
Genetic Prompt Search via Exploiting Language Model Probabilities

Jiangjiang Zhao1,2 , Zhuoran Wang3 , Fangchun Yang1

1Beijing University of Posts and Telecommunications, P.R. China
2China Mobile Online Services Co., Ltd. Beijing, P.R. China

3Clouchie Limited, London, United Kingdom
zjjbupt@bupt.edu.cn, wangzhuoran@clouchie.ai, fcyang@bupt.edu.cn

Abstract
Prompt tuning for large-scale pretrained language
models (PLMs) has shown remarkable potential,
especially in low-resource scenarios such as few-
shot learning. Moreover, derivative-free optimi-
sation (DFO) techniques make it possible to tune
prompts for a black-box PLM to better fit down-
stream tasks. However, there are usually precon-
ditions to apply existing DFO-based prompt tuning
methods, e.g. the backbone PLM needs to provide
extra APIs so that hidden states (and/or embed-
ding vectors) can be injected into it as continuous
prompts, or carefully designed (discrete) manual
prompts need to be available beforehand, serving as
the initial states of the tuning algorithm. To waive
such preconditions and make DFO-based prompt
tuning ready for general use, this paper introduces
a novel genetic algorithm (GA) that evolves from
empty prompts, and uses the predictive probabili-
ties derived from the backbone PLM(s) on the ba-
sis of a (few-shot) training set to guide the token
selection process during prompt mutations. Exper-
imental results on diverse benchmark datasets show
that the proposed precondition-free method signif-
icantly outperforms the existing DFO-style coun-
terparts that require preconditions, including black-
box tuning, genetic prompt search and gradient-
free instructional prompt search.

1 Introduction
The recent successes of pretrained language models (PLMs)
are revolutionising the field of natural language processing
(NLP) [Devlin et al., 2019; Radford et al., 2019; Liu et al.,
2019; Raffel et al., 2020; Clark et al., 2020]. Meanwhile,
extremely large PLMs have demonstrated great potential in
few-shot learning scenarios (e.g. [Brown et al., 2020]), which
makes them increasingly attractive as out-of-box tools for
general use. Fine-tuning such large-scale PLMs can still be
computationally expensive, even on a few-shot training set.
But this is significantly relieved by a new paradigm called
prompt tuning. Prompt tuning methods [Li and Liang, 2021;
Gao et al., 2021; Lester et al., 2021; Shin et al., 2020;
Liu et al., 2022; Liu et al., 2021a; Liu et al., 2023] work

by inserting a small number of tunable variables into a back-
bone PLM’s input (and sometimes also the hidden states [Liu
et al., 2021a]) to bias its predictive probabilities towards de-
sired output, while keeping the backbone model’s parame-
ters frozen during the learning process. The tunable variables
here can either be continuous vectors (namely soft prompts)
or surface tokens (discrete prompts), for which obtaining
promising values is the essential objective and can be solved
by either gradient-based optimisers [Kingma and Ba, 2015;
Loshchilov and Hutter, 2019] or derivative-free optimisation
(DFO) techniques [Kolda et al., 2003; Rios and Sahinidis,
2013; Yu and Gen, 2010].

To democratise the access to those very large PLMs, a com-
mon practice is to deliver them as back-box services with
cloud APIs only [Brown et al., 2020; Ouyang et al., 2022]
(a.k.a LM-as-a-Service [Sun et al., 2022b]). This implies
prompt tuning via DFO to be an senseful and important re-
search direction, where the backbone’s parameters are not re-
quired to be exposed to the tuner. Existing work has proven
the feasibility of applying DFO for prompt tuning [Xu et
al., 2022; Prasad et al., 2022; Sun et al., 2022b; Sun et al.,
2022a]. For example, Xu et al. [2022] and Prasad et al. [2022]
introduced search heuristics to refine human generated (dis-
crete) prompts via edit operations such as paraphrase, cloze,
deletion, swap, etc. On the other hand, Sun et al. [2022b;
2022a] proposed the so-call ‘black-box tuning (BBT)’ meth-
ods for continuous prompt optimisation based on the co-
variance matrix adaptation evolution strategy [Hansen et al.,
2003].

