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Abstract

Sequence labeling serves as the most commonly
used scheme for Chinese named entity recogni-
tion(NER). However, traditional sequence labeling
methods classify tokens within an entity into differ-
ent classes according to their positions. As a result,
different tokens in the same entity may be learned
with representations that are isolated and unrelated
in target representation space, which could finally
negatively affect the subsequent performance of to-
ken classification. In this paper, we point out and
define this problem as Entity Representation Seg-
mentation in Label-semantics. And then we present
NerCo: Named entity recognition with Contrastive
learning, a novel NER framework which can better
exploit labeled data and avoid the above problem.
Following the pretrain-finetune paradigm, NerCo
firstly guides the encoder to learn powerful label-
semantics based representations by gathering the
encoded token representations of the same Semantic
Class while pushing apart that of different. Subse-
quently, NerCo finetunes the learned encoder for
final entity prediction. Extensive experiments on
several datasets demonstrate that our framework can
consistently improve the baseline and achieve state-
of-the-art performance.

1 Introduction

Named Entity Recognition benefits a wide range of down-
stream tasks in natural language processing(NLP). Due to
their simplicity and effectiveness, sequence labeling meth-
ods have long been the most common solution tackling this
task[Huang et al., 2015; Ma and Hovy, 2016; Lample et al.,
2016]. Recent success of Transformer-based [Vaswani et al.,
2017] large-scale pre-trained language models(PLMs) such as
BERT [Devlin et al., 2018] and RoBERTa [Liu et al., 2019]
have greatly boosted these sequence labeling methods to get
better contextualized token representations. As a result, al-
though Chinese NER is more difficult due to the language’s
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natural lack of word boundary information, impressive perfor-
mance improvements have been achieved with the combina-
tion of additional techniques such as lexicon integration and
so on[Li et al., 2020; Liu et al., 2021al.

Current sequence labeling methods rely on token labels
in the form of ’Position-Type’ as their supervision signals
[Sang and De Meulder, 2003] to perform token classification.
Each entity label is composed of a chunk tag and a type tag,
respectively indicating its position within the entity and its
category. Taking an PER (Person) entity in BIO tagging format
for an example, its first token is annotated B-PER and the
remaining tokens are annotated I-PER , where the chunk tag
B- facilitates recognizing consecutive entities of the same
type [Ramshaw and Marcus, 1995]. Though it is simple and
effective, we find this straightforward scheme may lead to
a serious problem that severely hinders the generalization
performance of the model. Specifically, one entity usually
contains different positional tokens. Those tokens naturally
share the same label semantics since they belongs to the same
entity type. However, the supervising scheme adopted by
sequence labeling assigns independent labels and enforces
them to be treated as distinct and isolated classes (e.g. B-
Type, I-Type). As a result, it makes their representations
dispersed into several separate and unrelated clusters, even
though they are in the same entity. We call this problem Entity
Representation Segmentation in Label-semantics.

As shown in Figure 1, taking a labeled entity 5K 1| &
(Zhangjiachuan County) which is a Geo-Political Entity(GPE)
labelled in BIO tagging format as an example, traditional meth-
ods will still guide models to label the first token "3k (Zhang)”
B-GPE and subsequent tokens I-GPE, leading to the afore-
mentioned problem of Entity Representation Segmentation in
Label-semantics. This training scheme results in a contradic-
tion that tokens of an entity sharing the same label semantics
would be embedded far and unrelated in Euclidean space and
the integral entity representation would be semantically seg-
mented, only due to the slightly different inner-entity position
indicated by their chunk tags. Such representation deficiency is
not trivial, because it could severely damage subsequent classi-
fication by confusing models in determining entity boundaries
and naturally influence their type decision.
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Figure 1: A comparison between traditional methods and our pro-
posed method. Unlike traditional methods on the left, our approach
takes a two-stage learning strategy. In the first stage, we conduct
contrastive learning for label-semantics based representations. Then
we finetune the learned model in the second stage, equipping it with
inner-entity position discrimination for chunk tags and linear map-
ping to type tags for each token.

