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Abstract

Transformers achieve promising performance in
document understanding because of their high ef-
fectiveness and still suffer from quadratic compu-
tational complexity dependency on the sequence
length. General efficient transformers are chal-
lenging to be directly adapted to model document.
They are unable to handle the layout representa-
tion in documents, e.g. word, line and paragraph,
on different granularity levels and seem hard to
achieve a good trade-off between efficiency and
performance. To tackle the concerns, we propose
Fast-StrucTexT, an efficient multi-modal frame-
work based on the StrucTexT algorithm with an
hourglass transformer architecture, for visual doc-
ument understanding. Specifically, we design a
modality-guided dynamic token merging block to
make the model learn multi-granularity represen-
tation and prunes redundant tokens. Addition-
ally, we present a multi-modal interaction module
called Symmetry Cross-Attention (SCA) to con-
sider multi-modal fusion and efficiently guide the
token mergence. The SCA allows one modality in-
put as query to calculate cross attention with an-
other modality in a dual phase. Extensive exper-
iments on FUNSD, SROIE, and CORD datasets
demonstrate that our model achieves the state-of-
the-art performance and almost 1.9x faster infer-
ence time than the state-of-the-art methods.

1 Introduction

Visual document understanding technology aims to analyze
visually rich documents (VRDs), such as document images
or digital-born documents, enables to extract key-value pairs,
tables, and other key structured data. At present, multi-
modal pre-training transformer models [Lee et al., 2022;
Gu et al., 2022; Huang et al., 2022; Hong et al., 2022] have
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Figure 1: F-score (%) vs Inference Speed (FPS) on FUNSD test set.
Triangles indicate the methods focus on document understanding,
and the red triangle is our method. Diamonds mean that we utilize
the efficient transformers in our framework, and the FPS is computed
without image embeddings. The red diamond shows our method.

shown impressive performance in visual document under-
standing. The inside self-attention mechanism is crucial in
modeling the long-range dependencies to capture contextual
information. However, its quadratic computational complex-
ity is the limitation of the transformer involved in visual doc-
ument understanding with long sequences directly.

To improve the computational efficiency, there are three
typical solutions. The first solution [Kim et al., 2022;
Hongxu et al., 2022] simply reduces input sequence length
by efficient sampling or new tokenization process. The sec-
ond solution attempts to redesign transformer architectures,
such as reformulating the self-attention mechanism [Verma,
2021; Wang et al., 2022; Beltagy et al., 2020] or produc-
ing a lightweight model [Jiao ef al., 2020; Wu et al., 2022;
Zhang et al., 2022]. The third solution merges tokens by
MLP [Ryoo et al., 2021], grouping [Xu et al., 2022al, or
clustering [Marin ef al., 2023] to prune unnecessary infor-
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(c) The correlation of words and segments

Figure 2: We accumulate the attention map of all layers to get (a), and then enlarge the part in the red box to get (b). The figure (c) is a
semantic diagram according to the relationships in (b) and the orange line represents the correlation between words and segments.

mation related to several works [Pan et al., 2022; Beltagy et
al., 2020] have proved the redundancies in attention maps.

Although those methods significantly reduce the computa-
tional complexity of the transformer model, they do not take
into account the multiple granularity expressions in the vi-
sual documents, including words, lines, paragraphs, and so
on. Furthermore, some token reduction methods learn multi-
granularity information to a certain extent, but without con-
sidering the correlation between modality and granularity.

In Figure 2, we visualize the attention maps and token in-
teractions of a standard transformer in the inference phase.
In particular, Figure 2(a) displays the aggregated attention
map of all Transformer layers. The left half shows a self-
attention map inside words and the right half shows the cross-
attention map between words and segments. We re-sample
two regions with highlighted red boxes and zoomed in Fig-
ure 2(b). Moreover, for closer observation, Figure 2(c) gives
the correlation visualization (curves and lines) of words and
segments based on attention scores related to Figure 2(b). Al-
most the words and segments belonging to one semantic en-
tity have significant correlations to their counterparts, indicat-
ing a high redundancy between irrelevant tokens in attention
scores, which illustrates two key viewpoints:

