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Abstract

Most existing studies on Sign Language Trans-
lation (SLT) employ AutoRegressive Decoding
Mechanism (AR-DM) to generate target sentences.
However, the main disadvantage of the AR-DM
is high inference latency. To address this prob-
lem, we introduce Non-AutoRegressive Decoding
Mechanism (NAR-DM) into SLT, which generates
the whole sentence at once. Meanwhile, to improve
its decoding ability, we integrate the advantages of
curriculum learning and NAR-DM and propose a
Curriculum-based NAR Decoder (CND). Specifi-
cally, the lower layers of the CND are expected to
predict simple tokens that could be predicted cor-
rectly using source-side information solely. Mean-
while, the upper layers could predict complex to-
kens based on the lower layers’ predictions. There-
fore, our CND significantly reduces the model’s in-
ference latency while maintaining its competitive
performance. Moreover, to further boost the per-
formance of our CND, we propose a mutual learn-
ing framework, containing two decoders, i.e., an
AR decoder and our CND. We jointly train the
two decoders and minimize the KL divergence be-
tween their outputs, which enables our CND to
learn the forward sequential knowledge from the
strengthened AR decoder. Experimental results
on PHOENIX2014T and CSL-Daily demonstrate
that our model consistently outperforms all com-
petitive baselines and achieves 7.92/8.02× speed-
up compared to the AR SLT model respectively.
Our source code is available at https://github.com/
yp20000921/CND.

1 Introduction
Sign language is the communication language of the deaf
community. Sign language translation aims to transform sign
language videos into spoken language sentences, which can
greatly facilitate communication between hearing and deaf
people. Therefore, sign language translation has attracted in-
creasing attention [Camgoz et al., 2020; Zhou et al., 2021b;
Cao et al., 2022; Chen et al., 2022a; Chen et al., 2022b].

Model Iter BLEU4 Speedup

AR [Vaswani et al., 2017] Ty 23.24 1.00×
CMLMC [Huang et al., 2021] 4 22.67 2.47×
GLAT [Qian et al., 2021] 1 19.19 9.88×
DSLP [Huang et al., 2022a] 1 22.28 9.88×

Table 1: BLEU scores and speed-up ratios of the AR model (Line
1) and three mainstream NAR models (Lines 2-4) on the test set of
PHOENIX 2014T. Iter denotes the number of decoding steps and
Speedup stands for the speed-up ratio compared to the AR model.
Ty denotes the length of the target sentence.

Most existing studies employ a Transformer-based
[Vaswani et al., 2017] sequence-to-sequence framework with
an AutoRegressive (AR) decoding mechanism [Camgoz et
al., 2020; Zhou et al., 2021b; Zheng et al., 2021; Cao et
al., 2022; Zheng et al., 2023] for sign language translation.
AR decoding mechanism aims to generate considered tokens
in target sentences conditioned on previously generated to-
kens so that the target sentence will be predicted token by to-
ken. Although this decoding mechanism could generate flu-
ent target sentences, it still suffers from two inherent flaws:
1) obviously, this decoding mechanism leads to high infer-
ence latency [Gu et al., 2018], which cannot meet the real-
time requirement of sign language translation systems [Yin
et al., 2021]; 2) this approach only focuses on modeling the
forward (unidirectional) contextual information of the target
sentences while ignoring their bidirectional contextual infor-
mation [Zhou et al., 2022].

In contrast, unlike AR decoding mechanism, the Non-
AutoRegressive (NAR) decoding mechanism [Gu et al.,
2018; Huang et al., 2021; Huang et al., 2022b] can pre-
dict all target tokens in parallel. This decoding mechanism
not only significantly reduces the inference latency, but also
effectively models the bidirectional contextual information
of the target sentences. Existing NAR decoding mecha-
nisms can be roughly divided into two categories, i.e., iter-
ative NAR decoding mechanism [Ghazvininejad et al., 2019;
Huang et al., 2021] and fully NAR decoding mechanism [Gu
and Kong, 2021; Qian et al., 2021; Huang et al., 2022b].
The iterative NAR decoding mechanism leverages multiple
passes of decoding to get the final target sentence, whereas
the fully NAR decoding mechanism generates the whole sen-
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Figure 1: An example from CSL-Daily dataset, where Sign denotes
sign language annotations and Text represents corresponding spo-
ken sentence. We can observe that “this watch” and “you” can be
predicted directly through the information of videos, while “does”
and “belong to” can only be predicted correctly relying on the pre-
dicted target context (Notice that we have translated the Chinese into
English for readability).