In fact, to facilitate model’s classification head to correctly
recognize an entity’s boundary, the representations in this
sequence should be semantically coherent and consistent
inside and distinctive and discriminative outside. So, in this
paper, we propose a novel framework named NerCo: Named
entity recognition with Contrastive learning to address Entity
Representation Segmentation in Label-semantics problem. To
satisfy the demand of intra-entity coherence and inter-entity
distinctiveness, NerCo naturally leverages contrastive loss to
pull semantically close neighbors of entity tokens together
and push non-neighbors apart to learn a label-semantics based
representation learning model in the first stage. In the second
stage, we finetune the model with traditional token supervision
in BIO format to capture inner-entity positional information
for final prediction. Although NerCo is simple and easy to
use, requiring neither data augmentation nor base encoder
modification, it can fully exploit model’s representation po-
tential after injecting label-semantic signals entailed in raw
data, thus effectively alleviating the Entity Representation Seg-
mentation in Label-semantics problem and achieving better
generalization performances.

Experiments on four datasets show that NerCo achieves con-
sistent improvements over only finetuning the base encoder’.
Our method improves F1-score by 4.11% on Weibo dataset
specifically and achieves new state-of-the-art performances on
all of the Chinese NER datasets in our experiments. The re-
sults demonstrate that sequence labeling methods can exhibit
much stronger power in entity representation and recognition
after properly solving the Entity Representation Segmentation
in Label-semantics problem.

2 Related Work

Our work is related to existing sequence labeling methods for
Chinese NER and contrastive learning in NLP.

2.1 Chinese NER as Sequence-Labeling

NER has long been formulated as a sequence labeling task
and the current state-of-the-art results for sequence labeling
have been achieved by neural network approaches[Huang et

'"We release our codes at https://github.com/zhzai/nerco.
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al., 2015; Ma and Hovy, 2016; Chiu and Nichols, 2016]. Com-
pared with NER in English, Chinese NER is more difficult due
to the absence of explicit word delimiter in Chinese sentences.
Previous studies have empirically proved the superiority of
character-based methods over word-based ones[He and Wang,
2008; Liu et al., 2010; Li et al., 2014].

Since lexicon features can provide rich word boundary in-
formation, integrating them into a character-based sequence
encoder has attracted research attention. [Zhang and Yang,
2018] first proposed the lattice structure to encode all potential
words matched in a sentence. [Gui et al., 2019a] introduced a
rethinking mechanism to tackle the conflicts between potential
words. To better capture distance and direction information,
TENER [Yan et al., 2019] customized the transformer en-
coder to incorporate both character and word features using
relative position encoding. While LGN[Gui et al., 2019b]
and CGNISui et al., 2019] utilized graph neural network to
model the interaction within a character and word sequence,
[Li et al., 2020] converted the lattice structure into a flat se-
quence consisting of spans and achieved excellent and stable
performances.

Considering the significant NER improvement brought by
pre-trained models [Devlin et al., 2018; Liu et al., 2019],
many researchers turned to incorporating lexicon knowledge
into pre-trained models to combine both advantages. ERNIE
[Sun et al., 2019] leveraged entity-level and word-level mask-
ing strategies to implicitly integrate external knowledge into
BERT. [Diao et al., 2019] proposed a BERT-based Chinese
text encoder to explicitly consider potential word boundaries
while pre-training and fine-tuning. Different from previous
pre-training methods, [Liu et al., 2021b] proposed to integrate
lexicon information using a lexicon adapter between trans-
former blocks, which encouraged more sufficient interactions
between lexicon features and BERT.