1. Strong correlations are existed across granularities.
2. There is rich redundancy in attention computation.

In this paper, we propose an efficient multi-modal trans-
former called Fast-StrucTexT based on StrucTexT [Li et al.,
2021c], which is not only devoted to improving the model ef-
ficiency but also enhancing the expressiveness. We design an
hourglass transformer that consists of merging and extension
blocks, which receives the full-length sequence as input and
compresses the redundant tokens progressively. A weighted
correlation between two granularity features is produced by
each merging block to dynamically guide the merging pro-
cess. Since massive redundant information is eliminated, our
model yields great efficiency gain and higher-level seman-
tics. Further, we develop a Symmetry Cross-Attention (SCA)
module, a dual cross-attention mechanism with multi-modal
interaction, to conduct multi-modal feature fusion and pro-
vide modal semantic guidance for token merging. We pre-
train Fast-StrucTexT with four task-agnostic self-supervised
tasks for learning a good representation, and then fine-tune
the pre-trained model in three benchmark datasets. Exper-

iment results demonstrate that our model achieves state-of-
the-art performance and FPS.
The main contributions are summarized below:

* We propose Fast-StrucTexT with an efficient hourglass
transformer by performing modal-guided dynamic token
merging to reduce the number of tokens.

* We develop a dual multi-modal interaction mechanism
named Symmetry Cross-Attention, which can enhance
the multi-modal feature fusion from visual documents.

» Extensive experiments on four benchmarks show our
model achieve state-of-the-art speed and performance.

2 Related Work

2.1 Multi-Modal Pre-training Model

As the first heuristic work, NLP-based approaches [Devlin
et al., 2019; Liu et al., 2019] adopt the language model to
extract the semantic structure. Various works [Hong ef al.,
2022; Lee et al., 2022; Li et al., 2021a; Xu ef al., 2020] then
jointly leverage layout information by spatial coordinates en-
coding, leading to better performance and extra computations
simultaneously. After that, some researchers realize the ef-
fectiveness of deep fusion among textual, visual, and layout
information from document images. A quantity of works [Gu
etal.,2021; Li et al., 2021b; Li et al., 2021c; Xu et al., 2021;
Gu et al., 2022; Appalaraju er al., 2021] rely on text spotting
to extract semantic region features with a visual extractor.
However, the transformer-based architectures are inefficient
for long sequence modeling because of computationally ex-
pensive self-attention operations. To this end, we propose an
efficient multi-modal model, Fast-StrucTexT, for visual doc-
ument understanding.

2.2 Efficient Transformers

A well-known issue with self-attention is its quadratic time
and memory complexity, which can impede the scalability of
the transformer model in long sequence settings. Recently,
there has been an overwhelming influx of model variants pro-
posed to address this problem.

Fixed Patterns. The earliest modification to self-attention
simply specifies the attention matrix by limiting the field
of view, such as local windows and block patterns of fixed
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Figure 3: The overall Fast-StrucText architecture. Encoder is an hourglass architecture with the input of language and visual features. The
merging operation can effectively reduce redundancy computations, and multi-modal interaction information is obtained through SCA & SA.

The skip-connection exits from before merging to after extension.

strides. Sparse Transformer [Child et al., 2019] converts
the dense attention matrix to a sparse version by only com-
puting attention on a sparse number of ¢;, k; pairs. Group-
ingViT [Xu er al., 2022a] divides tokens into multiple groups,
and then group-wised aggregates these tokens. Chunking in-
put sequences into blocks that reduces the complexity from
N? to B? (block size) with B < N, significantly decreasing
the cost.

Down-sampling. Down-sampling methods that narrow the
resolution of a sequence can effectively reduce the com-
putation costs by a commensurate factor. Zihang Dai et
al. [Dai e al., 2020a] have highlighted the much-overlooked
redundancy in maintaining a full-length token-level repre-
sentation. To solve this problem, they compress the se-
quence of hidden states to a shorter length, thereby reduc-
ing the computation cost. TokenLearner [Ryoo et al., 2021]
uses MLP to project the tokens to low-rank space. The re-
cent Nystromformer [Xiong et al., 2021] is a down-sampling
method in which the “landmarks” are simply strided-based
pooling in a similar spirit to Set Transformer [Lee Juho,
2019], Funnel Transformer [Dai et al., 2020al, or Per-
ceiver [Jaegle Andrew, 2021]. Inspired by those works,
we design the hourglass transformer composed of modality-
guided dynamic token merging and extension.

