such de-
terioration, domain adaptation, which aims to adapt a model
trained on one domain to a new domain, has attracted much
attention [Du et al., 2020; Lu et al., 2022].

A direct way to achieve domain adaptation is to build a
training set that approximates the distribution of the target

Figure 1: Tsallis entropy curve with respect to different entropy in-
dex (i.e., α below the curve).

.

domain. For this purpose, self-training [Zou et al., 2019;
Liu et al., 2021] uses the unlabeled data from the target do-
main to bootstrap the model. In specific, self-training first
uses the model’s prediction to generate pseudo-labels and
then uses the pseudo-labeled data to re-train the model. In
this process, self-training forces the model to increase its con-
fidence in the confident class, which is a Gibbs entropy mini-
mization process in essence [Lee and others, 2013].

However, Gibbs entropy minimization is sensitive to pre-
diction errors [Mukherjee and Awadallah, 2020]. To han-
dle the intractable label noise (i.e., prediction errors), data
selection strategies are designed to select reliable pseudo la-
bels [McClosky et al., 2006; Reichart and Rappoport, 2007;
Rotman and Reichart, 2019]. Among them, many qualified
achievements [RoyChowdhury et al., 2019; Shin et al., 2020]
are grounded on prior knowledge about the tasks (e.g., the
temporal consistency on video [RoyChowdhury et al., 2019]),
and thus hard to be applied in text classification tasks. Since
the Gibbs entropy minimization process in self-training is to
minimize the model’s uncertainty on the new domain, [Liu
et al., 2021] recently proposes to replace the Gibbs entropy
with the Tsallis entropy, which is another effective metric for
measuring uncertainty.

Tsallis entropy is a generalization of Gibbs entropy, refer-
ring to a set of entropy types controlled by the entropy in-
dex. Fig. 1 shows the change of Tsallis entropy with dif-
ferent entropy indexes for binary problems. When the en-
tropy index is small (the resultant entropy curve is sharp),
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the entropy minimization process tends to increase one di-
mension to 1.0 sharply, thus only being suitable for the sce-
nario where pseudo labels are reliable. Otherwise, Tsal-
lis entropy with a larger entropy index (smoother curve) is
more suitable for scenarios with large label noise, e.g., do-
main adaptation scenarios with a large domain shift. Re-
searchers [Liu et al., 2021] tried to use the Tsallis entropy
to improve self-training, but the proposed objective only
involves a unified entropy index for all unlabeled data in
the target domain. As illustrated in [Kumar et al., 2010;
Kumar et al., 2020], different instances in the target do-
main have different degrees of shifts from the source domain.
Thus, a unified entropy index cannot fully exploit the differ-
ent pseudo instances in the target domain.

In this paper, we propose Meta-Tsallis-Entropy Minimiza-
tion (MTEM) that uses an instance adaptive Tsallis entropy
minimization process to minimize the model’s prediction un-
certainty on the target domain. Since the best entropy indexes
changes along with the training, manually selecting an ap-
propriate entropy index for each unlabeled data is intractable.
Thus, we employ meta-learning to adaptively learn a suitable
entropy index for each unlabeled data. The meta-learning
process iterates over the inner loop on the target domain and
outer loop on the source domain. In this process, the param-
eters optimized on the target domain also achieves a low loss
on the source domain, which forces the model to obtain task
informations on the target domain. However, the proposed
MTEM still faces two challenges.

Firstly, the meta-learning algorithm in MTEM involves a
Second-order derivation (i.e., the gradient of the entropy in-
dex), which requires much computation cost, especially when
the model is large. Hence, it is hard to apply MTEM for pre-
vailing big pre-trained language models. To this end, we pro-
pose to approximate the Second-order derivation via a Taylor
expansion, which reduces the computation cost substantially.

Secondly, minimizing Tsallis entropy requires the guid-
ance of pseudo labels (see § 2.2 and § 2.3). Previous self-
training approaches generate pseudo labels by selecting the
prediction with the largest probability (i.e., greedy selection),
which tends to collapse when the model’s prediction is unre-
liable [Zou et al., 2019]. To this end, we propose to sample
pseudo labels from the model’s predicted distribution instead
of a greedy selection. Further, we propose an annealing sam-
pling mechanism to improve the sampling efficiency.

To summarize, our contributions are in three folds1:
(i) We propose Meta-Tsallis-Entropy Minimization (MTEM)
for domain adaptation on text classification. MTEM involves
an approximation technique to accelerate the computation,
and an annealing sampling mechanism to improve the sam-
pling efficiency.
(ii) We provide theoretical analysis for the MTEM, includ-
ing its effectiveness in achieving domain adaptation and the
convergence of the involved meta-learning process.
(iii) Experiments on two benchmark datasets demonstrate the
effectiveness of the MTEM. Specifically, MTEM improves
BERT on cross-domain sentiment classification tasks with an

1As the rest paper involves many mathematic symbols, we pro-
vide a symbol list (Tab. 7 in Appendix A) for reading convenience.

average of 4 percent, and improves BiGCN on cross-domain
rumor detection task with an average of 21 percent.

