
Exploring Effective Inter-Encoder Semantic Interaction for Document-Level
Relation Extraction

Liang Zhang1,2, Zijun Min1,2, Jinsong Su1,2, Pei Yu1,2, Ante Wang1,2, Yidong Chen1,2

1School of Informatics, Xiamen University, China
2Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage

of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism, China
lzhang@stu.xmu.edu.cn, {jssu,ydchen}@xmu.edu.cn

Abstract
In document-level relation extraction (RE), the
models are required to correctly predict implicit re-
lations in documents via relational reasoning. To
this end, many graph-based methods have been pro-
posed for this task. Despite their success, these
methods still suffer from several drawbacks: 1)
their interaction between document encoder and
graph encoder is usually unidirectional and in-
sufficient; 2) their graph encoders often fail to
capture the global context of nodes in document
graph. In this paper, we propose a document-
level RE model with a Graph-Transformer Net-
work (GTN). The GTN includes two core sublay-
ers: 1) the graph-attention sublayer that simulta-
neously models global and local contexts of nodes
in the document graph; 2) the cross-attention sub-
layer, enabling GTN to capture the non-entity clue
information from the document encoder. Further-
more, we introduce two auxiliary training tasks
to enhance the bidirectional semantic interaction
between the document encoder and GTN: 1) the
graph node reconstruction that can effectively train
our cross-attention sublayer to enhance the se-
mantic transition from the document encoder to
GTN; 2) the structure-aware adversarial knowl-
edge distillation, by which we can effectively trans-
fer the structural information of GTN to the docu-
ment encoder. Experimental results on four bench-
mark datasets prove the effectiveness of our model.
Our source code is available at https://github.com/
DeepLearnXMU/DocRE-BSI.

1 Introduction
Relation extraction (RE) is an important task in the commu-
nity of information extraction (IE), which aims to identify
the relations between entities in a given text. While most
previous studies focused on extracting relational triples from
a single sentence [Zeng et al., 2015; Zhang et al., 2018;
Baldini Soares et al., 2019], i.e., sentence-level RE, many
researchers have recently begun to explore RE at the docu-
ment level [Zeng et al., 2020; Zhou et al., 2021; Jiang et al.,
2022]. Unlike sentence-level RE, document-level RE aims

Figure 1: (a) shows an input document, where different colors rep-
resent different entities and Italics indicate non-entity clue words,
which provide useful information for predicting the inter-sentence
relations in (c). (b) illustrates the relations between the non-entity
word episode and three entities, which are directly expressed by the
three sentences. By using episode as pivots, the two complex inter-
sentence relations in (c) can be easily inferred from the relations in
(b) (See the arrows from (b) to (c)).

to extract all relation triples from the input document. It is
usually more challenging since documents normally contain
a large number of implicit relations that can only be identified
with the help of relational reasoning. According to the statis-
tics in [Yao et al., 2019], in the commonly-used DocRED
dataset, about 61.6% of relational facts can only be correctly
predicted with the assistance of relational reasoning.

Due to the advantages of graph neural networks (GNNs)
in relational reasoning, graph-based methods are widely
adopted in document-level RE [Zeng et al., 2020; Xu et al.,
2021b; Peng et al., 2022]. These methods first use a pre-
trained language model (PLM) as the encoder to obtain the
document’s contextual representation, and then leverage de-
pendency structures, heuristics, or structured attention to con-
struct a document graph [Peng et al., 2017; Christopoulou et
al., 2019; Nan et al., 2020]. Finally, GNNs are applied to
encode the document graph for relational reasoning.

Although graph-based methods have achieved competi-
tive performance in document-level RE [Zeng et al., 2020;
Peng et al., 2022], they still suffer from several drawbacks.
First, in these methods, the interaction between document
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encoder (PLM) and graph encoder (GNN) is normally insuf-
ficient and unidirectional, severely limiting the performance
of the model. Specifically, when encoding the document
graph, these methods typically only consider entities while
ignoring non-entity words that might provide crucial clues
for relational reasoning. This suggests that the semantic
transition from the document encoder to the graph encoder
(PLM→GNN) is insufficient. As illustrated in Figure 1,
since the entities “Blackadders” and “Richard Curtis” appear
in different sentences, it is usually difficult to correctly pre-
dict their relation only using their own information. Note that
the non-entity word “episode” respectively co-occurs with
these two entities in a different sentence, and their relations
(episode, be part of, Blackadders) and (Richard Curtis, wrote,
episode) can be easily identified. With these two relations,
we can further infer the “creator” relation between “Blackad-
ders” and “Richard Curtis” (See Figure 1(c)). Besides, these
methods do not directly pass the structural information of the
graph encoder to the document encoder (GNN→PLM), re-
sulting in that the document encoder cannot directly benefit
from the graph encoder [Xu et al., 2021a]. Second, during
document graph encoding, these methods usually update the
node representations by only aggregating the information of
their neighbor nodes. However, this approach only focuses
on capturing the local context of a considered node while ne-
glecting its global context [Hu et al., 2019; Wan et al., 2021;
Wang et al., 2021], which significantly reduces the reasoning
ability of the model.