3 Method

In this section, we provide the framework of the proposed
Fast-StrucTexT. First, we introduce the model architecture
and describe the approach for generating multi-modal input
features. Next, we present the details of the hourglass trans-
former with a hierarchical architecture. Finally, we explain
the pre-training objectives and fine-tuning tasks. The overall
Fast-StrucTexT architecture is depicted in Figure 3.

3.1 Model Architecture

Given a visual document and its text content extracted from
OCR toolkits, the feature extractor first extracts both textual
and visual features from the region proposals of text seg-
ments. These features are then fed into a transformer-based
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encoder to learn multi-modal contextualized representations
via alternating self-attention and cross-attention mechanisms.
By leveraging redundancies across input tokens, the proposed
encoder consisting of several Merging-Blocks and Extension-
Blocks is designed as a hierarchical structure for shortening
the sequence length progressively. In particular, the Merging-
Block dynamically merges nearby tokens and the Extension-
Block recovers the shortened sequence to the original scale
according to the merging information to support token-level
downstream tasks. Besides, we further adopt the alignment
constraint strategy to improve the model ability by introduc-
ing a CAE [Chen et al., 2022] head in the pre-training. The
generated contextual representations can be used for fine-
tuning downstream tasks of visual document understanding.

3.2 Feature Extraction

We employ an off-the-shelf OCR toolkit to a document image
I ¢ RWXH o obtain text segments with a list of sentences
S and corresponding 2D coordinates B. We then extract both
segment-level visual features and word-level textual features
through a ConvNet and a word embedding layer. For visual
features fy/, the pooled Rol features of each text segment ex-
tracted by Rol-Align are projected to a vector. For textual
features f,, we utilize the WordPiece to tokenize text as sub-
words and convert them to the ids.

We add a special start tag [CLS] with coordinates By =
[0,0, W, H] at the beginning of the input to describe the
whole image. Besides, several [PAD] tags with zero bound-
ing boxes append to the end of fy, f1 to a fixed length. We
ensure the length of f7, is an integral multiple of fy .

3.3 Hourglass Encoder

We propose an hourglass transformer as the encoder module
and progressively reduce the redundancy tokens. Instead of
shortening the sequence length by a fixed pattern of merging
tokens, the model performs a dynamic pooling operation un-
der the guidance of semantic units (text sentence/segment),
which leads to a shorter hidden states without harming model
capability. The encoder consists of several Merging- and
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Figure 4: Proposed modality-guided dynamic token merge block.

Extension-blocks. The Merging-block (M-Block) merges the
tokens of hidden states and the Extension-block (E-Block)
conducts up-sampling to make up for the original length.

Merging. The M-Block suggests merging nearby k tokens
with weighted 1D average pooling, where k is the shorten-
ing factor. In view of the multi-model hidden states, a re-
ferred weighting is predicted from another modality by a lin-
ear layer. The process is denoted in Figure 4.

i = AVG_POOL(fi~! - Linear™ " (fi-1)), (1)

m

where ¢ is the stage index of M-Block, m and n denotes
textual and visual modality (m,n € {V,L}). Notably,
Linear” ™" share their parameters for all M-Blocks.

Extension. The E-Block is required to transform shortened
sequence of hidden states back to the entire token-level state.
In detail, we simply apply repeat up-sampling method [Dai
et al., 2020b] to duplicate the vector of each merged token
for k£ times. This method is computationally efficient. For
maintaining the distinct information of tokens, we fed the hid-
den states from the corresponding M-Block into the E-Block
through a skip-connection.

Symmetry Cross-Attention. Cross-Attention has shown
the effectiveness of multi-modal learning on the vision-and-
language tasks. To enhance the interactions among tex-
tual and visual modalities, we introduce Symmetry Cross-
Attention (SCA) module to model the cross-modality rela-
tionships, which consists of two dual cross-attentions to han-
dle the text and visual features in this work. We also leverage
SCA to provide cross-modality guidance for token merging
in the M-Blocks. The SCA is defined as follows:

T
CA(fn‘fm) = WOG(FW)EJ(fm)

SCA(fna fm) = {CA(fn|fm)a CA(fm‘fn)}

where F, F, I, are the linear project for query, key and
value. o is the Softmax function, d is the hidden size and
W, is the output weight. The multi-head settings of attention
are omitted for brevity.