tence through only one decoding pass. Therefore, the fully
NAR decoding mechanism has a higher decoding speed than
the iterative NAR decoding mechanism. However, the NAR
decoding mechanisms cannot focus on modeling the forward
sequential information [Shao et al., 2019] of the target sen-
tences, which results in their inferior performances compared
to the AR decoding mechanism. To exhibit how AR and NAR
decoding mechanisms perform differently on sign language
translation dataset, we report the BLEU scores and speed-up
ratios of the AR model and three mainstream NAR models
on the test set of the popular benchmark dataset PHOENIX
2014T [Camgoz et al., 2018] in Table 1. As shown in Table
1, the inference speed of the AR model is significantly lower
than that of the models with the NAR decoding mechanisms.
Meanwhile, GLAT and DSLP using a fully NAR decoding
mechanism have the highest inference speed. Moreover, we
can also observe that the AR model obtains superior transla-
tion performance compared to other NAR models.

In this paper, to reduce the inference latency of the sign
language translation model while maintaining its competi-
tive decoding quality, we integrate curriculum learning into
the NAR decoder and propose a Curriculum-based NAR De-
coder (CND), which adopts fully NAR decoding mechanism.
Specifically, we expect the lower layers of the decoder to pre-
dict simple tokens that can be predicted correctly relying on
source-side information solely. Meanwhile, with the help of
the predictions at the lower layers, the upper layers of our
CND are required to predict complex tokens that can be pre-
dicted based on the context of target sentence. In this way, our
CND can predict the target sentence from easy to hard. For
example, as shown in Figure 1, “this watch” and “you” can
be predicted directly by leveraging the visual features of sign
videos, while “does” and “belong to” can only be predicted
correctly relying on the context of target sentence.

Furthermore, to improve our CND’s capacity to model the
forward contextual information of the target sentence, we
propose a mutual learning framework that contains two de-
coders, i.e., an AR decoder and an NAR decoder (CND).
Specifically, we jointly train the AR decoder and our CND
and minimize the KL divergence between their outputs,
which enables the AR decoder and CND to promote each

other. In this way, our CND could learn forward sequen-
tial knowledge from the AR decoder, while the AR de-
coder could learn bidirectional contextual knowledge from
our CND. Unlike conventional knowledge distillation [Kim
and Rush, 2016; Gu et al., 2018] used in NAR machine trans-
lation, the AR decoder in our framework could be further
strengthened to provide our CND with better guidance.

Our contributions are summarized as follows:

• We propose a Curriculum-based NAR Decoder (CND)
that generates the whole target sentence through only
one decoding step, which considerably reduces the in-
ference latency of the model while maintaining its com-
petitive decoding quality.

• We propose a mutual learning framework that enables
the AR decoder and our CND to promote each other and
further improves the performance of our CND.

• The experimental results on PHOENIX2014T and CSL-
Daily demonstrate that our model consistently out-
performs all competitive baselines and achieves about
7.92/8.02 times speed-up compared to the AR model.

2 Methodology
In this section, to better illustrate our method, we first simply
introduce our base model (i.e., the transformer-based autore-
gressive sign language model) in Section 2.1 and the fully
NAR decoding mechanism in Section 2.2. Then, we describe
our Curriculum-based NAR Decoder in detail (Section 2.3).
Finally, we give a detailed description of our proposed mutual
learning framework (Section 2.4).