2 Preliminary
2.1 Domain Adaptation on Text Classification
Text classification is a task that aims to map a text to a spe-
cific label space. On a correct classification case, the pro-
cess is expressed as yi = arg max

k
f[k](xi; θ), where xi ∈ X

is an input text, yi ∈ {0, 1}K is the corresponding one-hot
label with K classes, and f is a model with parameters θ,
f(xi; θ) is the prediction probability. Domain adaptation is
to adapt a text classification model trained on the source do-
main (denoted as DS) to the target domain (denoted as DT ).
On the source domain, we have a set of labeled instances, i.e.,
DS = {(xi, yi)}Ni=1, which satisfies that DS ⊆ DS . On the
target domain, unlabeled text in the target domain is available,
which we denote as Du

T = {(xm)}Um=1.

2.2 Tsallis Entropy
In information theory, Tsallis entropy refers to a set of en-
tropy types, where the entropy index is used to identify a spe-
cific entropy. Formally, Tsallis entropy with α denoting the
entropy index is written as Eq. (1),

eα(pi) =
1

α− 1
(1−

K∑
j=1

pαi[j]) (1)

where pi is the prediction probability. When α > 1, eα is a
concave function [Plastino and Plastino, 1999]. When α →
1, eα recovers the Gibbs entropy, as shown in Eq. (2) 2:

eα→1(pi) =
limα→1 1−

∑K
j=1 p

α
i[j]

limα→1 α− 1
=

K∑
j=1

−pi[j]log(pi[j]) (2)

More intuitively, Fig. 1 exhibits the impact of the entropy
index on the curves of the Tsallis entropy type. Specifically,
a larger entropy index makes the curve more smooth, while a
smaller entropy index exerts a more sharp curve.

Extending from the unsupervised Tsallis entropy, the cor-
responding Tsallis loss `α(pi, yi) is expressed as Eq. (3).
When α→ 1, the corresponding supervised loss is the widely
used cross-entropy loss (see Appendix B.1).

`α(pi, yi) =
1

α− 1
(1−

K∑
j=1

yi[j] · pα−1
i[j] ) (3)

2.3 Self-Training for Domain Adaptation
Self-training aims to achieve domain adaptation by optimiz-
ing the model’s parameters with respect to the supervised loss
on the source domain and the unsupervised loss (prediction
uncertainty) on the target domain, as shown in Eq. (4).

min
θ
LST (θ|DS , Du

T ) = LS(θ|DS) + λ · LT (θ|Du
T ) (4)

2The second equation is obtained by L’Hôpital’s rule.
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Algorithm 1 Meta-Tsallis-Entropy Minimization
Require: labeled source dataset DS , unlabeled target dataset Du

T ,
initial entropy-index on Du

T , i.e., ψ1 = [ψ1[i]|
|Du

T |
i=1 ]t

1: for t = 1→ Tmax do
2: Sampling training batch B = {xj} from Du

T

3: Sampling validation batch V from DS
4: Set κt with Eq.(15)
5: Sampling ỹj ∼ p(•|θ, xj , κt) for each instance in B
6: θ̂(ψt) = θt − ηt · ∂LT (θ,ψt|B)

∂θ
|θ=θt . Inner-Loop

7: ψt+1 = ψt − βt · ∂LS(θ̂(ψt)|V)
∂ψ

|ψ=ψt . Outer-Loop

8: θt+1 = θt − ηt · ∂LT (θ,ψt+1|B)
∂θ

|θ=θt

where LS is a supervised loss, LT is an unsupervised loss,
and λ is a coefficient to balance LS and LT . Due to the
simplicity, Gibbs entropy is widely used to measure the pre-
diction uncertainty on the target domain [Zou et al., 2019;
Zou et al., 2018], which is expressed as below:

LT (θ|Du
T ) =

1

|Du
T |

∑
xi∈Du

T

−f(xi; θ) · log(f(xi; θ)) (5)

However, as LT (θ|Du
T ) in Eq. (5) is a concave function,

minimizing LT (θ|Du
T ) is hard to converge because the gra-

dients on the minimal are larger than 0 [Benson, 1995]. For
this purpose, self-training uses pseudo labels to guide the en-
tropy minimization process, i.e., replacing Eq. (5) with Eq (6)
where ỹi = arg max

k
f[k](xi; θ) is the pseudo label.

LT (θ|Du
T ) =

1

|Du
T |

∑
xk∈Du

T

−ỹTi · log(f(xi; θ)) (6)

3 Meta-Tsallis-Entropy Minimization
MTEM inherits the basic framework of self-training, i.e., (i)
simultaneously minimizing the supervised loss on the source
domain and the unsupervised loss (prediction uncertainty) on
the target domain; (ii) generating the pseudo labels to guide
the entropy minimization process. The improvements of the
MTEM are in three folds. Firstly, we propose an instance
adaptive Tsallis entropy to measure the prediction uncertainty
(§ 3.1). Secondly, we propose to use a meta-learning algo-
rithm to minimize the joint loss (§ 3.2), which involves an
approximation technique to reduce computation cost (§ 3.3).
Thirdly, we propose to generate pseudo labels with an an-
nealing sampling (§ 3.4). Fig. 2 exhibits the overview of the
MTEM, and Algorithm 1 presents the core process.