@)
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Yet it’s worth noting that our SCA incorporates semantic
embedding as an additional input that gives the identical in-
dex for each segment and its corresponding words. SCA can
provide multi-granularity interaction information for the sub-
sequent token merging in addition to ensure the multi-modal
interaction. Furthermore, a global context information be
taken into account by Self-Attention (SA). Therefore, SCA
and SA are adopted in turn to build transformer layers.

3.4 Pre-training Objectives

We adopt four self-supervised tasks simultaneously during
the pre-training stage, which are described as follows.

Masked Visual-Language Modeling (MVLM) is the same
as LayoutLMv2 [Xu et al., 2021] and StrucTexT [Li et al.,
2021c]. Moreover, a CAE [Chen et al., 2022] head is intro-
duced to eliminate masked tokens in feature encoding and
keep the consistency of document representation between
pre-training and fine-tuning.

Graph-base Token Relation (GTR) constructs a ground
truth matrix G with 0~9 to express the spatial relationship
between each pairwise text segments. We give G;; a layout
knowledge, i.e., 0 means the long distance (exceeding half
the document size) between text segment ¢ and 7, and 1~9 in-
dicate eight buckets of positional relations (up, bottom, left,
right, top-left, top-right, bottom-left, bottom-right). We ap-
ply a bilinear layer in the segment-level visual features to ob-
tain the pairwise features and fed them into a linear classifier
driven by a cross-entropy loss.

Sentence Order Prediction (SOP) uses two normal-order
adjacent sentences as positive examples, and others as neg-
ative examples. SOP aims to learn fine-grained distinctions
about discourse-level coherence properties. Hence, the en-
coder is able to focus on learning semantic knowledge, and
avoids the influence of the decoder.

Text-Image Alignment (TIA) is a fine-grained cross-modal
alignment task. In the TIA task, some image patches are ran-
domly masked with zero pixel values and then the model is
pre-trained to identity the masked image patches according to
the corresponding textual information. It enable the combine
information between visual and text. Masked text token is not
participating when estimating TIA loss.

3.5 Fine-tuning

We fine-tune our model on visual information extraction
tasks: entity labeling and entity linking.

Entity Labeling. The entity labeling task aims to assign
each identified entity a semantic label from a set of prede-
fined categories. We perform an arithmetic average on the
text tokens which belong to the same entity field and get the
segment-level features of the text part. To yield richer se-
mantic representations of entities containing the multi-modal
information, we fuse the textual and visual features by the
Hadamard product operation to get the final context features.
Finally, a fully-connected layer with Softmax is built above
the fused features to predict the category for each entity field.



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Model Modality Image FPST FLOPs Param. FUNSD CORD SROIE
Embedding G) M) Fl Fl Fl
BERT g a5 [Devlin e al., 2019] T None 69.77 4836 110 6026 89.68 93.67
ROBERTag 4 5g [Liu et al., 2019] T None 70.47 48.36 125 66.48  93.54 -
LayoutLMp 4o [Xu er al., 2020] T+L None 68.68 48.36 113 78.66  94.72 94.38
BROSp sk [Hong er al., 2022] T+L None 36.29 54.00 110 81.21 9536 9548
FormNet 45 [Lee et al., 2022] T+L None - - 217 84.69 97.10 -
StructuralLM g a5 [Li et al., 2021a] T+L None - - 113 78.66 - -
UniDoc [Gu et al., 2021] T+L+I  ResNet-50 - - 272 87.96 96.64 -
StrucTexTp asg [Li et al., 2021c] T+L+I  ResNet-50 2411 8221 107+  83.09 - 96.88
DocFormerg 45 [Appalaraju ef al., 2021] T+L+I  ResNet-50 1432 93.13 183 83.34 96.33 -
SelfDoc [Li et al., 2021b] T+L+I  ResNeXt-101 - - 137 83.36 - -
LayoutLMv2 5 4o [Xu et al., 2021] T+L+I  ResNeXt-101 15.50 91.45 200 8276 9495 96.25
LayoutLMv3 4o [Huang et al., 2022] ~ T+L+I  Linear 39.55 5595 133 90.29  96.56 -
Fast-StrucTexT" T+L+I  Linear 94.64 1985 111 8950 96.65 97.12
Fast-StrucTexT T+L+I ResNet-18 74.12 44091 116 9035 97.15 97.55

Table 1: Entity labeling performance and model efficiency comparison on FUNSD, CORD, and SROIE datasets.