However, the limitations of existing methods are obvi-
ous. The discrete prompt search heuristics in [Xu et al.,
2022; Prasad et al., 2022] require carefully designed man-
ual prompts available beforehand, which yield additional
human efforts. Furthermore, their performance may also
highly rely on the suitableness of those initial manual prompts
(cf. §4.3). In addition, methods of this kind usually re-
quire auxiliary language models (LMs) to paraphrase exist-
ing prompts (e.g. T511B [Raffel et al., 2020] used in [Xu
et al., 2022] and PEGASUS [Zhang et al., 2020] used in
[Prasad et al., 2022]), which involves extra dependencies. For
BBT-style continuous prompt optimisation [Sun et al., 2022b;
Sun et al., 2022a], it requires the backbone PLM to provide
extra APIs so that the continuous prompts can be injected
as word embeddings (or hidden states for BBTv2 [Sun et

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5296

al., 2022a]), which may not always be attainable in prac-
tice. A naı̈ve alternative is in-context learning (ICL) pro-
posed along with GPT-3 [Brown et al., 2020], which simply
prepends training examples to the input as the prompt. But
prepending too many or too long examples could make the
final input exceed the sequence length threshold of the back-
bone model, which restricts ICL’s applicable tasks. In addi-
tion, the performance of ICL is usually less competitive, as
seen in [Sun et al., 2022b; Sun et al., 2022a; Xu et al., 2022;
Gao et al., 2021] and also in our experiments (cf. §4.3).

This paper aims to waive the above preconditions re-
quired by the existing DFO-based prompt tuning methods,
and presents a novel genetic algorithm (GA) [Mitchell, 1998]
that generates discrete prompts from the ground up. The
proposed method, named Generic Algorithm for Predictive
Probability guided Prompting (GAP3)1, works as follows.
Firstly, discontinuous prompt chunks are considered as chro-
mosomes, with prompt tokens being genes. Then, starting
from an empty one, GAP3 evolves the prompts via chro-
mosome crossovers and gene mutations. At each mutation
step, either a new mask token is inserted into a random chro-
mosome at a random position, or a random existing gene is
masked. After this, the masked slot will be filled by a to-
ken that approximately maximises the predictive probability
of the ground-truth labels on a (few-shot) training set. The
algorithm iterates for a predefined number of steps, with indi-
viduals consisting of diverse chromosomes/genes competing
to survive and breed, according to their fitness scores com-
puted on the training set.

In comparison to existing DFO-based prompting methods,
the major advantages of the proposed GAP3 are three-fold:

1. No extra APIs for vector injections are required, since
GAP3 searches for discrete prompts.

2. No manual prompts are required, as GAP3 is initialised
with an empty prompt.

3. For backbone PLMs that yield predictive probabili-
ties for masked tokens, e.g. masked language mod-
els (MLMs) [Devlin et al., 2019; Liu et al., 2019] or
T5-style encoder-decoder networks [Raffel et al., 2020;
Lewis et al., 2020], GAP3 generates prompt tokens di-
rectly based on the backbone itself, without needing an
auxiliary LM, which further reduces preconditions for
its applications. (If a casual LM [Radford et al., 2018;
Radford et al., 2019] is the backbone of interest, GAP3
will need an auxiliary MLM for token generation (cf.
§4.3), where the MLM can also be a black-box model.)

Taking RoBERTaLARGE [Liu et al., 2019] and GPT-2LARGE
[Radford et al., 2019] as the backbone PLMs of interest, re-
spectively, the performance of GAP3 is evaluated on 7 bench-
mark datasets (the same as those used in [Sun et al., 2022b]),
in comparison with that of the existing counterparts, includ-
ing BBT [Sun et al., 2022b], genetic prompt search (GPS)
[Xu et al., 2022], gradient-free instructional prompt search
(GRIPS) [Prasad et al., 2022], as well as ICL [Brown et
al., 2020]. The experimental results prove the effectiveness

1Code and supplementary material available at: https://github.
com/zjjhit/gap3

of the proposed GAP3, where it outperforms all the DFO-
style baselines, achieving at least 2.9% and 2.4% absolute
improvements in the average scores for RoBERTaLARGE and
GPT-2LARGE, respectively.