3.1 Instance Adaptive Tsallis Entropy
The instance adaptive Tsallis Entropy, i.e., the unsupervised
loss on the target domain, is as below:

LT (θ, ψ|Du
T ) =

1

|Du
T |

∑
xk∈Du

T

eψ[k]
(f(xk; θ)) (7)

where ψ[k] indicates the entropy index for unlabeled data xk,
eψ[k]

is the resultant Tsallis entropy.
Such an instance Tsallis entropy minimization is more

effective in exploiting the model’s prediction. In general,
the prediction correctness is different on different instances.
Thus, entropy index should be different on different instances
too. For the instances with wrong prediction, we can increase
the entropy index to make Tsallis entropy more smooth, then
the model is updated more cauciously. Otherwise, for in-
stances with correct prediction, we can set a small entropy
index to update the model more aggressively.

However, as we are not aware of the label, setting the
appropriate entropy indexes for each unlabeled data is in-
tractable. Furthermore, as prediction errors can be corrected
during the model training, the best entropy indexes change
along with the updates of the model. To handle the above
issues, we propose to use meta-learning to determine the en-
tropy indexes automatically.

3.2 Meta-Learning
Meta-learning can help MTEM to find the appropriate en-
tropy indexes due to the following reasons. Firstly, param-
eters optimized on a well-determined instance adaptive Tsal-
lis entropy (entropy indexes are determined appropriately)
should be more generalizable, which corresponds to the char-
acteristics of meta-learning, i.e., training a model that can be
fast adapted to a new task [Finn et al., 2017]. Secondly, the
meta-learning process updates the entropy indexes dynami-
cally, thus maintaining the consistency between the model’s
parameters and the entropy indexes along with the whole
training process. In specific, the meta-learning algorithm in
MTEM iterates over the Inner-Loop on the target data and the
Outer-Loop on the source domain.

In the Inner-Loop, we fix the entropy indexes to optimize
the model’s parameters with respect to the instance-adaptive
Tsallis entropy on the target domain. In specific, we sam-
ple a batch of unlabeled data B from Du

T and update the
model with respect to their instance adaptive Tsallis entropy
(LT (θ, ψ|B)), as shown in Eq. (8):

θ̂t+1(ψt) = θt − η ·
∂LT (θ, ψt|B)

∂θ
|θ=θt , (8)

However, as introduced in § 2.2 and § 2.3, eψ in Eq. (7) is a
concave function hard to be minimized. Following the way in
self-training, we use the equation in Eq. (9) 3 to transform a
concave function to a convex function,

eψ(f(xi; θt)) = E
ỹi∼f(xi;θt)

`ψ[i]
(f(xi; θt), ỹi) (9)

where ỹi ∈ {0, 1}K is a one-hot pseudo label sampled from
the model’s prediction probability (i.e., ỹi ∼ f(xi; θt)).
Then, the objective in the Inner-Loop is as Eq. (10):

min
θ
LT (θ, ψ|Du

T ) = E
ỹi∼f(xi;θ)

1

|Du
T |

∑
xi∈Du

T

`ψ[i]
(f(xi; θ), ỹi)

(10)

3Deduction is provided in Appendix B.2
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Figure 2: Meta-Tsallis-Entropy Minimization for domain adaptation on text classification: ¬ generate pseudo labels with annealing sampling
module, and then update the model with the instance adaptive Tsallis entropy; ­ validate the model on the source domain; ® update the
entropy indexes with respect to the validation performance.

In the Outer-Loop, we validate the model updated (i.e.,
θ̂t+1(ψt) in Eq. (8)) with labeled data from the source do-
main. Since different entropy indexes ψ leads to different
θ̂t+1(ψt), we adjust ψ to find the better θ̂t+1(ψt) that can be
fast adapted to the validation set. For this purpose, we opti-
mize the entropy indexes ψ to minimize the validation loss.
In each meta-validation step, we sample a valid batch of la-
beled data from the source domain, i.e., V ∼ DS , and use the
validation loss LS(θ̂t+1(ψt)|V) to evaluate the model, then
update entropy indexes ψ with 5ψLS(θ̂t+1(ψt)|V). With
the updated entropy indexes ψt+1, we return to update the
model’s parameters, as shown in line 8 of Algorithm 1.

3.3 Taylor Approximation Technique
The first challenge in the above meta-learning algorithm is
the computation cost carried out in the 5ψLS(θ̂t+1(ψt)|V).
Formally, the computation of5ψLS(θ̂t+1(ψt)|V) is as:

∂LS(θ̂t+1(ψ
t)|V)

∂ψ
=

∂LS(θ̂t+1(ψt)|V)
∂θ̂t+1(ψt)

· ∂θ̂t+1(ψt)

∂ψ

= −η5θ̂ LS(θ̂t+1(ψt)|V)

·∂
2LT (θ, ψt|B)
∂θ∂ψ

(11)

where the second equation is obtained by substituting
θ̂t+1(ψt) with Eq. (8). Since ∂2LT (θ,ψt|B)

∂θ∂ψ in Eq. (11) is a

hessian matrix (Second-order derivation), the computation in
Eq. (11) is intractable. Although deep learning codebase,
i.e. Pytorch and TensorFlow, provide tools for computing the
Second-order derivation, the computation cost is quadratic to
the model’s parameters, which is thus unacceptable for recent
big pre-trained language models (e.g., BERT).