“T/L/T” denotes

“text/layout/image” modality. FPST computation excludes the heads of downstream tasks. * indicates the parameter number of StrucTexT [Li
et al., 2021c] is calculated without visual backbone of image embedding.

The Expression is shown as follow,

Zp= (Y27
L 3)

P =o(W°ZL)
where W¢ € R9*4 is the weight matrix of the MLP layer and
o is the Softmax function. For entity e’, Z% indicates the final
fused contextual features, & is the token length and P; is the
probability vector.
Entity Linking. The entity linking task desires to extract
the relation between any two semantic entities. We use the
bi-affine attention [Zhang et al., 2021] for linking prediction,
which calculates a score for each relation decision. In partic-
ular, for entity e’ and e/, two MLPs are used to project their
corresponding features Z% and Z7%, respectively. After that,
a bilinear layer T is utilized for the relation score Score®.

Xi=Wkzi +*
X)=W"Zp+b )
Score’™’ = (X} WP X7)

where WF W W? is the parameter weights that € R%*?, pF
and b is the bias. o denotes the sigmoid activation function.

4 Experiment

In this section, we introduce several datasets used for visual
document understanding. We then provide implementation
details, including our pre-training and fine-tuning strategies
for downstream tasks. We conclude with evaluations of Fast-
StrucTexT on four benchmarks, as well as ablation studies.

4.1 Datasets

IIT-CDIP [Harley et al., 2015] is a large resource for various
document-related tasks and includes approximately 11 mil-
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lion scanned document pages. We pre-trained our model on
this dataset.

FUNSD [Jaume et al., 2019] is a form understanding
dataset designed to address the challenges presented by noisy
scanned documents. It comprises fully annotated training
samples (149) and testing samples (50), and we focused on
the semantic entity labeling and linking tasks.

CORD [Park er al., 2019] is typically utilized for receipt
key information extraction, consisting of 800 training re-
ceipts, 100 validation receipts, and 100 test receipts. We used
the official OCR annotations and an entity-level F1 score to
evaluate our model’s performance.

SROIE [Huang ef al., 2021] is a scanned receipt dataset
consisting of 626 training images and 347 testing images.
Each receipt contains four predefined values: company, date,
address, and total. We used the official evaluation tools to
evaluate our model’s performance.

EPHOIE [Wang ef al., 2021] is a collection of 1,494 ac-
tual Chinese examination papers with a rich text and layout
distribution. The dataset is divided into 1,183 training images
and 311 testing images, and each character in the document
is annotated with a label from ten predefined categories.

4.2 Implementation

We followed the typical pre-training and fine-tuning strate-
gies to train our model. For all pre-training and downstream
tasks, we resized the images along their longer side and
padded them to a size of 512 x 512. The input sequence is
set to a maximum length of 640, with text tokens padded to
a length of 512 and image tokens padded to a length of 128.
We apply the PaddleOCR to extract the text segment.

Model Configurations. The hourglass encoder in our
model comprises three M-Blocks and three E-Blocks. Each
block consists of a SA and a SCA layer, with 12 heads, in
addition to Merging or Extension operations. The encoder ar-
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Model Subject Test Time Name School #Exam #Seat Class #Student Grade Score Mean
GraphlE 94.00 100 95.84 97.06 82.19 84.44 93.07 85.33 94.44 76.19 90.26
TRIE [Zhang et al., 2020] 98.79 100 99.46 99.64 88.64 85.92 97.94 84.32 97.02 80.39 93.21
VIES 99.39 100 99.67 99.28 91.81 88.73 99.29 89.47 98.35 86.27 95.23
WatchVIE [Tang ef al., 20211 99.78 100 99.88 98.57 94.21 93.48 99.54 92.44 98.35 92.45 96.87
StrucTexT [Li et al., 2021c]  99.25 100 99.47 99.83 97.98 95.43 98.29 97.33 99.25 93.73 97.95
Fast-StrucTexT 98.39 100 99.34 99.55 96.07 97.22 96.73 100 95.09 99.41 98.18

Table 2: Entity labeling performance comparison in Chinese on the EPHOIE test set.

chitecture is a 12-layer transformer with a hidden size of 768
and an intermediate size of the feed-forward networks, Dy,
of 3072. The shortening factor k is set to 2 for all stages. The
input sequence lengths of the three blocks in M-Blocks are
256, 128, 64, successively, and vice versa in E-Blocks. We
tokenize segment-level text by BERT [Devlin et al., 2019],
and trans to text sequence using One-Hot embedding with
the vocabulary size L,,=30522. To pre-process the image se-
quence, we use ResNetl8 [He et al., 2016] pre-trained on
ImageNet [Deng et al., 2009] to extract ROI features with the
sizeof C' x H x W = 128 x 4 x 64, followed by a linear
project of D;=1024.