2.1 The Base Model
As shown in Figure 2(a), we employ the Transformer-based
autoregressive sign language translation model as our base
model, which consists of a visual features extractor and a
Transformer [Vaswani et al., 2017]. Given a sign language
video X = {x1, x2, ..., xTx

} and corresponding spoken lan-
guage sentence Y = {y1, y2, ..., yTy

}, our base model aims
to model the conditional probability p(Y |X). Specifically,
following previous works [Camgoz et al., 2020; Zhou et al.,
2021a; Zhang et al., 2023], we first utilize a pretrained CNN-
based visual module [Hao et al., 2021] as our visual features
extractor to extract the visual features V ∈ RTx×d. Then
we feed V into the encoder of the Transformer to model the
correlations among the visual features and obtain better vi-
sual contextual representation V ′. Finally, through the causal
masking mechanism, the decoder of the Transformer gener-
ates each token in the target sentence conditioned on V ′ and
the tokens previously generated. In this way, the conditional
probability p(Y |X) can be formulated as

p(Y |X) =

Ty+1∏
t=1

p(yt|y0:t−1, X) (1)

where y0 and yTy+1 denote the start and end of the target
sentences (i.e., ⟨bos⟩ and ⟨eos⟩), respectively.

Obviously, the AR decoding mechanism focuses on model-
ing the forward contextual information of the target sentence
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Figure 2: The overview of (a) the Transformer-based AR sign lan-
guage translation model and (b) the Transformer-based fully NAR
sign language translation model.

while ignoring its backward contextual information. Mean-
while, during inference, this decoding mechanism requires
generating target sentence token by token, which leads to high
inference latency.

2.2 Fully NAR Decoding Mechanism
Unlike AR decoding mechanism that generates target tokens
one by one, the fully NAR decoding mechanism predicts
all target tokens through only one decoding step (see Figure
2(b)). Specifically, following [Ghazvininejad et al., 2019],
the encoder first predicts the length of the target sentence T̂y

using a linear layer. Then, the decoder input H(0) of length
T̂y is generated through the source-side soft copy mechanism
[Wei et al., 2019; Qian et al., 2021]. Finally, H(0) is fed
into the fully NAR decoder to generate the whole sentence
through one decoding pass. In this situation, the conditional
probability p(Y |X) mentioned above can be expressed as

p(Y |X) = pL(Ty|X) ·
Ty∏
t=1

p(yt|X) (2)

Compared to AR decoder, the fully NAR decoder has two
significant characteristics: 1) the fully NAR decoder has a
high decoding speed because it could generate the whole tar-
get sentence at once; 2) since the fully NAR decoder does
not implement the causal mask mechanism, it can effectively
model the bidirectional contextual information of the target
sentence. However, the fully NAR decoder cannot focus
on modeling the forward sequential information of the target
sentence, which results in its inferior performance compared
to the AR decoder.

2.3 Curriculum-Based NAR Decoder (CND)
To effectively improve the inference speed of the sign lan-
guage translation model and maintain its competitive per-
formance, we introduce curriculum learning into the fully

Figure 3: The overview of our proposed CND, where the grey areas
depict the specific calculations at layer n.

NAR decoder and propose a Curriculum-based NAR Decoder
(CND). As shown in Figure 3, our CND consists of N stacked
identical Transformer decoder layers. Unlike vanilla fully
NAR decoder [Gu et al., 2018] that only makes predictions
at its top layer, our CDN predicts simple tokens at the lower
layers while generating complex tokens at the upper layers.

Specifically, we first obtain the predicted length of tar-
get sentence T̂y . To achieve this, a special [length] to-
ken is concatenated to the input of the encoder, and the en-
coder is trained to predict T̂y as the output of the [length]
token. Then, following [Qian et al., 2021], we employ
the input of the encoder to generate the input of our CND
H(0) = {h(0)

1 , h
(0)
2 , ..., h

(0)

T̂y
} through an attention-based soft

copy mechanism. Finally, we feed H(0) into our CND and
require it to predict corresponding tokens at each layer.