Inspired by the research in [Liu et al., 2018; Chen et al.,
2021], we propose an approximation technique for comput-
ing Eq. (11). In specific, we employ the Taylor Expansion to
rewrite the term ∂LS(θ̂(ψ))

∂θ̂

∂2LT (ψ)
∂θ∂ψ in Eq. (11) with Eq. (12).

5θ̂LS(θ̂t+1(ψt)|V) ·
∂2LT (θ)
∂θ∂ψ

=
5ψLT (θ+)−5ψLT (θ−)

2 ∗ ε (12)

where ε is a small scalar, θ+ and θ− are defined as below:

θ+ = θ + ε · 5θ̂LS(θ̂t+1(ψt)|V),
θ− = θ − ε · 5θ̂LS(θ̂t+1(ψt)|V) (13)

where LT (θ) is the abbreviation of LT (θ, ψt|B). As demon-
strated in [Liu et al., 2018], Eq. (12) would be accurate
enough for approximation when ε is small. However, comput-
ing5ψLT in Eq. (12) still requires much computation cost as
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it involves a forward operation (i.e., LT ) and a backward op-
eration (i.e.,5ψLT ). To this end, we derive the explicit form
of5ψLT as Eq. (14) (details are in Appendix B.3).

5ψ[i]
LT (θ) =

1

ψ[i] − 1
× [l1(xi, ỹi)− lψ[i]

(xi, ỹi)]

−l1(xi, ỹi)× lψ[i]
(xi, ỹi) (14)

l1(xi, ỹi) and lψ[i]
in Eq. (14) can be computed without gra-

dients, thus preventing the time-consuming back-propagation
process. Therefore, computing5ψLT with the above explicit
form can further reduce the computation cost.

3.4 Annealing Sampling
In domain adaptation, the naive sampling mechanism in the
Inner-Loop can suffer from the lowly efficient sampling prob-
lem. When the domain shift is large, the model usually
performs worse in the target domain than in the source do-
main. As a result, the model’s prediction confidence (i.e.,
the sampling probability) on the true class is small. Con-
sidering an extreme binary classification case, where the in-
stance’s ground truth label is [0, 1]t but the model’s prediction
is [0.99, 0.01]t, the probability of sampling the ground truth
label is 0.01. In this case, most of the training cost is wasted
on the pseudo instances with error labels.

To improve the sampling efficiency, we propose an anneal-
ing sampling mechanism. With a temperature parameter κ,
we control the sharpness of the model’s prediction probability
(sampling probability) by p(•; θ, xi, κ) = softmax( scoreκ ),
where p is the sampling probability and score is the model’s
original prediction score. In the earlier training phase, the
model’s prediction is not that reliable, so we set a high-
temperature parameter κ to smooth the model’s prediction
distribution. With this setting, different class labels are sam-
pled with roughly equal probability, which guarantees the
possibility of sampling the correct pseudo label. Along with
the convergence of the training process, the model’s predic-
tion is more and more reliable, thus the temperature scheduler
will decrease the model’s temperature. We design a tempera-
ture scheduler as Eq. (15):

κt = κmax − (κmax − κmin)σ(s− 2s× t

Tmax
) (15)

where σ denotes the sigmoid function4, κmax and κmin
are the expected maximum temperature and minimum tem-
perature, s is a manual set positive scalar. t is the index of the
current training iteration, Tmax is the maximum of the training
iterations. Thus, t

Tmax
increases from 0.0 to 1.0, and the input

s− 2s× t
Tmax

decreases from s to−s. In our implementation,
s is large value that satisfies σ(s) ≈ 1.0 and σ(−s) ≈ 0.0,
which gurantees that κt will decrease from κmax to κmin.

4 Theoretical Analysis
Proofs of Lemma 1, Theorem 1, Theorem 2, and Theorem 3
are detailed in Appendix A.

4σ(x) = 1
1+ex

, which approaches to 0 when x < −5.0 and
saturates to 1.0 when x > 5.0

Lemma 1. Suppose the operations in the base model is Lips-
chitz smooth, then `ψ[i]

(f(xi, θ), ỹi) is Lipschitz smooth with
respect to θ for ∀ψ[i] > 1 and ∀xi ∈ DS

⋃
Du
T , i.e., there ex-

ists a finite constant ρ1 and a finite constant L1 that satisfy:

||
∂`ψ[i]

(f(xi, θ), ỹi)

∂θ
||2 ≤ ρ1,

||
∂2lψ[i]

(f(xi, θ), ỹi)

∂θ2
||2 ≤ L1

Also, for ∀ψ[i] > 1 and ∀xi ∈ Du
T , `ψ[i]

(f(xi, θ), ỹi) is
Lipschitz smooth with respect to ψ[i], i.e., there exists a finite
constant ρ2 and a finite constant L2 that satisfy:

||
∂`ψ[i]

(f(xi, θ), ỹi)

∂ψ[i]

||2 ≤ ρ2,

||
∂2`ψ[i]

(f(xi, θ), ỹi)

∂ψ2
[i]

||2 ≤ L2

Assumption 1. The learning rate ηt (line 10 of Algorithm 1)
satisfies ηt = min{1, k1t } for some k1 > 0, where k1

t < 1.
In addition, The learning rate βt (line 8 of Algorithm 1) is
a monotone descent sequence and βt = min{ 1

L ,
k2
3√
t2
} for

some k2 > 0, where L = max{L1, L2} and
3√
t2

k2
≥ L.