Pre-training. We pre-train our model on overall IIT-CDIP
dataset. The model parameters are randomly initialized.
While pre-training, we apply AdamX optimizer with a batch
size of 64 for 1 epoch on 8§ NVIDIA Tesla A100 80GB GPUs.
The learning rate is set as 1 x 10~° during the warm-up for
1000 iterations and the keep as 1 x 10~%. We set weight decay
as 10~* and (8; = 0.9, B2 = 0.999).

Fine-tuning on Downstream Tasks. We fine-tune two
downstream tasks: entity labeling and entity linking. For en-
tity labeling task on FUNSD, CORD, and SROIE, we set the
training epoch as 100 with a batch size of 8 and learning rate
of 5 x 107, 1 x 1074, 1 x 10~*, respectively.

4.3 Comparison with the State-of-the-Arts

We compare Fast-StrucTexT with BASE scale multi-modal
transformer pre-trained models on public benchmarks. We
evaluate our model on three benchmark datasets for entity la-
beling and entity linking tasks with metrics such as Frames
Per Second (FPS), Floating Point Operations Per Second
(FLOPs), Parameters, and F1 score.

Entity Labeling. The comparison results are exhibited in
Table 1. Our Fast-StrucTexT achieves state-of-the-art FPS
and outperforms the performance of the current state-of-the-
art model by 156%. Fast-StrucTexT achieves a 1.9 x through-
put gain and comparable F1 score on the CORD and SROIE
entity labeling tasks. To demonstrate the effectiveness of
Fast-StrucTexT in Chinese, we pre-train the model in a self-
built dataset which consists of 8 million document images
in Chinese, and fine-tune the pre-trained model on EPHOIE.
Table 2 illustrates the overall performance of the EPHOIE
dataset, where our model obtains the best result with 98.18%
F1-score.
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Model FUNSD
BERT [Devlin et al., 2019] 27.65
SPADE [Hwang et al., 2021] 41.70
StrucTexTpasg [Li et al., 2021c] 44.10
LayoutLMb, , ¢, [Xu er al., 2020] 48.00
LayoutXLMp 4o [Xu eral., 2022b]  54.83
BROS g5k [Hong erf al., 2022] 67.63
Fast-StrucTexT 67.36

Table 3: Entity linking performance comparison on FUNSD dataset.

LayoutLM’LB s p 1s implemented by [Hong et al., 2022]. It’s worth
noticing that our method is 2x faster than BROS.

Entity linking. As shown in Table 3, we compare Fast-
StrucTexT with several state-of-the-art methods on FUNSD
for entity linking. Compared with BROS [Hong et al., 2022],
our method achieves a comparable performance with 2x
speed in Table 1.

4.4 Ablation Studies

We conduct ablation studies on each component of the model
on the FUNSD and SROIE datasets, including the backbone,
pooling strategy, and shorten factor. At last, we evaluate the
cost of our proposed hourglass transform with various se-
quence lengths.

Backbone. To prove the pre-trained Fast-StrucTexT can
obtain state-of-the-art efficiency and performance. We re-
placed a variety of popular lightweight backbones [Guo er
al., 2021; Verma, 2021; Wang et al., 2022] for evaluation.
As shown in Table 4, Fast-StrucTexT can achieve the high-
est performance and FPS. The point here is that transformer
takes responsibility for token feature representation, which
could benefit from large model size. It is the reason why
those lightweight architectures lead to worse performance.
Particularly, we believe that those methods do not take into
multi-modal interaction for visual document understanding.
In Table 4, the model shows better efficiency and performance
than other lightweight encoders and achieves FPS = 103.50,
F1 =90.35%. Comparing “Ours w/o M&E” and “Ours”, we
can obverse that merging and extension operations are not
only efficient but also can improve performance. Specifically,
it obtains 1.5x the throughput of "w/o M&E” settings, and
0.41% improvement in the labeling task.
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Model FPS*  Labeling
Vanilla SA 70.70  88.20
Linformer [Verma, 2021] 73.58  83.83
EAM [Guo et al., 2021] 76.38  83.85
+M&E 9142  86.98
GFA [Wang et al., 2022] 72.82  84.08
+M&E 103.38 88.45
Fast-StrucTexT w/ only SA  88.88  89.59
Fast-StrucTexT w/o M&E 81.85 89.94
Fast-StrucTexT 103.50 90.35