2.2 Contrastive Learning in NLP

Contrastive Learning tries to learn powerful representations
in such a way that similar features are pulled together and
dissimilar ones are pushed apart in representation space[Had-
sell et al., 2006; Jaiswal et al., 2020]. Recently, it has be-
come a rising domain and achieved great success in computer
vision community[Chen et al., 2020; He et al., 2020]. To
employ contrastive learning in NLP, a key question to an-
swer is how to construct positive pairs. [Fang et al., 2020]
exploited back-translation to create positive instances of orig-
inal sentences. Similar to visual domain, [Wu et al., 2020]
conducted multiple sentence-level data augmentations, such
as word substitution, synonym substitution and reordering.
While [Giorgi et al., 2021] regarded spans within a docu-
ment as similar instances, [Gao er al., 2021] applied dropout
to the same sentence embedding twice to get positive pairs.
Another line of positive pair construction in NLP research
utilized a similar contrastive learning objective, the only dif-
ference is that they used labelled datasets for constructing
positive instances[Henderson er al., 2017; Gillick et al., 2019;
Gao et al., 20211.

Existing approaches have attempted to apply contrastive
learning to NER. SCL-RAI[SIi et al., 2022] is proposed to cope
with the Unlabeled Entity Problem by decreasing the distance
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Semantic Class Original Class (BIO) Original Class (BMES)
ORG B-ORG, I-ORG B-ORG, M-ORG,E-ORG,S-0ORG
PER B-PER, I-PER B-PER, M-PER, E-PER, S-PER
GPE B-GPE, I-GPE B-GPE, M-GPE, E-GPE, S-GPE
LOC B-LOC, I-LOC B-LOC, M-LOC,E-LOC,S-LOC
Non-Entity O o]

Table 1: The Semantic Classes in Ontonotes 4.0 dataset. We merge
original classes in "'BIO’ and " BMES’ format into Semantic Classes
for contrastive pair construction.

of span representations with the same label and increasing it
for different ones via span-based contrastive learning. [Das
et al., 2022] presents a novel contrastive learning technique
called CONTaiNER for few-shot named entity recognition.
[Zhang et al., 2023] proposes a bi-encoder framework which
applies contrastive learning to map text and entity types into
the same vector space. Unlike our work, this paper requires
large modifications to the model, which brings a relatively
high complexity.

3 Method

Inspired by the idea of self-supervised representation learn-
ing and pretrain-finetune paradigm, we propose a two-stage
framework for Chinese named entity recognition. In the first
stage, we leverage labeled data to construct contrastive pairs
and train the encoder for label-semantics based token represen-
tations using contrastive loss, which is shown in Figure 2. In
the second stage, we maintain the previous sequence labeling
convention, in which original labeled data and loss function
are utilized for final entity recognition. This framework also
complies with our intuition of solving Entity Representation
Segmentation in Label-semantics, for which we first learn
cohesive representations within an entity corresponding to
its label semantics and then finetune the encoder, equipping
it with the ability of inner-entity position discrimination for
chunk tags and linear mapping to type tags for each token, i.e.
assigning ’Position-Type’ tags.

3.1 Contrastive Pair Construction

To further clarify our construction of contrastive pairs and
better resolve the Entity Representation Segmentation in Label-
semantics problem, we first present the definition of Semantic
Class here.

Semantic Class represents the semantic category of the
entity token, regardless of its positional role within an entity. A
Semantic Class is signified only by the type tag of the token’s
"Position-Type’ label. In other words, tokens with different
labels of position but the same of semantics are merged into a
single category named Semantic Class. For tokens with label
0, we set them a separate Non—-Ent ity class. Taking B-PER
and I-PER in Ontonotes 4.0 dataset using BIO tagging format
as an example, tokens labelled by them both belong to the
Semantic Class of PER, indicating their *person entity’ label
semantics. The mapping relationship is illustrated in Table 1.

Then, we can answer the usually critical question in con-
trastive learning: how to construct (z;; ;") and (z;; x; ) pairs.
Following a simple implementation in SimCLR[Chen et al.,
20201, we construct positive and negative pairs using the token
representations within a mini-batch. We consider a query and
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a key as a positive pair if they belong to the same Semantic
Class S;. All token representations from different Semantic
Classes are considered negative samples for each token.