Based on the Assumption 1 and Lemma 1, we deduce The-
orem 1 and Theorem 2. Theorem 1 demonstrates that, by ad-
justing ψ, the model trained on the target domain can be gen-
eralized to the source domain immediately. In other words,
by adjusting ψ, the learning process on the target domain
(i.e., Eq. (10)) has learned the domain agnostic features. At
the same time, Theorem 2 guarantees the convergence of the
learning process on the target domain.

Theorem 1. The training process in MTEM can achieve
E[‖∇ψLS(θ̂t(ψt)|DS)‖22] ≤ ε in O( 1

ε3
) steps:

min
0≤t≤T

E[‖∇ψLS(θ̂t(ψt)|DS)‖22] ≤ O(
C
3
√
T
)

where C is an independent constant.
Theorem 2. With the training process in MTEM, the instance
adaptive Tsallis entropy is guaranteed to be converged on un-
labeled data. Formally,

lim
t→∞

E[‖∇θLT (θt, ψt+1|Du
T )‖22] = 0 (16)

We use hypothesis h : X → ∆K−1 to analyze the ef-
fectiveness of MTEM in achieving domain adaptation. For-
mally, hθ(xi) = arg max

k
f[k](xi; θ). We let RD(h) denote

the model’s robustness to the perturbations on dataset D. We
let R̂(H|D) denote the Rademacher complexity [Gnecco et
al., 2008] of function class H (h ∈ H) on dataset D. Rad-
macher complexity evaluates the ability of the worst hypothe-
sis h ∈ H in fitting random labels. If there exists a h ∈ H that
fits most random labels onD, then R̂(H|D) is large. With the
above definitions, we deduce Theorem 3.

Theorem 3. Suppose DS and Du
T satisfy (q, c)− constant

expansion [Wei et al., 2021] for some constant q, c ∈ (0, 1).
With the probability at least 1 − δ over the drawing of Du

T
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from DT , the error rates of the model hθ (h ∈ H) on the
target domain (i.e., εDT

(hθ)) is bounded by:

εDT (hθ) ≤ LS(θ|DS) + LT (θ, ψ|Du
T ) + 2q + 2K · R̂(H|DS )

+4K · R̂(H̃ × H|Du
T
) +

RDS∪Du
T
(h)

min{c, q} + ζ (17)

where ζ = O(
√
−log(δ)
|DS |

+
√
−log(δ)
|Du

T
| ) is a low-order term. H̃×

H refers to the function class {x→ h(x)[h′(x)] : h, h′ ∈ H}.
With Theorem 3, we demonstrate that:

1. Theorem 1 and Theorem 2 prove that MTEM can simul-
taneously optimize theψ and θ to minimizeLS(h|DS)+
LT (h, ψ|Du

T ), i.e., the first two term in Eq. (17).
2. With the bi-level optimization process, the learning pro-

cess on Du
T is regularized by supervised loss on the

source domain. As DS does not overlap with Du
T , fit-

ting the random labels on Du
T cannot carry out the de-

crease of the supervised loss on the source domain (i.e.,
LS(θ|DS)). Thus, h ∈ H fits less noise on Du

T , reduc-
ing R̂(H̃ × H|Du

T
). At the same time, as DS is unseen

in the training process, it is also hard to fit the random
label on DS , thereby reducing R̂(H|DS

).
3. Instance adaptive Tsallis-entropy is an unsupervised

loss. As accessing unlabeled data is easier than access-
ing the labeled data, MTEM provides the possibility of
sampling a larger unlabeled data to make ζ smaller.

4. RDS∪Du
T

(h) is a term that can be minimized in the train-
ing process technically, e.g., adversarial training [Jiang
et al., 2020] or SAM (Sharpness-Aware-Minimization)
optimizer [Foret et al., 2020].

5 Experiments
5.1 Experiment Settings
Datasets. On the rumor detection task, we conduct exper-
iments with the dataset TWITTER [Zubiaga et al., 2016],
which contains five domains: “Cha.”, “Ger.”, “Fer.”, “Ott.”,
and “Syd.”. On the sentiment classification task, we conduct
experiments with the dataset Amazon [Blitzer et al., 2007],
which contains four domains: books, dvd, electronics, and
kitchen. Preprocess and statistics on the TWITTER dataset
and the Amazon dataset can be found in Appendix D.
Comparing Methods. We compare MTEM with previ-
ous domain adaptation approaches on both semi-supervised5

and unsupervised domain adaptation scenarios. Under the
unsupervised domain adaptation, we compare MTEM with
Out [Chen et al., 2021], DANN [Ganin et al., 2016], Fix-
Match [Sohn et al., 2020], and CST [Liu et al., 2021]. Under
the semi-supervised domain adaptation, MTEM6 is compared
with In+Out [Chen et al., 2021], MME [Saito et al., 2019],
BiAT [Jiang et al., 2020], and Wind [Chen et al., 2021]. Out

5A small set of labeled data in the target domain can be accessed,
named in-domain dataset.