In particular, considering the n-th layer of our CND, we
first obtain its hidden state H̃(n) by

H̃(n) = Layer
(n)
dec(H

(n−1), V ′) (3)

where Layer
(n)
dec and H(n−1) denote the n-th layer of our

CND and the output of the (n− 1)-th layer, respectively.
After that, we pass H̃(n) into a linear output layer to ac-

quire the predicted tokens Y (n) and corresponding confi-
dences C(n) by

P (n)(Ỹ ) = softmax(WoH̃
(n)) (4)

Y (n), C(n) = (arg)max
ω

P (n)(Ỹ = ω) (5)

where Wo denotes the the weight matrix of the output layer.
Note that the linear output layer is shared among all the layers
of our CND.

Meanwhile, we keep the ⌈T̂y · n
N ⌉ tokens with the high-

est confidence in Y (n) and replace the others using a spe-
cial [mask] token. Then we get the updated predictions
Ŷ (n) = {ŷ(n)1 , ŷ

(n)
2 , ..., ŷ

(n)

T̂y
} where

ŷ
(n)
t =

{
y
(n)
t if t ∈ K(n);

[mask] otherwise;
(6)
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Figure 4: Illustration of our mutual learning framework. The frame-
work contains two decoders, i.e., an AR decoder and an NAR de-
coder (CND).

where K(n) stands for the set of the indexes of the most con-
fident ⌈T̂y · n

N ⌉ tokens in Y (n).
Finally, we obtain the output of the n-th layer H(n) by con-

catenating the embedding of Ŷ (n) with H̃(n) and utilizing a
linear layer to further process it, as follows:

H(n) = Wc[H̃
(n); emb(Ŷ (n))] (7)

where Wc denotes the weight matrix of the linear layer.
Note that H(n) is also the input of the (n + 1)-th layer.

In this way, the lower layers provide confident predictions to
the upper layers, which promotes the prediction of complex
tokens at the upper layers.

In addition, we can notice that the number of tokens to
be predicted (⌈T̂y · n

N ⌉) is increased linearly layer by layer,
and the top layer will predict all the target tokens. Therefore,
our CND is able to generate the target sentence from the bot-
tom up with increasing difficulty. It is worth noting that we
have also considered using different functions (e.g., logarith-
mic or exponential) other than the linear function to calculate
the prediction ratio for each layer, and we will illustrate it in
Section 3.6.

Due to the fact that the predictions at the top layer of our
CND are generated based on all the predictions at the lower
layers, we use the top layer’s output as our final prediction
during inference.

2.4 Mutual Learning
To further boost the performance of our CND and integrate
both AR and NAR decoding mechanisms, we propose a mu-
tual learning framework. As shown in Figure 4, our frame-
work contains two decoders, i.e., an AR decoder and our
CND. In this framework, we jointly train the AR decoder and
our CND and minimize the distance of their outputs. There-
fore, our final training objective L contains three components:
AR loss LA, CND loss LC , and mutual learning loss LM.

L = LC + αLA + βLM (8)

where α and β are hyperparameters.

AR loss LA. We employ vanilla Transformer [Vaswani et
al., 2017] decoder as our AR decoder. Specifically, we first
feed the shifted ground-truth tokens into our AR decoder and
obtain the hidden states of its top layer H(AR). Then, we
send H(AR) into the linear output layer to get the probability
distribution

Q(Ỹ ) = softmax(WoH
(AR)) (9)

Finally, we use Cross-Entropy loss as our AR loss LA

LA =

Ty∑
t=1

CE(qt, yt) (10)

where qt denotes the t-th element of Q(Ỹ ), corresponding to
the predicted probability distribution of the t-th token of the
target sentence, and CE(·) denotes the calculation of Cross-
Entropy.

CND loss LC . Since our CND makes predictions at every
layer, the LC is the sum of the Cross-Entropy losses in each
layer.

LC =
N∑
i=1

∑
t∈K(i)

CE(p
(i)
t , yt) (11)

where p
(i)
t denotes the t-th token’s probability distribution

produced by equation (4). In this way, our CND could pre-
dict simple tokens at the lower layers, which builds a solid
foundation for predicting complex tokens at the upper layers.

Mutual learning loss LM. We use KL divergence to mea-
sure the gap between the outputs of the two decoders. Since
our CND makes predictions at every layer, we calculate the
KL divergence between the distribution predicted by each
layer of the CND and that predicted by the top layer of the
AR decoder.