To deal with the above issues, we propose a graph-based
document-level RE model with the bidirectional semantic in-
teraction between the document encoder and the graph en-
coder. As shown in Figure 2, we first use a PLM encoder to
encode the input document. Then, on the top of the encoder,
we construct a heterogeneous document graph (HDG) that
consists of three types of nodes, namely mention node, entity
node, and document node, and three types of edges, i.e., intra-
sentence edge, intra-entity edge, and document edge. Lastly,
we propose a new graph encoder, Graph-Transformer Net-
work (GTN), to encode HDG and generate more expressive
entity representations. Particularly, our GTN includes two
core sublayers: the graph-attention sublayer and the cross-
attention sublayer. The former is a multi-head self-attention
variant with four attention heads, where the first three atten-
tion heads are applied to capture the local context of a con-
sidered node from its neighbors, and the last one is used to
capture the global context of the node from all other nodes.
Furthermore, via the cross-attention sublayer, GTN can cap-
ture the non-entity clue information from PLM encoder to
enhance the reasoning ability of the model.

To effectively enhance the bidirectional semantic interac-
tion between the PLM encoder and our GTN, we introduce
two auxiliary tasks into our model training: the graph node
reconstruction and the Structure-aware Adversarial Knowl-
edge Distillation (SA-KD). To implement graph node recon-
struction, we first mask the feature vectors of some nodes
in HDG, and then train GTN to reconstruct the original fea-
tures of these nodes. In this way, we can effectively train
GTN to obtain more clue information from PLM encoder
via the cross-attention sublayer. Besides, we employ SA-KD

Figure 2: The overall architecture of our model. First, we encode
the input document via PLM encoder to obtain word-level contex-
tual representations H. Then, we heuristically construct an HDG
composed of three kinds of nodes and three types of edges. Finally,
we encode HDG using GTN to obtain more expressive entity repre-
sentations, which are fed into the classifier for relation prediction.

to guide the PLM encoding using the structural information
of GTN. Specifically, we develop a discriminator to distin-
guish the node representations generated by PLM encoder
and GTN. Meanwhile, we regard PLM encoder as the gen-
erator (student), which is trained to produce node represen-
tations conforming to the distributions of GTN (teacher), so
that the discriminator cannot distinguish. By alternately opti-
mizing the discriminator and the generator, our model can ef-
fectively transfer the structural information of GTN to PLM
encoder. Note that our discriminator is more tolerant than
predefined distance functions in conventional knowledge dis-
tillation, such as cosine distance, because it does not require
PLM encoder and GTN to output the exact same node repre-
sentation. By doing so, we can effectively prevent the model
training from collapsing.

To demonstrate the effectiveness and generality of our
model, we conduct comprehensive experiments on four pub-
lic datasets, of which results show that our model consistently
outperforms all competitive baselines.

2 Methodology
In this section, we describe in detail our model and its train-
ing. As illustrated in Figure 2, our model consists of two com-
ponents: the PLM encoder and the Graph-Transformer
Network (GTN). First, the input document is encoded with
PLM encoder to obtain contextual representations of tokens
(Section 2.1). Then, on the basis of these representations,
we construct a Heterogeneous Document Graph (HDG) and
encode it using GTN to produce more expressive entity repre-
sentations (Section 2.2). Finally, we give a detailed descrip-
tion of our model training (Section 2.3).