3.2 Semantic Class Guided Contrast

Naturally, the token representations belonging to the same
Semantic Class should be more similar and related to the their
entity’s type semantics. Thus we use contrastive learning to
pull the positive pairs together and push the negative pairs
apart in target space. Following the de facto procedure in
contrastive learning in computer vision [Chen et al., 2020;
He et al., 20201, we propose to take the contrastive training as
the first learning stage of our framework. We adopt InfoNCE
loss in SImCLR[Chen et al., 2020] as our contrastive loss
function. For a query token z; and one of its positive key, the
contrastive loss for (z;, z) is defined as L5 :

ot l esim(h; shiy/r 0
i T Tlog— - —
esim(h, hf) /T + Zﬁl(eszm(hi,hj )/7—)

where h; and h;” denote the representations of x; and 2", h;
is the representation of each ;v; in the mini-batch, 7 is the
temperature hyper-parameter, and sim(hq, hy) is the cosine

Ce h{ h . . .
similarity Wﬂfml\ The sum in the denominator is over one

positive and N negative tokens.

In the first stage of contrastive learning, we optimize the
sum of the above loss function corresponding to all positive
pairs in the mini-batch. Considering that tokens with O labels
are not entities and contain miscellaneous label semantics,
pushing their representations together in embedding space as
positive pairs does not make a clear sense. Here we filter out
the cases where tokens of the Semantic Class Non-Entity
serve as queries.

3.3 Token Label Supervised Fine-tuning

In the second stage, we finetune the above learned model using
conventional sequence labeling method. To capture dependen-
cies between consecutive tags, a CRF layer is leveraged on
top of the encoder.

Given K labelled data {s;,y;}|/,, K is the number of
sentences in a mini-batch. H = {hq, ha, ..., h,, } is the repre-
sentation sequence of sentence s; output by the encoder. We
first perform a linear transformation for subsequent classifica-
tion:

O =W,H +bo 2
where W, and b, are learnable parameters. After that, we can
get the probability of the label sequence y; = {y1, Y2, ...; Un}
of s;:

eXp(Zj (Oj,yj + Tyj—l»yj))
5. exp(22; (05, + Ty,_1.5,))

where T is the transition score matrix and y; denotes all possi-
ble tagging sequences.

We train the model by minimizing the sum of all sentences’
negative log-likelihood losses in the mini-batch as:

»Cfinetune - — Z log(P(Yz |SZ)) (4)

p(yilsi) = 5 3)
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Figure 2: Contrastive representation learning as the first stage of NerCo.

\_/
Datasets Type Train Dev Test
OntoNot Sentence 15.7k 4.3k 4.3k
ONOIES — Char 4919k 2005k  208.1k
Sentence 46.4k - 4.4k
MSRA Char 21699k -  172.6k
Weib Sentence 1.4k 0.27k 0.27k
ebo Char 738k 145k  14.8k
Resume Sentence 3.8k 0.46k 0.48k
4 Char 1241k 139k  15.1k

Table 2: Statistics of datasets.

For inference, we search the label sequence with the highest
score using Viterbi algorithm to recognize entities.

4 Experimental Setup
4.1 Datasets

We conducted experiments on four Chinese NER datasets to
evaluate our proposed method. (1) OntoNotes 4.0 Weischedel
et al.,2011] is a multilingual corpus that is manually annotated
in the news domain with various text annotations, including
Chinese named entity tags. We only utilized Chinese docu-
ments, consisting of four entity types, and processed the data
in the same manner as [Che et al., 2013]. (2) MSRA[Levow,
2006] is also a news domain corpus serving for word segmen-
tation and named entity recognition in Chinese. In our study
of Chinese NER, it includes three named entity types: LOC,
PER, and ORG. (3) Weibo NER[Peng and Dredze, 2016]
comprises annotated NER labels from the social media web-
site Sina Weibo. The corpus includes both named entities and
nominal mentions for four types of entities: PER, ORG, GPE,
and LOC. (4) Resume NER annotated by [Zhang and Yang,
2018] consists of resumes of senior executives and is anno-
tated with 8 types of named entities. The statistic information
of the datasets is presented in Table 2.
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4.2 Baselines