LM =
1

2

N∑
i=1

∑
t∈K(i)

(KL(qt||p(i)t ) +KL(p
(i)
t ||qt)) (12)

In this way, our CND is able to learn forward (unidirectional)
sequential knowledge from the AR decoder, while the AR
decoder could learn bidirectional contextual knowledge from
our CND.

3 Experiment
3.1 Datasets and Evaluation Metrics
We evaluate our approach on two popular benchmark datasets
for sign language translation task, i.e., PHOENIX 2014T
[Camgoz et al., 2018] and CSL-Daily [Zhou et al., 2021a].

• PHOENIX 2014T is a German sign language trans-
lation dataset recorded from weather forecast news,
including sign language videos from 9 signers, sign
gloss annotations and German translations which are
all segmented into parallel sentences. The dataset in-
cludes 7,096/519/642 continuous sign language videos
in train/dev/test splits.
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Category Model Iter
PHOENIX 2014T

Latency SpeedupDev Test
ROUGE BLEU4 ROUGE BLEU4

AR AR [Vaswani et al., 2017] N 49.33 23.12 49.48 23.24 188.47ms 1.00×

Iterative NAR CMLM [Ghazvininejad et al., 2019] 4 49.83 22.15 50.33 22.45 76.30ms 2.47×
CMLMC [Huang et al., 2021] 4 49.88 22.42 50.51 22.67 76.30ms 2.47×

Fully NAR GLAT [Qian et al., 2021] 1 47.73 19.88 47.10 19.19 19.07ms 9.88×
DSLP [Huang et al., 2022a] 1 50.42 22.36 50.38 22.28 19.07ms 9.88×

Ours CND 1 51.86 22.95 51.08 22.92 23.79ms 7.92×
CND+Mutual Learning 1 52.99 24.32 53.58 24.71 23.79ms 7.92×

Table 2: Experimental results on the development and test sets of PHOENIX 2014T. Note that we report the test scores of the best checkpoint
on the development set. In addition to reporting the scores of BLEU4 and ROUGE, we also report the sentence-level inference latency as
well as the speedup ratio of the test set. Best results are highlighted in bold.

Category Model Iter
CSL-Daily

Latency SpeedupDev Test
ROUGE BLEU4 ROUGE BLEU4

AR AR [Vaswani et al., 2017] N 44.16 15.92 43.93 15.88 197.28ms 1.00×

Iterative NAR CMLM [Ghazvininejad et al., 2019] 4 47.35 14.96 47.49 14.47 77.84ms 2.53×
CMLMC [Huang et al., 2021] 4 47.33 14.71 47.56 15.01 77.84ms 2.53×

Fully NAR GLAT [Qian et al., 2021] 1 44.25 11.48 44.33 11.27 19.46ms 10.14×
DSLP [Huang et al., 2022a] 1 46.65 13.56 46.54 13.73 19.46ms 10.14×

Ours CND 1 48.85 14.94 48.41 14.84 24.59ms 8.02×
CND+Mutual Learning 1 50.74 16.49 51.05 16.61 24.59ms 8.02×

Table 3: Experimental results on the development and test sets of CSL-Daily. We use the same experimental settings as in Table 2. Best
results are highlighted in bold.

• CSL-Daily is a recently released Chinese sign language
translation dataset. The content of the corpus focuses
on the daily life of the deaf community and covers a
wide range of topics, including family life, medical care,
school life, bank service, shopping, social contact and so
on. The dataset includes 18,401/1,077/1,176 continuous
sign language videos in train/dev/test splits. There are
10 signers participating in the video recording work.

Moreover, following the previous studies [Camgoz et al.,
2018; Camgoz et al., 2020; Chen et al., 2022a; Chen et al.,
2022b], we evaluate the performance of our model using the
BLEU [Papineni et al., 2002] and ROUGE 1 [Lin, 2004].