2.1 The PLM Encoder
Following [Zhou et al., 2021; Tan et al., 2022a], we first use
the special token “∗” to mark the start and end of mentions in
the input document D. Then, we encode D using PLM en-
coder to obtain contextual representations H ∈ R|D|×d of to-
kens, where d is the dimension of PLM encoder hidden states.
Finally, we take the contextual representation of the token
[CLS] as the document’s contextual representation hD, and
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the contextual representation of “∗” at the start position of the
mention mj as its contextual representation h(mj). Particu-
larly, we merge all the mention representations of the entity ei
via logsumexp pooling [Jia et al., 2019] to generate its global
contextual representation h(ei) = log

∑Nei
j=1 exp(h(m

i
j )),

where Nei refers to the mention number of ei.

2.2 The Graph-Transformer Network
Graph Representation

To model dependencies among entities or mentions, we first
heuristically construct an HDG. Our HDG includes three
types of nodes: mention node, entity node, and document
node. We initialize the feature vectors of these nodes using
the contextual representations of mention, entity, and docu-
ment obtained from PLM encoder, respectively. Meanwhile,
we introduce three types of edges into HDG:

• Intra-Entity Edge. We introduce intra-entity edges to
fully connect mention and entity nodes of the same en-
tity. This allows us to efficiently aggregate different
mention representations of entities to generate better en-
tity representations.

• Intra-Sentense Edge. The intra-sentence edges are uti-
lized to fully connect mention and entity nodes that co-
occur in the same sentence. In this way, we can effec-
tively model the interaction among different entities.

• Document Edge. All mention and entity nodes are con-
nected to the document node via document edges. By
using this type of edge as pivots, we can effectively im-
prove the semantic interaction between distant entities.

Graph Encoding
Then, we encode the HDG with the GTN to generate more
expressive entity representations. To facilitate the calcula-
tion of GTN, we combine the feature vectors of all nodes into
a feature matrix F (0)∈RN×d, where N represents the num-
ber of nodes. Concurrently, we build an adjacency matrix
Ek∈RN×N (k∈{1, 2, 3}) for each type of edge.

As shown in Figure 2, our GTN contains L identical layers,
each of which consists of four sublayers: the graph-attention
sublayer, the cross-attention sublayer, the feed-forward neu-
ral network sublayer, and the layer normalization sublayer.
Next, we detail the two core sublayers of GTN, i.e., the first
two sublayers.

Graph-Attention Sublayer. This sublayer is a variation of
multi-head self-attention with four attention heads, where the
first three heads are used to capture the local contexts of nodes
in HDG, and the fourth head is used to capture the global
contexts of nodes in HDG. With the help of this sublayer,
GTN can simultaneously model the local and global contexts
of nodes in HDG.

We use the first three attention heads to model the three
types of edges in HDG, respectively. Specifically, for each
type of edge, we utilize its adjacency matrix Ei as the atten-
tion mask matrix in the corresponding attention head. For-
mally, at the (l+1)-th layer, the i-th attention head is calcu-
lated as follows:

F
(l+1)
i =A(F (l)WV

i ), (1)

A =softmax
( (F (l)WQ

i )(F (l)WK
i )T√

d
−
(
(1−Ei)◦Inf

))
,

where WK
i , WQ

i , and WV
i are trainable parameters, Inf

refers to infinity. Obviously, by introducing Inf , each node
is limited to only focus on its neighbors in HDG.

Specially, in the fourth attention head, we do not perform
the mask operation, which allows each node to pay attention
to all other nodes. To prevent losing structural information of
HDG in this head, we add the entity embedding embe and the
sentence embedding embs to each node:

F
(l+1)
4 =softmax

( (F̃ (l)WQ
4 )(F̃ (l)WK

4 )T√
d

)
(F (l)WV

4 ),

F̃ (l)=F (l) + embe + embs,

(2)

where WK
4 , WQ

4 , and WV
4 are parameter matrixes.

Cross-Attention Sublayer. Through this sublayer, we ex-
pect that GTN can extract clue information from PLM en-
coder to improve the model’s reasoning abilities. To adapt to
long documents and capture more diverse clue information,
we develop two types of attention heads in the cross-attention
sublayer: global attention head and local attention head. In
global attention head, the nodes in HDG can consider all the
words in the document to capture global clue information. In
local attention head, via the mask operation, each node can
only focus on the words in the sentence where it is located, so
as to capture local clue information.

Based on the final output F (L) of GTN, we utilize a bilin-
ear classifier to predict the relations of entity pairs:

ps,o = σ(zTsWrzo),

where zs = tanh(Ws[F
(L)[es], cs,o]),

zo = tanh(Wo[F
(L)[eo], cs,o]).