6For semi-supervised domain adaptation, we insert the labeled
target data into DS to run MTEM.

and In+Out are two straightforward ways for realizing unsu-
pervised and semi-supervised domain adaptation, where Out
means the base model is trained on the out-of-domain data
(i.e., DS) and In+Out means the base model is trained on
both the in-domain and the out-of-domain data. DANN re-
alizes domain adaptation by min-max the domain classifica-
tion loss. CST and FixMatch are self-training approaches that
generates pseudo instances to augment domain adaptation.
Although CST also involves Tsallis entropy, the entropy-
index is a mannually set hyper-parameters and is not instance-
adaptative. WIND is a meta-reweigting based domain adapta-
tion approach that learns-to-learn suitable instance weights of
different labeled samples in the source domain. More details
about the baseline methods can be found in the references.

Implementation Details. The base model on the Amazon
dataset is BERT [Devlin et al., 2019] and the base model on
the TWITTER dataset is BiGCN [Bian et al., 2020]. Do-
main adaptation experiments are conducted on every domain
on the benchmark datasets. For every domain on the bench-
mark dataset, we seperately take them as the target domain
and merges the rest domains as the source domain. For exam-
ple, when the “books” domain in the Amazon dataset is taken
as the target domain, the “dvd”, “electronics” and “kitchen”
domains are merged as the source domain. All unlabeled data
from the target domain are involved in the training process,
meanwhile the labeled data in the target domain are used for
evaluation (with a ratio of 7:3). Since the TWITTER dataset
does not contain extra unlabeled data, we take 70% of the la-
beled data on the target domain as the unlabeled data for train-
ing the model and preserve the rest ones for evaluation. The
experiments on TWITTER are conducted on “Cha.”, “Fer.”,
“Ott.”, and “Syd.”7. For the symbols in Algorithm 1, we set
ηt and βt with respect to Assumption 1.

5.2 General Results
We use all baseline approaches (including MTEM) to adapt
BiGCN across domains on TWITTER, and to adapt BERT
across domains on Amazon. We validate the effectiveness
of the proposed MTEM on both unsupervised and semi-
supervised domain adaptation scenarios. For semi-supervised
domain adaptation scenario, 100 labeled instances in the tar-
get domain are randomly selected as the in-domain dataset.
As the rumor detection task mainly concerns the classifi-
cation performance in the ‘rumor’ category, we use the F1
score to evaluate the performance on TWITTER. On the sen-
timent classification task, different classes are equally impor-
tant. Thus, we use the accuracy score to evaluate different
models, which is also convenient for comparison with previ-
ous studies. Experiment results are listed in Table 1, Table 2.

The results in Table 1 and Table 2 demonstrate the effec-
tiveness of the proposed MTEM algorithm. In particular,
MTEM outperforms all baseline approaches on all bench-
mark datasets. Compared with the self-training approaches,
i.e., FixMatch and CST, MTEM maintains the superiority of
an average of nearly 2 percent on the Amazon dataset and an
average of 4 percent on the TWITTER set. Thus, regularizing

7The labeled data in “Ger.” domain is too scare to provide extra
unlabeled data.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5164



Base Model
(BiGCN)

Unsupervised domain adaptation Semi-Supervised domain adaptation
Out DANN FixMatch CST MTEM In+Out MME BiAT Wind MTEM

Cha. 0.561 0.501 0.614 0.573 0.627 0.586 0.601 0.547 0.552 0.637
Fer. 0.190 0.387 0.473 0.446 0.549 0.200 0.381 0.256 0.291 0.635
Ott. 0.575 0.544 0.672 0.649 0.728 0.599 0.612 0.614 0.633 0.817
Syd. 0.438 0.461 0.694 0.653 0.729 0.424 0.677 0.661 0.628 0.750
Mean 0.441 0.473 0.613 0.598 0.658 0.452 0.567 0.520 0.526 0.709

Table 1: F1 scores on the TWITTER dataset

Base Model
(BERT)

Unsupervised Domain Adaptation Semi-Supervised Domain Adaptation
Out DANN CST FixMatch MTEM In+Out MME BiAT WIND MTEM

books 0.902 0.912 0.912 0.906 0.939 0.912 0.923 0.922 0.917 0.946
dvd 0.902 0.909 0.923 0.907 0.937 0.908 0.924 0.903 0.911 0.947

electronics 0.894 0.934 0.923 0.913 0.935 0.926 0.927 0.930 0.931 0.945
kitchen 0.895 0.934 0.924 0.922 0.937 0.931 0.931 0.933 0.940 0.942
Mean 0.898 0.922 0.920 0.912 0.937 0.919 0.926 0.922 0.925 0.945

Table 2: Accuracy scores on the Amazon dataset

the self-training process with an instance adaptative is benefi-
cial. Moreover, MTEM also surpasses the meta-reweighting
algorithm, i.e., WIND, by an average of nearly 2 percent on
the Amazon dataset and nearly 18 percent on the TWITTER
dataset. Thus, the meta-learning algorithm in MTEM, i.e.,
learning to learn the suitable entropy indexes, is a competi-
tive candidate in the domain adaptation scenario.