3.2 Implementation Details
Our model is developed based on PyTorch and all the experi-
ments are run on 1 Titan RTX GPU.

Before training, we employ Xavier initialization to initial-
ize the parameters of all the networks with a gain of 1.0. Then
we train all the models for 60 epochs using Adam (β1 = 0.9,
β2 = 0.998) [Kingma and Ba, 2014] with a Linear Warm-up
Scheduler [Goyal et al., 2017], where the peak learning rate
is set to 5e-4 and warm-up step is 8K.

The hyper-parameters α and β are set to 0.5 and 1, respec-
tively. The encoder/decoder layer number N is set to 5. For

1https://github.com/neccam/slt/blob/master/signjoey/metrics.py

NAR inference, we follow [Ghazvininejad et al., 2019] and
set the length beam to 5 and for AR inference the beam size
is set to 5.

3.3 Baseline Models
We compare our model with the following Transformer-based
sign language translation models:
AR model. Autoregressive sign language translation
model.
Iterative NAR models. We choose two strong iterative
non-autoregressive models, i.e., CMLM [Ghazvininejad et
al., 2019] and CMLMC [Huang et al., 2021], and reproduce
their results on the two sign language translation datasets.
Fully NAR models. We select two competitive fully non-
autoregressive models, i.e., GLAT [Qian et al., 2021] and
DSLP [Huang et al., 2022a], and reproduce their performance
on the two sign language translation datasets.

3.4 Main Results
Results on PHOENIX 2014T. As illustrated in the Ta-
ble 2, our model consistently outperforms all baselines on
PHOENIX 2014T dataset. First, compared with two itera-
tive NAR models, i.e., CMLM and CMLMC, our CND ob-
tains improvements of 0.47 and 0.25 BLEU4 points respec-
tively and a much higher decoding speed (7.92× vs. 2.47×)
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on the test set of the PHOENIX 2014T. Second, compared
with two fully NAR models, i.e., GLAT and DSLP, our CND
achieves an average performance gain of 2.18 BLEU4 score
while maintaining a comparable speed (9.88× vs. 7.92×).
Third, compared with the AR model, our CND achieves about
7.92 times speed-up while maintaining a competitive perfor-
mance with a decrease of 0.32 BLEU4 points. These experi-
mental results demonstrate that our curriculum learning is ef-
fective in improving the decoding capability of the fully NAR
decoder. Further, our mutual learning framework brings a
large performance gain of 1.79 points to our CND, which en-
ables our model to outperform the AR model by 1.47 BLEU4
points on the test set of PHOENIX 2014T, which suggests
that our mutual learning framework could enhance our CND’s
capacity to model the forward contextual information of the
target sentence.
Results on CSL-Daily. As shown in Table 3, firstly, com-
pared with two fully NAR models, our CND obtains an av-
erage improvement of 2.34 BLEU4 points and a comparable
speed (8.02× vs. 10.14×). Secondly, our CND has a much
higher decoding speed (8.02× vs. 2.53×) than the two iter-
ative NAR models. In terms of performance, our CND sur-
passes CMLM by 0.37 BLEU4 points and achieves a simi-
lar performance to the CMLMC (14.84 vs. 15.01 BLEU4).
Third, compared with the AR model, our CND obtains about
8.02 times speed-up with a performance decrease of 1.04
BLEU4 points. Further, our mutual learning framework en-
ables our CND to outperform the AR model by 0.73 BLEU4
points with 8.02 times speed up on the test set of CSL-
daily.These results completely demonstrate the effectiveness
and efficiency of our CND and mutual learning framework.

3.5 Ablation Study
To further comprehend the contributions of different compo-
nents of our model, we conduct extensive ablation studies on
PHOENIX 2014T dataset. Our experimental details and re-
sults are shown in Table 4.
w/o Lower Layers Mutual Learning. In this variant, we
only minimize the KL divergence between the distribution
predicted by the top layer of the CND and that predicted by
the top layer of the AR decoder. From Line 3 in Table 4, we
observe that this variant will lead to a performance drop of
1.19 BLEU4 points, which illustrates that the lower layers of
the CND require more forward sequential knowledge of the
AR decoder than the top layer.
w/o LM. As shown in Lines 5 and 6 in Table 4, if we re-
move the LM in equation (8), the performance of our CND
and AR will drop by 1.71 and 2.98 BLEU4 points respec-
tively, which demonstrates the effectiveness of bidirectional
distillation between the AR decoder and the CND in our mu-
tual learning framework.
Mutual Learning → Online Unidirectional Distillation.
In this variant, we replace the bidirectional distillation in the
mutual learning framework with the unidirectional distillation
from the AR decoder to our CND. From Lines 7-8 we can ob-
serve a significant drop in performance of both AR and CND
(3.01 and 1.25 BLEU4). This result indicates that the AR de-
coder is enhanced through learning bidirectional contextual