2 Related Work
Parameter-efficient tuning (PET). PET reduces the cost
of adapting a large PLM to downstream tasks, by tuning only
a small proportion of the parameters instead of the full model
[Houlsby et al., 2019; Pfeiffer et al., 2020]. Prompt tun-
ing [Lester et al., 2021; Liu et al., 2022; Liu et al., 2021a;
Liu et al., 2021b; Qin and Eisner, 2021] form a sub-direction
of PET, where the tunable parameters are the injected soft
prompts. Despite the success of PET methods, they are not
suitable for the growing trend of LM-as-a-Service deploy-
ments, as gradient-based optimisations are required.
Discrete prompt search. Discrete prompts are more
preferable in black-box scenarios, since no model-level mod-
ifications are involved. Manually created intuitive prompts
were found helpful in earlier research [Petroni et al., 2019;
Schick and Schütze, 2021b; Schick and Schütze, 2021a],
but they are suboptimal in a general sense. For methods
that searches for prompts automatically, paraphrasing is a
commonly used methodology to expand the existing prompt
set (usually initialised with manual prompts) for succeeding
search heuristics to winnow [Xu et al., 2022; Prasad et al.,
2022]. In addition, Hou et al. [2022] proposed to ensemble
prompts via boosting. But such ensemble multiplies the in-
ference cost at the same time. Reinforcement learning (RL)
has recently been employed by Deng et al. [2022] and Diao
et al. [2023] to optimise discrete prompts for black-box back-
bones. It’s worth noting that the method proposed in Deng et
al. [2022] involves action explorations in a considerably large
prompt space, which results in significantly more API calls
to train the model than its counterparts (such as BBT [Sun
et al., 2022b]). Other proposed methodologies include min-
ing prompt templates from the web [Jiang et al., 2021] and
training specific prompt generators [Ben-David et al., 2022],
which correspond to extra computational and human efforts.
Hybrid methods. It is also possible to tune a backbone
model based on both discrete prompts and differentiable pa-
rameters, of which typical examples include AutoPrompt
[Shin et al., 2020] who search for discrete prompt tokens
based on gradients, and LM-BFF [Gao et al., 2021] that com-
bines automatic prompt generation and model fine-tuning.
Methods of this kind should be considered as more compa-
rable to PET, as they violate the black-box assumption.

3 Methodology
3.1 Prompt Template
Assume that the downstream task is to classify the input text
[X] to a label [Y]. A prompt template here means a permu-
tation to arrange [X], [Y] and the prompt [T], e.g. tem-
plate ‘[X][T][Y]’ stands for placing the prompt between
the input text and the label. We further assume that a task’s
input may consist of multiple text pieces (e.g. when clas-
sifying a pair of sentences) and prompt chunks are allowed

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5297

https://github.com/zjjhit/gap3
https://github.com/zjjhit/gap3

to be placed at multiple positions. Therefore, we gener-
alise the above template representation with subscripts, e.g.
‘[X1][T1][X2][T2][Y]’ means two prompt chunks in-
serted between two text pieces and between the second text
piece and the label, respectively.

3.2 Genetic Algorithm for Prompting
For a given downstream task and a training set, the proposed
GAP3 works as follows. Firstly, we define a prompt template
(cf. §3.1). The template here only decides a permutation of
the text pieces. The actually prompt chunks are initialised as
empty sets at this stage. To interpret the process in GA-style,
we regard each prompt chunk [Ti] as a chromosome, where
the actual tokens to be filled into it are regarded as genes. In
addition, we call entire prompts with diverse chromosomes
individuals. After this, we generate the first population of N
individuals by randomly mutate one gene of the initial empty
individual, where N is a predefined hyperparameter. Con-
cretely, in this very first step, the mutation means randomly
selecting a chromosome (that is blank), and inserting a token
to it. Then the algorithm iterates as follows.

1. Evaluate each individual on the training set, to obtain a
fitness score;

2. Keep top
√
N most fit individuals, called elites;

3. Randomly draw pairs of individuals from the elites to
perform (probabilistic) chromosome crossovers, until a
new population of size N is yielded.

4. Mutate each new individual’s gene (probabilistically) by
randomly inserting a new token or replacing a random
existing token with a new one;

The above process will be repeated for M steps before the
best individual being chosen as the final output, where M is
also a predefined hyperparameter.

Elite selection. Besides ranking the current population of
individuals according to their fitness scores, we also maintain
the overall best individual achieved in the previous iterations.
If the ‘best so far’ individual surpasses the current elites, we
will add it into the current elite group (while dropping the
tail elite). This is to avoid good genes being lost during the
crossovers and mutations.