(3)

where Wr, Ws, and Wo are trainable parameters, F (L)[es]
and F (L)[eo] denote the feature vectors of entities es and eo,
respectively, and cs,o represents the localized context embed-
ding [Zhou et al., 2021] utilized to enhance the representation
of entity pair (es,eo). More specifically, cs,o is computed as

cs,o = HT As ◦Ao

1T(As ◦Ao)
, (4)

where As and Ao denote the PLM last-layer attention weights
of entities es and eo to all tokens in the document, respec-
tively, and ◦ refers to element-wise multiplication.

2.3 Model Training
To effectively enhance the bidirectional semantic interaction
between PLM encoder and GTN, we introduce two auxiliary
tasks into our model training: the graph node reconstruction
and the Structure-aware Adversarial Knowledge Distillation
(SA-KD). Thus, the final training objective of our model con-
tains three loss items: the relation classification loss LR, the
graph node reconstruction loss LN , and the SA-KD loss LA:

L = LR + αLN + βLA. (5)
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Figure 3: Illustration of our SA-KD.

where α and β are hyper-parameters, which are empirically
set to 0.1 and 0.01, respectively.

Relation Classification Loss LR. To alleviate the imbal-
ance relation distribution issue in document-level RE, we
adopt the adaptive thresholding loss [Zhou et al., 2021] as
our relation classification loss. Specifically, we introduce a
special relation class TH and use its logits logitTH as the
adaptive threshold value for each entity pair to distinguish
between positive relations PT and negative relations NT :

LR=−
( ∑

r∈PT

log
( exp(logitr )∑

r′∈PT ∪{TH} exp(logitr ′)

))
− log

( exp(logitTH)∑
r′∈NT ∪{TH} exp(logitr ′)

)
.

(6)

Node Reconstruction Loss LN . To effectively improve the
semantic transition from PLM encoder to GTN, we introduce
the graph node reconstruction task into our model training.
Specifically, we randomly sample and mask some nodes in
HDG, and then train GTN to reconstruct the initial features
of these nodes. To recover the original features of masked
nodes, GTN has to leverage its cross-attention sublayer to
capture more clue information from PLM encoder. Formally,
we define the node reconstruction loss as follows:

LN=
1

|Vmask|
∑

v∈Vmask

(
1−Cosine

(
F (L)[v], F (0)[v]

))
(7)

Where Vmask represents the masked nodes.

SA-KD Loss LA. The purpose of the SA-KD is to transfer
the structural information in GTN to PLM encoder. As shown
in Figure 3, we first construct a node feature matrix F̂ (l) from
the l-th layer output of PLM encoder. Then, we develop an
MLP discriminator C to distinguish whether the considered
node is from the output F̂ (l) of PLM encoder or the output
F (L) of GTN. Finally, we use binary cross entropy loss as
LA:

LA = logP (1|C(F (L)) + logP (0|C(F̂ (l)) (8)

where C(·)=Sigmoid(MLP(·)). Meanwhile, we regard PLM
encoder as the generator and train it to produce node repre-
sentations conforming to the distributions of GTN, so that the
discriminator cannot distinguish. In this way, we can guide

PLM encoder to learn more expressive entity representations
using the structural information of GTN. Notably, we simul-
taneously distill the structural information in GTN to mul-
tiple intermediate layers {l} of PLM encoder using multi-
ple distinct discriminators. Specifically, we empirically set
{l} to {6, 12} in the BERT encoder and {12, 18, 24} in the
RoBERTa-large encoder.

Finally, during model training, PLM encoder and GTN are
trained to minimize L, while the discriminator is trained to
maximize LA.

3 Experiments
3.1 Datasets and Evaluation Metrics
We evaluate our model on four commonly-used datasets:

• DocRED [Yao et al., 2019] is a large-scale document-
level RE dataset with 96 predefined relations, which is
constructed from Wikipedia and Wikidata. It contains
5,053 documents, which is divided into 3,053 docu-
ments for training, 1,000 for development, and 1,000 for
test. Since DocRED contains a considerable number of
false-negative samples, we also conduct experiments on
its two revised versions, i.e., Revisit-DocRED [Huang
et al., 2022] and Re-DocRED [Tan et al., 2022b].