We take FLAT Transformer in [Li ez al., 2020] as our baseline
model. FLAT is a strong baseline that converted the lattice
structure into a flat sequence and used relative position en-
coding for Chinese NER. BERT[Devlin et al., 2018] is the
mostly used method to finetune a pre-trained Chinese BERT
for Chinese NER. LatticeLSTM[Zhang and Yang, 2018],
TENERI[Yan et al., 2019], SoftLexicon[Ma e? al., 2020] and
LEBERTILiu et al., 2021a] are other representative mod-
els integrating lexicon information into Chinese sequence for
better NER performance. RICON[Gu et al., 2022] and Mark-
BERT(Li et al., 2022b] are newly proposed competitive mod-
els for Chinese named entity recognition and both achieved
strong performances. W2NER(Li ef al., 2022a] treats NER as
a word-word relation classification task in a unified formalism,
while BoundarySmoothing[Zhu and Li, 2022] proposed a
boundary smoothing method as a regularization technique for
span-based NER model, achieving the sota level on the four
Chinese NER datasets.

4.3 Implementation Details

We adopt the FLAT Transformer in [Li ef al., 2020] as our
base encoder architecture. Following the setting in [Li ef al.,
2020], We use one layer of encoding layer, and SGD in both
stages to optimize the encoder. We leverage BERT for con-
textual token embedding[Devlin ef al., 2018]. During the first
stage of contrastive learning, we utilize InfoNCE objective
to optimize the parameters in FLAT encoder(with BERT pa-
rameters frozen) until achieving the minimal loss. Afterwards,
we finetune all the parameters of the learned model, including
BERT, in the manner of normal sequence labeling. Consider-
ing the relatively small scale of Weibo and Resume, we only
tune the classification head as a prior step before updating all
parameters to stabilize this second-stage finetuning process.
The way to select hyper-parameters is also the same as FLAT.
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5 Experimental Results

5.1 Performance

Overall Results

Table 3 shows the experimental results on Chinese NER
datasets. As shown in the table, our model outperforms our
baseline model and other methods consistently on four Chi-
nese NER datasets”. As a strong baseline method, we observe
FLATI(Li et al., 2020] already surpass BERT tagger by a large
margin and could give us a relatively strong and stable perfor-
mance in Chinese NER. Thanks to our additional contrastive
learning procedure, NerCo can effectively improve the per-
formance of baseline FLATI[Li et al., 2020] by an average
F1 score of 1.5% on the datatsets. Especially, our model
brings a large relative improvement over the baseline of up
to 6% on Weibo, in terms of the F1 score. As for the current
state-of-the-art models, taking W2NERI[Li et al., 2022a] as
an example, it leveraged multiple types of embeddings and
proposed complex architectures including multi-granularity
dilated convolutions to capture word-word interaction infor-
mation. Though it shows impressive performance and a large
margin over other lexicon-based methods, our model outper-
forms W2NER on all Chinese NER datasets. In general, our
method could surpass all the current top-performing methods,
pushing the state-of-the-art performances of Chinese NER?.

Span F & Type Acc

Compared with FLAT, NerCo performs the additional label-
semantics guided contrastive learning as the first stage. We
evaluate these two models in terms of Span F and Type Acc
to further investigate our performance gains. Span F mea-
sures the F1 score of recognized entity spans over the gold
spans, regardless of the correctness of their types. Type Acc
is the proportion of full-correct predictions to span-correct
predictions.

Table 4 shows these two metrics of FLAT and NerCo. We
can find our model performs better than the baseline in both
metrics, which demonstrates that the contrastive learning stage
benefits to both span boundary detection and span classifica-
tion. Specifically, the performance gain on Weibo is very
obvious in both metrics, indicating that solving the problem
of Entity Representation Segmentation in Label-semantics
can greatly promote boundary detection and also help a lot
in type prediction especially for small-scale NER datasets.
For Ontonotes and Resume, the improvements on Span F are
more significant than that on Type Acc and the situation is
reversed on MSRA, showing that NerCo can respectively pro-
mote boundary detection and type decision in the two cases.