5.3 Ablation Study
We separately remove the meta-learning module (- w/o M),
the temperature scheduler (- w/o T), and the sampling mech-
anism (- w/o S) to observe the adaptation performance across
domains on the benchmark datasets. - w/o M means all in-
stances in the target domain will be allocated the same en-
tropy index (determined with manually attempt). - w/o T
means removing the temperature scheduler, and the tempera-
ture κ is fixed to be 1.0. - w/o S means to remove the sam-
pling mechanism, i.e., generates pseudo labels with greedy
strategies as previous self-training approaches. The experi-
ments are conducted under the unsupervised domain adapta-
tion scenarios. We validate the effectiveness with F1 score
on TWITTER, and use the accuracy score on Amazon. The
experiment results are listed in Tab. 3 and Tab. 4.

From Tab. 3 and Tab. 4, we can find that all variants per-
form worse than MTEM on two benchmark datasets: (i)
MTEM surpasses MTEM - w/o M on the Amazon dataset
with an average of 2 percent, and on the TWITTER dataset
with an average of 7 percent. Thus, allocating an instance
adaptative entropy index for every unlabeled instance in the
target domain is superior to allocating the same entropy in-
dex. Furthermore, since the unified entropy index in MTEM -
w/o M is searched manually, MTEM - w/o M should be better
than Gibbs Entropy. Otherwise, the entropy index would be
determined as 1.0 (Gibbs Entropy). Thus, the instance adap-
tive Tsallis-entropy in MTEM is better than Gibbs Entropy.
(ii) MTEM surpasses MTEM - w/o S on the Amazon dataset
with an average of 1.4 percent, and on the TWITTER dataset
with an average of 1.5 percent, which is attributed to the sam-
pling mechanism can directly correct the model’s prediction

Domain Cha. Fer. Ott. Syd. Mean
MTEM 0.627 0.549 0.728 0.729 0.658
- w/o M 0.569 0.452 0.633 0.647 0.575
- w/o A 0.621 0.537 0.716 0.722 0.649
- w/o S 0.622 0.529 0.707 0.714 0.643

Table 3: Ablation Study on TWITTER

Domain books dvd electronics kitchen Mean
MTEM 0.939 0.937 0.935 0.937 0.937
- w/o M 0.912 0.917 0.919 0.919 0.916
- w/o A 0.931 0.935 0.927 0.929 0.930
- w/o S 0.929 0.912 0.927 0.922 0.923

Table 4: Ablation Study on the Amazon dataset

errors. (iii) MTEM surpasses MTEM - w/o T with an average
decrease of 0.9 percent on the TWITTER dataset, and with
an average of 0.7 percent on the Amazon dataset, which is
consistent with our claims that the annealing mechanism is
beneficial to align the domains gradually.

5.4 Computation Cost
We conduct experiments on the Amazon dataset to compare
the computation cost in the Taylor approximation and the
original Second-order derivation. We separately count the
time and the memory consumed in computing the gradient of
the entropy indexes with different batch sizes. Experiments
are deployed on an Nvidia Tesla V100 GPU. From Fig. 3, the
time cost in the Second-order derivation is almost two times
higher than in the Taylor approximation, and the memory cost
in the Second-order derivation is 3-4 times higher than in the
Taylor approximation technique.

We also count the different performances of adapting the
BERT model to the ‘kitchen’ domain with respect to different
batch sizes. The experiment results are listed in Tab. 5, where
‘/’ means the memory cost is out of the device’s capacity.
From Tab. 5, we can observe that the Taylor Approximation
technique keeps a similar performance with the Second-order
derivation. What’s more, the best performance is achieved
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Figure 3: Computation Cost: Taylor Approximation (T.A) v.s. Second-order Derivation (SoD).

Batch Size 10 20 30 40 50 60
T.A 0.873 0.892 0.914 0.924 0.935 0.935
SoD 0.876 0.897 0.915 0.927 / /

Table 5: Domain Adaptation with Different Batch Size: Taylor Ap-
proximation (T.A) v.s. Second-order Derivation (SoD)

ψ ≈1.0

i bought this at amazon , but it’s cheaper at cutlery
and more, $ 9.95 , so is the $ 89.00 wusthof santoku
7 knife ( $ 79.00), and they have free shipping ! check
yahoo shopping before amazon ! ! !

ψ=5.0

i like and dislike these bowls, what i like about them is
the shape and size for certain foods and for the dish-
-washer. they are too small for cereal if you would like
to add fruit to your cereal, perfect for
oatmeal or ice cream but too small for soup or stew.