• DWIE [Zaporojets et al., 2021] is an entity-centric
multi-task dataset containing 602 documents for train-
ing, 98 for development, and 99 for test. In this dataset,
there are about 26% of entity pairs expressing more than
one relation of the predefined 62 target relations. We fol-
lowed [Ru et al., 2021] to preprocess the DWIE dataset.

Following previous studies [Yao et al., 2019; Ru et al., 2021],
we utilize micro F1 and micro Ign F1 as our evaluation mea-
sures. Ign F1 denotes the F1 score excluding the relational
facts that are shared by the training and development/test sets.

3.2 Settings
Our model is developed based on Huggingface’s Transform-
ers [Wolf et al., 2020] and PyTorch. We use cased BERT-base
[Devlin et al., 2019] or RoBERTa-large [Liu et al., 2019]
as our encoder. To optimize our model, we use AdamW
[Loshchilov and Hutter, 2019] as our optimizer, which is
equipped with a weight decay of 1e-4 and a linear warmup
[Goyal et al., 2017] for the first 6% training steps. All hyper-
parameters are tuned on the development set.

3.3 Baseline Models
We compare our model with the existing Transformer-based
and Graph-based models.

• Transformer-based models directly employ PLMs to
learn better entity representations for document-level
RE, including BERT-TS [Wang et al., 2019], HIN-
BERT [Tang et al., 2020], CorefBERT [Ye et al., 2020],
and ATLOP-BERT [Zhou et al., 2021].

• Graph-based models leverage GNNs to enhance the
reasoning ability of document-level RE models, includ-
ing EoG [Christopoulou et al., 2019], DHG [Zhang et
al., 2020], GEDA [Li et al., 2020], LSR [Nan et al.,
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Re-DocRED DocRED

Model Dev Test Dev Test

Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1

GEDA-BERT [Li et al., 2020] − − − − 54.52 56.16 53.71 55.74
LSR-BERT [Nan et al., 2020] − − − − 52.43 59.00 56.97 59.05
GLRE-BERT [Wang et al., 2020] − − − − − − 55.40 57.40
GAIN-BERT [Zeng et al., 2020] 71.99* 73.49* 71.88* 73.44* 59.14 61.22 59.00 61.24
HeterGSAN-BERT [Xu et al., 2021b] − − − − 58.13 60.18 57.12 59.45
SSAN-BERT [Xu et al., 2021a] − − − − 56.68 58.95 56.06 58.41

BERT-TS [Wang et al., 2019] − − − − − 54.42 − 53.92
HIN-BERT [Tang et al., 2020] − − − − 54.29 56.31 53.70 55.60
CorefBERT [Ye et al., 2020] − − − − 55.32 57.51 54.54 56.96
ATLOP-BERT [Zhou et al., 2021] 73.35* 74.22* 73.22* 74.02* 59.22 61.09 59.31 61.30
SIRE-BERT [Zeng et al., 2021] − − − − 59.82 61.60 60.18 62.05
DocuNet-BERT [Zhang et al., 2021] 73.68† 74.65† 73.60† 74.49† 59.86 61.83 59.93 61.86
KD-DocRE-BERT [Tan et al., 2022a] 73.76† 74.69† 73.67† 74.55† 60.08 62.03 60.04 62.08
KMGRE-BERT [Jiang et al., 2022] 73.33* 74.44* 73.39* 74.46* − − − −
Ours-BERT 75.03 75.85 74.85 75.77 60.86±0.20 62.73±0.17 60.77 62.75

Table 1: Experimental results on the development and test sets of Re-DocRED and DocRED. We report the mean and standard deviation on
the development set by conducting five experiments with different random seeds. Besides, we report the test scores of the best checkpoint on
the development set. * indicates that scores are reported in [Jiang et al., 2022]. Results with † are obtained by our reproduction.

Figure 4: The performance of our model with different GTN Layer
Number L on the development set of Re-DocRED.

2020], GLRE [Wang et al., 2020], GAIN [Zeng et al.,
2020], HeterGSAN [Xu et al., 2021b], SIRE [Zeng et
al., 2021], and SSAN [Xu et al., 2021a].

In addition, we select several recent competitive models, in-
cluding DocuNet [Zhang et al., 2021], KD-DocRE [Tan et
al., 2022a], and KMGRE [Jiang et al., 2022] for comparison.