Performance Against Sentence Length

Figure 3 shows the F1 score trends of the mostly used BERT,
our baseline FLAT and our method NerCo against sentence
length. Here we show two representative curves of the test

’In Table 3, the results of FLAT are implemented by ourselves,
while scores of other methods are copied from their original papers.
’-> means that the paper didn’t report this item.

3We refer readers to Appendix for the experimental results on
the English setting at https://github.com/zhzai/nerco/blob/master/
Appendix.pdf.
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Model Ontonotes

Pr. Rec. F1
BERT 76.01 7996  79.96
LatticeLSTM 76.35 71.56  73.88
TENER 76.13 73.68  74.89
SoftLexicon 83.41 82.21 82.81
LEBERT - - 82.08
MarkBERT 81.70 83.70  82.70
RICON 81.95 84.78 83.33
W2NER 82.31 83.36 83.08
BoundarySmoothing 81.65 84.03  82.83
FLAT 83.64 82.08 82.85
Ours 84.43 82.82 83.62
Model Resume

Pr. Rec. F1
BERT 94.87 96.50 95.68
LatticeLSTM 94.81 94.11 94.46
TENER 9528 9546  95.37
SoftLexicon 96.08 96.13 96.11
LEBERT - - 96.08
W2NER 96.96 96.35 96.65
BoundarySmoothing 96.63 96.69  96.66
FLAT 95.57 96.63 96.10
Ours 96.94 97.12 96.82
Model s

Pr. Rec. F1
BERT 93.40 94.12 93.76
LatticeLSTM 93.57 92.79 93.18
TENER 94.19 92,73  93.46
SoftLexicon 9575 95.10 9542
LEBERT - - 95.70
MarkBERT 96.10 96.00 96.10
RICON 95.94 96.33 96.14
W2NER 96.12 96.08  96.10
BoundarySmoothing 96.37 96.15 96.26
FLAT 95.75 9597 95.86
Ours 96.36 96.23  96.29
Model Weibo

NE NM  Overall
BERT 65.77 62.05 63.80
LatticeLSTM 53.04 62.25 58.79
TENER 55.34 6498 60.21
SoftLexicon 7094 67.02 70.50
LEBERT - - 70.75
W2NER - - 72.32
BoundarySmoothing - - 72.66
FLAT 66.96 70.78  68.68
Ours 73.06 72.50 72.79

Table 3: Results for Chinese NER.
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Span F

Ontonotes MSRA  Weibo Resume
FLAT 84.33 96.32 74.00 96.34
NerCo 84.94 96.57 76.61 96.94

Type Acc

Ontonotes MSRA  Weibo Resume
FLAT 98.24 97.91 92.81 99.75
NerCo 98.44 99.72 95.02 99.87

Table 4: Span F and Type Acc of different models.

F1 value(%)

<40 60 80 100 >100 <40 60 80 100 >100
Sentence Length Sentence Length

(a) Weibo (b) Ontonotes

Figure 3: F1 score against the sentence length.

splits of Weibo and Ontonotes. In general, our method shows
better performance and robustness on both datasets. Although
FLAT performs similarly to our method when the sentence
length is less than 80, its performance deteriorates as the
sentence length increases and lags significantly behind our
method. Notably, FLAT was even surpassed by BERT when
the sentence length exceeds 100. However, our method can
always perform well and, most importantly, remain stable
when the sentence length varies. For Ontonotes, our method
can always maintain a margin over FLAT in all sentence length
sections, demonstrating more adequate and rational utilization
of labeled data.