Table 6: Unlabeled instances with different entropy index (ψ).

by using a batch with more than 50 instances (the setting in
§ 5.2), which would exceed the memory capacity if we use
the Second-order derivation. Thus, the benefit of reducing
the computation cost is apparent, as a larger batch size leads
to better adaptation performance.

5.5 Case Study
In Tab. 6, we present two cases with different entropy indexes
learned in the meta-learning process (more cases are provided
in Appendix. E). Experiments are conducted on sentiment
classification tasks, and the settings are the same as ‘kitchen’
in § 5.2. On the sentences with smaller entropy index (up-
dating the model aggressively), the sentiment words are more
transferrable across domains in e-commerce , e.g., ‘cheaper’
and ‘free shipping’. Otherwise, sentences with larger entropy
index contain more domain discriminative words, e.g., the n-
gram ‘but too small for soup or stew’ in the kitchen domain
are less relevant to the other domains (electronics, books,
dvd). In this case, MTEM uses a large entropy index to up-
date the model more cautiously.

6 Related Work
6.1 Domain Adaptation
To adapt a model to a new domain, feature-alignment ap-
proaches [Ganin et al., 2016; Saito et al., 2019; Saito et al.,
2019] focus on explicitly aligning the feature space across
domains. For example, DANN [Ganin et al., 2016] pro-
poses to align the feature space by min-max the domain
classification loss. With similar efforts, MME [Saito et al.,
2019] min-max the conditional entropy on the unlabeled
data. BiAT [Jiang et al., 2020] proposes to decouple the
min-max optimization process in DANN, i.e., firstly max-
imize the risk loss to obtain a gradient-based perturbation
on the input space and then minimize the objective on the
perturbed input cases. On the other hand, data-centric ap-
proaches use the unlabeled data in the target domain or the
labeled data from the source domain to align the feature
space implicitly. To select labeled data from the source do-
main, researchers [Moore and Lewis, 2010] design a tech-
nique based on topic models for measuring the domain simi-
larity, while [Chen et al., 2021] takes a meta-learning algo-
rithm to implicitly measure the domain similarity. To ex-
ploit the unlabeled data from the target domain, pseudo la-
beling approaches, including self-training [Zou et al., 2019],
co-training [Chen et al., 2011], and tri-training [Saito et al.,
2017], are widely applied and become an important direc-
tion. The difference lies in that self-training [Zou et al., 2018;
Zou et al., 2019; Liu et al., 2021] uses the model’s predic-
tion to improve the model, while co-training [Chen et al.,
2011] and tri-training [Saito et al., 2017] involves more mod-
els which learn the task information from each other. In
the research of self-training for domain adaptation, many ef-
forts tried to use prediction confidence to reduce the label
noise of pseudo instances [Zou et al., 2018; Zou et al., 2019;
Liu et al., 2021], i.e., they preserve only the easy examples
that have high prediction confidences while discarding the
hard examples that have low prediction confidences. How-
ever, fitting the model on easy pseudo instances cannot ef-
fectively improve the performance, as the model is already
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confident about its prediction.

6.2 Meta-Learning
Meta-learning is an emerging new branch in machine learn-
ing that aims to train a model that can adapt to a new task
or new domain quickly given a few new samples. For this
purpose, previous studies tried to learn better initial model
parameters [Finn et al., 2017], or better learning rates [Li et
al., 2017]. Learning to Compare methods, e.g., relation net-
work [Sung et al., 2018] and prototypical learning [Snell et
al., 2017], are investigated more widely in text classification
tasks[Tan et al., 2019; Geng et al., 2020]. With the recent
success of the pre-trained language model, Network Architect
Search (NAS) methods, e.g., DARTs [Liu et al., 2018]), are
also widely studied in Natural Language Processing (NLP)
tasks [Xu et al., 2021; Dong et al., 2021]. Some meta-
learning algorithm learns to knowledge distillation [Zhou et
al., 2022], i.e., increase the number of teacher models to train
a meta-teacher model that works better than a single teacher
model. Meta reweighting algorithm [Ren et al., 2018], which
proposes to dynamically reweight the risk on different in-
stances, has also inspired some NLP tasks [Li et al., 2020;
Chen et al., 2021]. Our research is similar to the meta
reweighting algorithm, i.e., the training objective is instance
adaptive, the difference lies in that the entropy index controls
the loss function on different instances while the instance
weights do not change the loss function.

7 Conclusion
This paper proposes a new meta-learning algorithm for do-
main adaptation on text classification, namely MTEM. Inher-
iting the principle of entropy minimization, MTEM imposes
an instance adaptative Tsallis entropy minimization process
on the target domain, and such a process is formulated as a
meta-learning process. To reduce the computation cost, we
propose a Taylor approximation technique to compute the
gradient of the entropy indexes. Also, we propose an anneal-
ing sampling mechanism to generate pseudo labels. In addi-
tion, we analyze the proposed MTEM theoretically, i.e., we
prove the convergence of the meta-learning algorithm in op-
timizing the instance-adaptative entropy and provide insights
for understanding why MTEM is effective in achieving do-
main adaptation. Extensive experiments on two popular mod-
els, BiGCN and BERT, verify the effectiveness of MTEM.
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