Crossover. Elite pairs are drawn in a weighted roulette
wheel manner, with respect to their fitness scores. After
this, for each [Ti], with probability ρc, we exchange the
corresponding chromosomes between an elite pair, to yield
two new individuals. The hyperparameter ρc is called the
crossover probability.

Mutation. With probability ρm (called the mutation prob-
ability), we mutate an individual. When this happens, we
randomly draw an action between ‘insert’ or ‘replace’ with
even probabilities. If the ‘insert’ action is applied, a mask
token will be inserted at a random position of a random chro-
mosome. Otherwise, a random existing gene (of a random
chromosome) will be masked (by replacing that token with a
mask token). This implies, in either way, there will be one
mask token in the current prompt. Then, LM probabilities
will be exploited to realise that mask to a real token.

Algorithm 1 GAP3
Input:

D – training set
T0 – initial (empty) template
LM – backbone model

Hyperparameter:
M – number of iterations
N – population size
ρc – crossover probability
ρm – mutation probability

Output: T* – the most fit prompt
1: G← { }, n← int(

√
N), T* ← NULL

2: for 1 . . . N do
3: T← T0

4: T← mutate(T, D, LM , prob=1.0)
5: G← G ∪ {T}
6: end for
7: for 1 . . .M do
8: G← sort(G, key=fitness(G, D, LM))
9: if better than(G[0], T*) then

10: T* ← G[0], E← G[0 : n]
11: else
12: E← {T*} ∪ G[0 : n− 1]
13: end if
14: G′ ← { }
15: while |G′| < N do
16: T, T′ ← roulette(E, weights=fitness(E, D, LM))
17: T, T′ ← crossover(T, T′, prob=ρc)
18: T← mutate(T, D, LM , prob=ρm)
19: T′ ← mutate(T′, D, LM , prob=ρm)
20: G′ ← G′ ∪ {T, T′}
21: end while
22: G← G′
23: end for
24: return T*

Algorithm 1 gives the pseudo-code of the proposed GAP3,
where hyperparameters and constant objects are denoted in
italic type. We leave the detailed explanations of the token
selection process and the consequential design of the fitness
function to §3.3 and §3.4, respectively, to keep the discus-
sions on the main algorithm coherent here.

3.3 Mutation Guided by LM Probabilities
Notations. Let (x, y) denote a data example, where x is the
input token sequence, and y is the label (token). Without loss
of generality, for tasks involving m pieces of text as input, we
will let x := (x1, . . . ,xm), with each xi consisting of a token
sequence. Then a prompt T can be regarded as a function that
applies the prompt tokens to the data point (x, y), according
to its associated template, to obtain a final token sequence, as
T (x, y). We use ti to denote the token indexed by i in T ,
and let T #

i stand for the prompt with ti replaced by a mask
token. We also use t#i to refer the i-indexed masked token.
Similarly, (x, y#) stands for the data point its label y masked.

Firstly, assume we have an ‘ideal’ LM that satisfies the
Bayes’ rule. Then, for an arbitrary data point and an arbi-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5298

trarily masked token t#i , we would have:

P (t#i = t| T #

i (x, y#), y# = y︸ ︷︷ ︸
T #
i (x,y)

)P (y# = y|T #

i (x, y#))

= P (y# = y| T #

i (x, y#), t#i = t︸ ︷︷ ︸
T #
i←t(x,y

)

)P (t#i = t|T #

i (x, y#))

(1)
which yields:

P (y# = y|T #

i←t(x, y
#))

=
P (t#i = t|T #

i (x, y))P (y# = y|T #

i (x, y#))

P (t#i = t|T #

i (x, y#))

(2)

where P (·|·) stands for the conditional probability given by
the LM, and T #

i←t stands for the prompt obtained by substi-
tuting the masked token t#i with token t. We call Eq. 1 an
‘ideal’ assumption, because it holds if and only if the prob-
abilities here are ground truth probabilities, which will not
be achievable in practice (since general PLMs are not trained
subject to such a constraint to satisfy the Bayes’ rule).