3.4 Effect of GTN Layer Number L

To illustrate the influence of the hyper-parameter L on our
model, we report the performance of our model with different
GTN layer numbers in Figure 4. Like previous graph-based
methods [Zeng et al., 2020; Peng et al., 2022], our model
achieves the best performance when L is set to 2. Mean-
while, we also note that the performance of our model is not
so sensitive to L. Finally, we set L=2 in all subsequent ex-
periments.

3.5 Main Results
Results on RE-DocRED and DocRED. As illustrated in
Table 1, our model consistently outperforms all baselines on

RE-DocRED and DocRED datasets. Moreover, we draw sev-
eral interesting conclusions:

First, compared with the improvements on DocRED, our
model achieves greater gains on RE-DocRED that contains
more relational facts involving relational reasoning. It sug-
gests that our model indeed performs better in reasoning sce-
narios.

Second, compared with the graph-based SOTA model,
GAIN-BERT, our model obtains improvements of 2.33 F1

and 1.51 F1 points on the test sets of RE-DocRED and Do-
cRED. These results demonstrate that our model can better
capture the dependencies among entities and mentions to im-
prove the reasoning ability of the model.

Third, our model also surpasses recent SOTA models, in-
cluding DocuNet-BERT and KD-DocRE-BERT, which lever-
age the dependencies among entity pairs to enhance their rea-
soning abilities. This fully illustrates again the excellent rea-
soning ability of our model.
Results on Revisit-DocRED. Unlike DocRED and RE-
DocRED, the training set of Revisit-DocRED contains a large
number of false-negative samples, but its test set does not. As
illustrated in Table 2, our model consistently and significantly
outperforms all competitive baseline models on this datasets,
demonstrating that our model is robust to noisy data.
Results on DWIE. To confirm the generalizability of our
model, we also conduct experiments on the DWIE dataset.
From Table 2, we find that our model significantly outper-
forms KD-DocRE-BERT by 1.63 Ign F1 and 1.54 F1 points
on the test sets of DWIE, achieving new SOTA performance
on this dataset.

3.6 Ablation Study
To further comprehend the contributions of different compo-
nents on our model, we conduct an ablation study by remov-
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Revisit-DocRED DWIE

Model Test Dev Test

Ign F1 F1 Ign F1 F1 Ign F1 F1

GAIN-BERT [Zeng et al., 2020]* 41.27 41.64 58.63 62.55 62.37 67.57
SSAN-BERT [Xu et al., 2021a]* 41.64 41.92 58.62 64.49 62.58 69.39
ATLOP-BERT [Zhou et al., 2021]* 41.62 41.90 63.57 69.96 67.56 74.36
DocuNet-BERT [Zhang et al., 2021]† 42.94 43.29 65.65 71.52 70.04 76.79
KD-DocRE-BERT [Tan et al., 2022a]† 43.22 43.68 65.84 71.78 70.27 77.01
KMGRE-BERT [Jiang et al., 2022]* 42.78 43.16 65.56 71.40 69.94 76.71

Ours-BERT 44.84±0.16 45.33±0.11 67.42±0.37 73.45±0.31 71.90 78.55

Table 2: Performance on the development/test set of Revisit-DocRED and DWIE. Here, we use the same experimental settings as in Table 1.
* indicates that scores are reported in [Jiang et al., 2022]. Results with † are obtained by our reproduction.

Model Ign F1 F1

Ours-BERT 75.03 75.85

SA-KD→KD 73.68 74.39
w/o Node reconstruction task 74.31 75.17
w/o Local head in cross-attention 74.58 75.42
w/o Global head in cross-attention 74.40 75.26
w/o Cross-attention 74.19 75.01
w/o The fourth head in graph-attention 74.21 75.04
Graph-attention→Self-attention 73.01 73.78

Table 3: Ablation study of our model on the dev set of Re-DocRED.

ing different components from our model. Specifically, we
compare our model with the following variants in Table 3.

(1) SA-KD→KD. In this variant, we replace our SA-KD
with the conventional KD that employs cosine similarity as
the predefined distance function to measure the gap between
nodes generated by PLM encoder and GTN. From Line 3 in
Table 3, we observe that this replacement results in a signif-
icant performance drop. The possible explanation is that the
predefined distance functions in the conventional KD cause
the collapse of model training during knowledge distillation,
whereas our SA-KD can effectively avoid this collapse issue.