5.2 Ablation Study

To investigate the contribution of several key components and
our proposed two-stage method, we conduct several ablation
experiments on the four datasets. First, without contrastive
learning, we only finetune the encoder and observe a large
performance drop in our implementation, which proves that
optimizing the contrastive loss function could help improve
the inner-entity consistency and avoid Entity Representation
Segmentation in Label-semantics. As the ablation of our pro-
posed two-stage learning framework, we remove the first stage
of contrastive learning and optimize the multi-task loss(i.e. the
sum of InfoNCE loss and finetuning loss). The performance
deteriorates even worse than only finetuning the model. This
may be due to the fact that joint training for multiple objec-
tives simultaneously may make the learning mission unclear,
letting the training process uncontrollable. When removing
filtering operations on Non—-Ent ity tokens and performing
contrastive learning on all contrastive pairs, the performance
also decreases slightly, indicating that these meaningless con-

Models OntoNotes MSRA  Weibo Resume
NerCo 83.62 96.29  72.79 96.82
w/o Contrastive learning 82.85 9586  68.68 96.10
w/o Two-stage learning 80.83 95.24 68.32 95.36
w/o Filtering Non-Entity tokens 83.41 96.13 71.93 95.74

Table 5: An ablation study of the proposed model. (1)w/o Con-
trastive learning: Only fine-tuning is implemented, and Semantic
Class guided contrastive learning is not used. (2)w/o Two-stage
learning:Multi-task learning is conducted, where we optimize the
sum of fine-tuning loss and InfoNCE loss in a single stage. (3)w/o
Filtering Non-Entity tokens: Filtering operation on Non-Entity to-
kens as queries is removed.

trasting may add noises to parameter optimization.

5.3 How NerCo Brings Improvement

To explore why NerCo works better than the baseline, we visu-
alize the representations of entity tokens encoded by both mod-
els and also demonstrate the learning process of our method.
We use t-SNE to project these representations into two di-
mensions, taking the test split of MSRA as a representative
example.

As shown in Figure 4, we select 6 classes(respectively
B-ORG,I-ORG, B-PER, I-PER, B-LOC and I-LOC). Fig-
ure 4(a) presents the clustering of FLAT’s output embeddings,
and the right two figures illustrate our proposed two-stage
learning strategy. Figure 4(b) shows the token representations
after contrastive learning of pulling tokens of the same Se-
mantic Class together, regardless their differences in chunk
tags(i.e. B-PER and I-PER are considered the same Seman-
tic Class). We can see tokens of the same Semantic Class
are clustered together, and these three clusters are scattered
separately in different directions, as desired by our proposed
contrastive learning. And Figure 4(c) is the visualization of
the final representations after the second stage finetuning. We
can see that after NerCo’s two-stage training, the clusters show
much clearer margins and token representations within each
cluster are significantly more tightly packed together, com-
pared with the situation of that in FLAT. Since NerCo can
generate such better token representations, it is much easier
for it to make correct predictions near the decision boundaries,
which naturally leads to performance gains in downstream
tasks.

5.4 Case Study

Table 6 presents two tagging examples predicted by our model
NerCo and the baseline FLAT. In the first example from
MSRA, the word XA~ (Uniting) in *EX{MEX 5 (European
uniting) is very similar to the noun *B£%3°(Union) of another
entity *FAYHEX B3’ (European Union), leading to an extremely
blurry and confusing entity boundary for correctly detecting
the entity KX’ (European). It turned out that FLAT mis-
takenly predicted 'EX{IEX & (European uniting) as an ORG
entity, presumably confusing the verb *¥X &~ (Uniting) with
the noun "B£ %3’ (Union) and failing to recognize the right LOC
entity "MXM (European). However, our model correctly de-
tected the entity’s boundary and classified it into the right type.
The possible reason is that our method’s first stage contrastive
learning makes inner tokens’ representations more consistent
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Case 1 from MSRA Dataset
Sentence [FETLOCFFIFXTMLOCER & A [P JORG— R TE AR
[China]LOC supports [European]LOC uniting and the process of [EUJORG integration
Characters i) X FF I il Hﬁ )
) il [ sl — % 1 i# (=
Gold [B-LOC T-LOC] LoC 0 0 [B-LOC _ I-LOC]LOC 9] 0
o [B-ORG I-ORG]ORG (0] (0] o (0] (0]
FLAT [B-LOC T-LOCJ LOC [@) (0] [B-ORG I-ORG I-ORG  I-ORGJORG
(¢] [B-ORG I-ORGJORG (¢] (0] (0] [¢] (¢]
[B-LOC I-LOC] LOoC [¢] [¢) [B-LOC I-LOC] LOC [¢] o
Our Method 0 [B-ORG  LORGJORG O 0 0 0 0
Case 2 from Ontonotes Dataset
Sentence VSRR %‘Tl A( ) PRAFTIORG
[Chengdu General Medical Equipment (Southwest) Co., LtdJORG
Characters EE B i & i & &
( i) i ) il MR A )
Gold [B-ORG I-ORG TI-ORG I-ORG I-ORG I-ORG I-ORG I-ORG
1I-ORG 1I-ORG I-ORG 1-ORG 1I-ORG 1I-ORG I-ORG 1I-ORG]ORG
FLAT [B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG
I-ORG]JORG [B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG]ORG
Our Method [B-ORG I-ORG I-ORG I-ORG T-ORG I-ORG I-ORG I-ORG
I-ORG I-ORG I-ORG I-ORG I-ORG I-ORG [I-ORG  I-ORG]ORG