Therefore, to make the equation valid, we introduce a bias
item λ and reformulate Eq. 2 in logarithmic form, as:

logP(y|t)(y# = y|T #

i←t(x, y
#))

= logP(t|y)(t
#

i = t|T #

i (x, y))

+ logP(y|∗)(y# = y|T #

i (x, y#))

− logP(t|∗)(t
#

i = t|T #

i (x, y#))− λ(x, y, t, T #

i)

(3)

where we name the probabilities in the form of P(·|·), for the
ease of reference in future discussions. Now, recall the mu-
tation process in §3.2. Given an arbitrary prompt T #

i with a
masked token, and a training set D, one would want to un-
mask T #

i by seeking the token t̂ that maximising the label
posterior on D, as:

t̂ = argmax
t∈V

∑
(x,y)∈D

logP(y|t)(y# = y|T #

i←t(x, y
#)) (4)

where V is the vocabulary of the LM. If we omit the biases
(λs), P(y|t) can be computed tractably based on right-hand
side of Eq. 3, which implies invoking the LM twice for each
training example (x, y), by feeding it with T #

i (x, y#) and
T #

i (x, y), respectively. However, the biases (λs) here are
indispensable, while computing them for all possible data-
prompt-token-mask combinations is obviously intractable.
Hence, we design a heuristic to address this, as follows.

Let λ̄(t) := max(x,y)∈D,T #
i

λ(x, y, t, T #

i). If we replace
λ(x, y, t, T #

i) in Eq. 3 with λ̄(t), the left-hand side be-
comes a lower bound of the original logP(y|t). Firstly, we
initialise λ̄(t) as 0 for all t ∈ V . We define log P̄(y|t) :=

logP(t|y)+logP(y|∗)− logP(t|∗)− λ̄(t) (represented in sim-
plified notations). Then, at each time a prompt is mutated, we
perform a two-step update, as:

t̂ ← argmax
t∈V

∑
D

log P̄(y|t); (5)

λ̄(t̂) ← max
[
λ̄(t̂),max

D

(
log P̄(y|t̂) − logP(y|t̂)

)]
.

(6)

where logP(y|t̂) is also computed based on the LM. Note
here, P(y|t̂) essentially evaluates the performance of the ob-
tained prompt on the training data, as is also used by the fit-
ness function (cf. §3.4). Therefore, computing it is an in-
evitable effort, instead of an extra cost.

Remark on λ̄. A more intuitive explanation of λ̄(t)’s func-
tion is that, it penalises those tokens who tend to occur re-
peatedly but will overestimate the predictive probabilities of
the labels.

Remark on Eq. 5. In practice, always adopting the top-1
token t̂ may yield duplicated prompts (especially when gener-
ating the initial population (cf. §3.2)). Therefore, we actually
collect top-n tokens based on

∑
D log P̄(y|t). Then, starting

from the first one, we examine whether the prompt unmasked
based on the current token has already been seen previously.
If yes, we move to the next token, until an unseen consequen-
tial prompt is obtained.

Masked LM vs. casual LM. The most elegant part of the
proposed GAP3 is that, if the backbone PLM is an MLM
(or a T5-like encoder-decoder network [Raffel et al., 2020;
Lewis et al., 2020]), all the four predictive probabilities
P(t|y), P(y|∗), P(t|∗) and P(y|t) can be obtained from the back-
bone model itself. Nevertheless, if the backbone is a casual
LM who can only predict P(y|t), we can use an auxiliary
MLM to compute P(t|y), P(y|∗) and P(t|∗), in which case, λ̄(t)
to a great extent prevents the algorithm repeatedly generating
tokens highly biased to the auxiliary.

3.4 Fitness Function
For a given task, the actual objective metric (such as accu-
racy or F1-score) on the training set will be a straightforward
measure of the fitness for those individuals yielded in the GA.
However, in the few-shot learning case, it will be very easy
to have many individuals achieving a same metric score. Too
many indistinguishable individuals occurring in a population
may result in less chance of breeding given to those poten-
tially more competitive genes.