(2) w/o Node reconstruction task. When node reconstruc-
tion task is removed from our model training, the perfor-
mance of our model drops by 0.72 Ign F1 and 0.68 F1 points
(See Line 4 in Table 3). This result demonstrates that this
task can effectively train our cross-attention sublayer to ex-
tract more clue information from PLM encoder.

(3) w/o Local head in cross-attention and w/o Global head
in cross-attention. To capture diverse clue information and
adapt to long documents, we equip the cross-attention sub-
layer with two types of attention heads: local and global at-
tention heads. To demonstrate this, in these two variants, we
respectively remove the local and global attention heads from
our cross-attention sublayer, both of which negatively impact
the performance of our model (See Line 5-6 in Table 3).

(4) w/o Cross-attention. In this variant, we exclude the
cross-attention sublayer from our model, which results in a
performance decrease in our model (See Line 7 in Table 3).
This suggests that our cross-attention sublayer can effectively
capture non-entity clue information from PLM encoder to im-

Model Intra-F1 Inter-F1

LSR-BERT [Nan et al., 2020] 65.26 52.05
GAIN-BERT [Zeng et al., 2020] 67.10 53.90
BERT-TS [Wang et al., 2019] 61.90 47.28
SIRE-BERT [Zeng et al., 2021] 68.07 54.01

Ours-BERT 68.49 55.74

Table 4: Intra-F1 and Inter-F1 scores on the dev set of DocRED.

prove the reasoning ability of the model.
(5) w/o The fourth head in graph-attention. To investi-

gate the effectiveness of the global context of nodes in HDG,
we remove the fourth attention head from our graph-attention
sublayer. As shown in Line 8 of Table 3, this variant causes
a significant performance decline, which confirms the contri-
bution of node global context on the model performance.

(6) Graph-attention→Self-attention. In this variant, we re-
place our graph-attention sublayer with a standard multi-head
self-attention sublayer, where each attention head acts on a
fully connected graph. This change leads to a significant per-
formance drop of 2.02 Ign F1 and 2.07 F1 points (See Line
9 in Table 3). For this result, we speculate that the standard
multi-head self-attention sublayer loses the structural infor-
mation of HGD and causes the over-smoothing problem.

3.7 Analysis of Reasoning Performance
To further illustrate the reasoning ability of our model, fol-
lowing [Nan et al., 2020; Zeng et al., 2020], we also re-
port Intra-F1, Inter-F1 and Infer-F1 scores. When calculating
Intra-F1 and Inter-F1, we solely consider intra-sentence and
inter-sentence relations, respectively. Meanwhile, we calcu-
late the Infer-F1 score using the test files supplied by Zeng et
al., [2020]. This metric aims to assess the ability of the model
in multi-hop reasoning.

As shown in Table 4, our model outperforms all baseline
models on Intra-F1 and Inter-F1 metrics. We notice that our
model achieves more significant improvements on Inter-F1

than on Intra-F1, demonstrating that our model is excellent
at extracting inter-sentence relations. In addition, extract-
ing inter-sentence relations is usually more challenging than
intra-sentence ones, so that Inter-F1 can more effectively re-
flect the reasoning ability of the model.
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Model Infer-F1 P R

BERT-RE [Zeng et al., 2020] 39.62 34.12 47.23
GAIN-BERT [Zeng et al., 2020] 46.89 38.71 59.45

Ours-BERT 49.92 42.82 59.87
w/o Cross-attention 49.36 42.06 59.74
w/o SA-KD 48.22 40.49 59.61
Graph-attention→Self-attention 46.29 38.02 59.15

Table 5: Infer-F1 scores on the development set of DocRED.

From Table 5, in term of Infer-F1 metrics, we observe that
our model also obtains a significant improvement compared
to all baseline models. Specifically, our model yields an im-
provement of 3.03 Infer-F1 points over GAIN-BERT that is
the graph-based SOTA model. Meanwhile, removing either
cross-attention sublayer or SA-KD from our model causes
a significant decline in our model’s performance (See Line
7-8 in Table 5). Furthermore, when we replace our graph-
attention sublayer with a standard multi-head self-attention
sublayer, our model performance sharply drops by 3.63 Infer-
F1 points (See Line 9 in Table 5). These results demonstrate
that each component in our model can enhance the reasoning
ability of the model.