Table 4: Using different transformer design in FUNSD on entity
labeling tasks. FPS* only calculate the part of the encoder. “M&E”
is merging and extension operations for the token.

Method FPS*  FUNSD
GlobalPool 120.33 86.62
AvgPool 107.46 88.01
DeformableAttention 83.14 88.57
Fast-StrucTexT 103.50 90.35

Table 5: Ablation of token merging strategies.

k|SROIE-F1 FUNSD-FI CORD-FI FPS FLOPs
1| 9746 90.54 97.15  81.85 46.48G
2| 97.55 90.35 97.15 103.50 19.85G
4] 95.88 88.69 96.85 117.69 12.46G
8| 9222 83.07 93.85 133.48 10.14G

Table 6: Ablation study of the various k.

Pooling. Table 5 gives the results of different merging
strategies for entity labeling task on FUNSD. GlobalPool is a
form to directly merge all token-level features into segment-
level before encoding. AvgPool is our merging strategy with-
out cross-modal guidance. DeformableAttention [Xia et al.,
2022] attempts to learn several reference points to sample the
sequence. The experimental results show the effectiveness of
our token merging method.

Shorten factor. We study the hyper-parameter k£ as shown
in Table 6. We have evaluated multiple benchmarks and have
established that the setting k=2 is the best trade-off for doc-
ument understanding. In addition, we can adjust the k in the
fine-tuning stage. Nevertheless, ensuring consistency of &
during pre-training and fine-tuning can take full advantage
of knowledge from pre-trained data. Our framework supports
multi-scale pre-training with a list of k factors to handle dif-
ferent shortening tasks.

Sequence length. Our token merging can adapt to the arbi-
trary length of the input. The ratio of merging is adjustable
and determined by the value of £ and the number of M-blocks
and E-blocks. Referring to Table 7, we investigate the ability
of our method with various sequence lengths. The experimen-
tal results show that the speed and computation gains become
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Seq. | V.T. Ours V.T.
Len. | (FPS) (FPS) (FLOPs)

1024]30.25 52.86 (+74%) | 106.39G
2048|13.46 24.76 (+84%) | 251.44G  90.12G (-64%)
4096| 4.68 10.59 (+126%)| 657.50G 208.16G (-68%)
8192] 1.22  3.82 (+213%) [1933.49G 527.95G (-72%)

Ours
(FLOPs)

41.57G (-60%)

Table 7: Ablation study of sequence length, where V.T. represents
Vanilla Transformer.

threshold: 0.7

SCA w/ M&E

12 | —@— SCAwjo M&E
—8— SA w/o M&E
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0.2 4

004 *—eo—o 0o o0
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Figure 5: The cumulative proportions of the filted tokens which
probability beyond 0.7 in attention maps of transformers. SCA has
better modal interaction ability.

more pronounced with the sequence length increasing.

Modal interaction ability. As shown in Fig 5, we con-
ducted an ablation study on the hourglass architecture and
SCA module. We calculated the number of more than 0.7 in
each layer of the attention map and then accumulated it layer
by layer to observe the utilization of each token. Compared
with the yellow line and the blue line, the number of highly
responsive areas in the later layer is significantly increased,
which can show that after aggregating the multi-granularity
semantics, each token has sufficient ability to express more
information. The blue line is slightly higher than the red line,
which indicates that our SCA has better modal interaction
ability than SA.

5 Conclusion

In this paper, we present Fast-StrucTexT, an efficient trans-
former for document understanding task. Fast-StrucTexT
significantly reduces the computing cost through hourglass
transformer architecture, and utilizes multi-granularity infor-
mation through modality-guided dynamic token merging op-
eration. Besides, we propose the Symmetry Cross-Attention
module to enhance the multi-modal interaction and reduce the
computational complexity. Our model shows state-of-the-art
performance and efficiency on four benchmark datasets.
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