lines model BLEU4 ROUGE

ours
1 CND+Mutual Learning 24.71 53.58
2 AR+Mutual Learning 26.60 53.50

w/o Lower Layers Mutual Learning
3 CND+Mutual Learning 23.52 52.36
4 AR+Mutual Learning 26.24 53.26

w/o LM
5 CND+Mutual Learning 22.97 50.92
6 AR+Mutual Learning 23.62 48.94

Mutual Learning → Online Unidirectional Distillation
7 CND+Mutual Learning 23.46 51.78
8 AR+Mutual Learning 23.59 49.01

Mutual Learning → Offline Unidirectional Distillation
9 student (CND) 23.06 51.12
10 teacher (AR) 23.24 49.48

w/o Mutual Learning
11 CND 22.92 51.08
12 AR 23.24 49.48

w/o Mutual Learning & Curriculum Learning
13 CND 22.28 50.38

Table 4: Ablation study of our model on the development set of
PHOENIX 2014T.

knowledge from the CND, and the strengthened AR decoder
provides the CND with more effective sequential information
to better guide it.

Mutual Learning → Offline Unidirectional Distillation.
We replace our mutual learning framework with conventional
sequence-level knowledge distillation, which is a kind of of-
fline unidirectional distillation. The results in Line 9 of Ta-
ble 4 show that this variant leads to significant performance
degradation in CND (1.65 BLUE4). This is due to the fact
that the frozen AR teacher cannot provide valid guidance for
our CND, which proves that our mutual learning framework
is superior to conventional sequence-level knowledge distil-
lation.

w/o Mutual Learning & Curriculum Learning. To
demonstrate the efficacy of our curriculum learning, we re-
move it from the CND. As shown in the Lines 11 and 13 of
Table 4, this variant causes a significant performance decline
of 0.64 BLEU4 points, which confirms that our curriculum
learning could effectively improve the decoding capability of
fully NAR decoder.

3.6 Effect of the Curriculum Function
In our CND, we introduce curriculum learning into the fully
NAR decoder and expect it to make predictions from easy to
hard. Specifically, We use a linear function (i.e., ⌈Ty · n

N ⌉ )
as curriculum function to calculate the number of tokens to
be predicted at each layer. In addition, we also utilize three
different kinds of functions in our curriculum. We present the
variation of the prediction ratio per layer with these functions
in Figure 5 and the corresponding performance of the model
in Table 5.

As shown in Table 5, the linear function achieves the best
results compared to the other three functions (Line 1). Be-
sides, we can also observe that the results of the linear, loga-
rithmic and quadratic functions are close to each other, with
no clear superiority or inferiority. However, the exponen-
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Functions Numbers BLEU4 ROUGE

Linear ⌈Ty · n
N ⌉ 22.92 51.08

Logarithmic ⌈Ty · log (n+1)
log (N+1)⌉ 22.89 50.76

Exponential ⌈Ty · en

eN
⌉ 22.77 50.41

Quadratic ⌈Ty · n2

N2 ⌉ 22.86 50.26

Table 5: Experimental results of CNDs with different curriculum
functions where Numbers denotes the number of tokens to be pre-
dicted at the n-th layer.
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Figure 5: The variation of the prediction ratio per layer with four
different functions.

tial function leads to a slight decrease in the performance
(Line 3). According to Figure 5, the linear, logarithmic,
and quadratic functions grow relatively smoothly throughout,
while the exponential function sharply increases in the later
stages. We speculate that the smooth increment of the predic-
tion ratio leads to superior performance of the model. How-
ever, if the prediction ratio is small at the lower layers and
grows too fast at the upper layers, the lower layers could not
provide enough contextual information to the upper, making
it more difficult to predict complex tokens at the upper layers.