4 Related Work
Recently, document-level RE has attracted an increasing
amount of interest. The dominant methods for document-
level RE can be roughly divided into Transformer-based
methods and graph-based methods.
Transformer-based Methods. Since PLMs have achieved
striking success in natural language processing (NLP), some
researchers directly employ Transformer-based PLMs for
document-level RE, which focus on extracting more useful
information from PLM to enhance the representations of en-
tities [Wang et al., 2019; Tang et al., 2020; Zhou et al., 2021;
Zhang et al., 2022; Zhang et al., 2023]. For example, Wang
et al., [2019] propose a two-step process for document-level
RE. They first identify whether entity pairs are related, and
then predict their relations. Zhou et al., [2021] introduce two
techniques, i.e., adaptive thresholding loss and localized con-
text pooling, to alleviate the class imbalance issue and en-
hance the representations of entity pairs, respectively. How-
ever, these methods do not explicitly model the dependencies
among entities, which limit the reasoning ability of the model.
Graph-based Methods. In recent years, GNNs have been
widely used in various NLP tasks, such as machine transla-
tion [Song et al., 2020; Yin et al., 2020b] and sentence rank-
ing [Yin et al., 2019; Yin et al., 2020a; Lai et al., 2021].
To effectively model dependencies among mentions or en-
tities, many researchers also introduce GNNs into document-
level RE [Christopoulou et al., 2019; Nan et al., 2020;
Zeng et al., 2020]. These methods first construct a docu-
ment graph with heuristics or dependency information, and
use entities or mentions as its nodes. Then, they encode this
document graph using GNNs to obtain more expressive entity
representations. For example, Nan et al., [2020] propose a la-
tent structure refinement model, which dynamically induces

the latent graph structure to facilitate the relational reasoning
across sentences. Zeng et al., [2020] construct two graphs
of different granularity, i.e., mention-level graph and entity-
level graph, to model the interactions among mentions and
entities, respectively. Meanwhile, to capture the global con-
text of nodes in document graph, Xu et al., [2021b] and Peng
et al., [2022] heuristically incorporate some inference paths
into the document graph to enhance the interaction among
distant related entities. However, these heuristics are gen-
erally incomplete and have poor generalizability. Further-
more, to improve the encoder with the structural informa-
tion of the document graph, Xu et al., [2021a] incorporate
the graph structure into the self-attention of PLM encoder.
Nevertheless, this approach introduces many new parameters
into PLM encoder, which makes it require a large amount of
external data for model training. Notably, graph-based meth-
ods usually only consider entity information during relational
reasoning while ignoring many non-entity clue information
in document, which hinders the further improvement of the
model’s reasoning ability.

Our work falls into the category of graph-based methods.
Specifically, our model consists of PLM encoder and GTN
that contains two core components, i.e., graph-attention sub-
layer and cross-attention sublayer. Through the first sublayer,
GTN can simultaneously model the local and global con-
texts of nodes in the document graph. Meanwhile, we in-
troduce a graph node reconstruction training task, which can
effectively train GTN to capture more clue information from
PLM encoder via the cross-attention sublayer. Furthermore,
inspired by recent studies on knowledge distillation [Chung
et al., 2020; He et al., 2022; Zhuang et al., 2022], we pro-
pose a SA-KD training task. With this task, we can guide
PLM encoder with the structural information of GTN to learn
more expressive entity representations. Unlike the conven-
tional adversarial knowledge distillation [Chung et al., 2020;
He et al., 2022], we use our GTN as the teacher model and the
PLM encoder as the student model, allowing GTN and PLM
encoder to promote each other during the distillation process.

5 Conclusion and Future Work
In this paper, we propose a document-level RE model consist-
ing of a PLM encoder and a GTN. Particularly, GTN contains
two core components: 1) the graph-attention sublayer that si-
multaneously models global and local contexts of nodes in
HDG; 2) the cross-attention sublayer, which enables GTN to
capture the non-entity clue information from PLM encoder.
Moreover, to enhance the bidirectional semantic interaction
between PLM encoder and GTN, we introduce two auxiliary
tasks into model training: 1) the graph node reconstruction
that can effectively train our cross-attention sublayer to en-
hance the semantic transition from PLM encoder to GTN; 2)
the SA-KD, by which we can effectively transfer the struc-
tural information of GTN to PLM encoder. Experimental
results on four commonly-used datasets illustrate that our
model outperforms all existing competitive baselines.

In future, we plan to apply our model to other graph-based
tasks, such as knowledge graph completion and graph node
classification, so as to verify its generality.
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