Table 6: Examples of tagging results.

+B-ORG ' FORG RG - FORG B-ORG IORG“‘Y}?Q{[
B-PER -FFPER B-PER -FPER B-PER -IFPER ‘k{'.",
+B-LOC FLOC *B-LOC -FLOC *B-LOC -FLOC ~**f

(a) FLAT (b) NerCo(stage 1)  (c) NerCo(stage 2)

Figure 4: A t-SNE Visualization on representations of entity tokens
on MSRA. (a) shows the representations output by FLAT. (b) shows
the intermediate token representations after Semantic Class guided
contrastive learning. (c) shows the final token representations of our
method. Our proposed NerCo generates clearer margins between clus-
ters. To give a more specific example, tokens of I—-ORG, dispersed at
the lower part of the canvas (a), are mixed up with IT-1LOC tokens and
I-PER tokens. Also, tokens clusters of I-LOC, B-ORG, B-PER
and I-PER are split into several parts, without distinct boundaries
outwards. In contrast, token representations of NerCo in (c) are
packed closely within their clusters.

and similar, while keeping them away from the representations
of outer-entity tokens. As a result, it forms a clear boundary
for the sequence labeling model to detect in the second stage.
In the second example from Ontonotes, the whole sequence
of "HUEREAEST % & (Vi) A PR (Chengdu Gen-
eral Medical Equipment (Southwest) Co., Ltd) is a complete
company name, apparently forming an ORG entity. However,
FLAT disappointingly segmented it into two parts and wrongly
regarded the sequence as two ORG entities. We speculate that
FLAT may be disturbed by the word * 74}’ (Southwest), be-
cause these words usually mean the beginning of a new entity.
At the same time, the unusual length also limits the recognition
of FLAT. In contrast, NerCo could learn cohesive representa-
tions corresponding to entities after contrastive learning stage,
thus easily tackling the long entity and naturally making the
accurate prediction.

6 Conclusion

In this work, we propose a novel framework NerCo: Named
Entity recognition with Contrastive Learning to address the
representation deficiency which we term Entity Representa-
tion Segmentation in Label-semantics in sequence labeling
NER. We naturally introduce contrastive learning to harness
the representation learning process such that the token repre-
sentations should be similar within the same Semantic Class,
and discriminative of different. We simply construct in-batch
contrastive pairs based on entity’s label-semantics and utilize
InfoNCE loss for the first stage. Finetuning on the learned
label-semantics based model using sequence labeling is fol-
lowed for final entity prediction. Experiments demonstrate
that our proposed two-stage method benefits model’s gener-
alization performance in Chinese named entity recognition.
Our results claim that the simple and long-adopted sequence
labeling methods are powerful instead of out-of-time after
addressing the above problem. Future work will concentrate
on adapting the idea of NerCo to more complex settings, such
as nested and non-continuous NER, and integrating more ad-
vanced and powerful contrastive learning techniques to further
enhance our method.
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