4 Related Work
Sign Language Translation. Sign language translation
aims to transform sign language videos into spoken lan-
guages. Most existing approaches formulate this task as
a neural machine translation(NMT) problem [Chen et al.,
2022a] and utilize seq2seq structure with attention mech-
anism. [Camgoz et al., 2020] firstly applied Transformer
[Vaswani et al., 2017] to sign language translation task and
utilized sign gloss as intermediate supervision to regularize
the Transformer encoder. [Zhou et al., 2021a] proposed a
two-stage back translation method to solve the problem of
data scarcity. [Zhou et al., 2021b] enhanced the visual feature
modeling of sign language translation by exploiting multi-cue
features in sign language video frames. [Chen et al., 2022a]
applied visual and linguistic pretraining approaches to sign
language translation model. However, all these approaches
use autoregressive decoding mechanism, which cannot meet
the real-time requirement of sign language translation sys-
tems. Therefore, our work mainly focuses on how to effec-

tively reducing the inference latency of sign language trans-
lation model.

Non-autoregressive Decoding Mechanisms. Most exist-
ing NAR decoding mechanisms can be roughly divided into
iterative NAR decoding mechanism [Ghazvininejad et al.,
2019; Huang et al., 2021] and fully NAR decoding mecha-
nism [Huang et al., 2022b; Qian et al., 2021; Li et al., 2022].
[Ghazvininejad et al., 2019; Ghazvininejad et al., 2020;
Huang et al., 2021] applied Conditional Mask Language
Model (CMLM) to NAR translation task and modeled the
dependency between observable and masked target tokens.
However, iterative decoding limits the efficiency of NAR de-
coding, so fully NAR, which requires only one decoding pass,
is now becoming the focus of research. [Qian et al., 2021]
proposed a glancing sampling strategy for CMLM that kept
more visible tokens at the early stage of training and gradu-
ally reduced the number of them. [Huang et al., 2022b] in-
troduced a Directed Acyclic Graph structure into NAR Trans-
former and demonstrated that introducing the left-to-right de-
pendencies can effectively improve the performance of the
fully NAR model. [Huang et al., 2022a] provided supervi-
sion for each layer of the decoder, significantly improving the
performance of the NAR model. Unlike previous work, our
proposed CND integrates the strengths of curriculum learning
and the fully NAR decoding mechanism, which generates the
target sentence from the bottom up with increasing difficulty.

Knowledge Distillation between AR and NAR. Most Ex-
isting studies on NAR leveraged sequence-level knowledge
distillation [Kim and Rush, 2016; Gu et al., 2018] to bridge
the performance gap between NAR and AR model. Mean-
while, [Zhou et al., 2022] demonstrated that transferring bidi-
rectional contextual knowledge from NAR decoder to AR de-
coder could effectively improve the performance of AR de-
coder. Motivated by their studies, we propose a mutual learn-
ing framework that allows AR and NAR decoders to promote
each other.

5 Conclusion and Future Work

In this paper, we propose a Curriculum-Based Non-
autoregressive Decoder (CND) and a mutual learning frame-
work for sign language translation. Our CND integrates the
strengths of curriculum learning and fully NAR decoding
mechanisms, which not only significantly reduces the infer-
ence latency of the model but also maintains its competi-
tive performance. Meanwhile, our mutual learning frame-
work effectively leverages the advantages of both AR and
NAR decoding mechanisms, enabling our CND to learn the
forward sequential knowledge from the strengthened AR de-
coder and obtain significant performance gain. The experi-
mental results on PHOENIX2014T and CSL-Daily show that
our model consistently outperforms all the competitive base-
lines and achieves more than 7.92 times speed-up compared
to the AR model.

In the future, we plan to further optimize our mutual learn-
ing framework to enable more significant improvements in
both AR and NAR decoders.
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