Therefore, in GAP3, we actually make the fitness mea-
sure two-dimensional. The task-specific objective metric is
the dominant fitness. If (and only if) two individuals have an
equal score in the dominant fitness, we further compare them
according to a secondary fitness. The secondary fitness score
is computed as:

F2nd(T) =
1

|D|
∑

(x,y)∈D

δy,ŷ
P (y# = y|T (x, y#))∑

y′∈Y P (y# = y′|T (x, y#))

ŷ = argmax
y′∈Y

P (y# = y′|T (x, y#)) (7)

where Y denotes the task’s label set, δ·,· is the Kronecker
delta function. F2nd means that we renormalise the pre-
dictive probabilities on the label set, and average over the
‘hinge’ probabilities, where incorrectly predicted examples
contribute zero values. Note here, in the weighted roulette
wheel selection process, we only use F2nd scores for the
weights, as they are more distinguishable and partially re-
flects the classification accuracy.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5299

4 Experiments
We conduct a group of main comparative experiments and
an ablation study. §4.1, §4.2 and §4.3 describe the settings,
baselines and results for the main experiments, respectively.
Those for the ablation study is presented in §4.4, specifically.

4.1 Settings
Datasets. The datasets used in the main experiments con-
sist of 7 benchmark NLP tasks, which are the same as in [Sun
et al., 2022b], including Yelp polarity, AG’s News and DBPe-
dia from [Zhang et al., 2015], SST-2, MRPC and RTE from
the GLUE benchmarks [Wang et al., 2018], as well as SNLI
[Bowman et al., 2015]. The experiments are in a k-shot learn-
ing setting, where for each task, we randomly sample k = 16
examples for each label from the original training set. For
SST-2, MRPC and RTE, we use their development sets as the
test sets. For the other tasks, we use the original test sets. For
MRPC, F1 is used as the evaluation metric, while accuracy is
the metric for all the other tasks.

Backbone PLMs. We choose RoBERTaLARGE [Liu et al.,
2019] and GPT-2LARGE [Radford et al., 2019] as back-
bones, conducting two groups of experiments, respectively.
For the GPT-2LARGE backbone, we use RoBERTaLARGE and
BERTBASE (cased) [Devlin et al., 2019], respectively, as the
auxiliaries for GAP3 (cf. §3.3).

Hyperparameters for GAP3. We set GAP3’s population
size N = 64 and iteration number M = 50, with crossover
and mutation probabilities ρc = 0.5 and ρm = 0.75, re-
spectively. For the RoBERTaLARGE backbone, the above
settings result in M × N × (1 + 2ρm) = 8000 expected
number of API calls (one call for fitness plus two calls for
mutation (with probability ρm) per individual per data ex-
ample). For the GPT-2LARGE backbone, the same settings
correspond to 3200 API calls to GPT-2LARGE and 4800 to
RoBERTaLARGE/BERTBASE. The prompt templates and label
words for GAP3 on each task can be found in appendix A.

4.2 Baselines
We choose the following existing DFO-based prompting
methods as baselines. The implementations of the baselines
are all based on the original source code provided by their
authors.

BBT. BBT [Sun et al., 2022b] requires for an additional k-
shot development set, which is also randomly sampled from
the original training sets of the tasks, without overlapping
with the k-shot training examples. BBT’s budget for API
calls is set to 8000 (the same as in [Sun et al., 2022b]), with
the prompt length 50.

GPS. GPS [Xu et al., 2022] is another GA-based prompt-
ing method that evolves by using T511B [Raffel et al., 2020]
to paraphrase the prompts. As GPS requires multiple manual
prompts to initialise the first population, we only conduct ex-
periments for it on Yelp polarity, AG’s News, SNLI and RTE.
We use the manual prompts presented in [Schick and Schütze,
2022] to initialise the Yelp polarity and AG’s News experi-
ments. Experiments on SNLI are initialised with the ANLI
manual prompts presented in [Sanh et al., 2022]. Sanh et

al. [2022] also provides a manual prompt set for RTE, which
is directly adopted here. We set GPS’ population size to 25
and number of iterations to 10.

GRIPS. GRIPS [Prasad et al., 2022] is also a heuristic
search based prompting method, which evolve prompts based
on PEGASUS [Zhang et al., 2020] and generic token-level
edits. GRIPS requires manual instructions to initialise. For
the GPT-2LARGE experiments, we initialise it based on the
Natural-Instructions dataset [Mishra et al., 2022], and set the
iteration number to 50 with 100 candidates generated per iter-
ation. However, based on the same settings, we failed to ob-
tain any reasonable results for the RoBERTaLARGE backbone.
GRIPS either fails to find a valid update or yields results no
better than chance. (This may be because either GRIPS itself
or the initial instructional manual prompt is unsuitable for an
MLM backbone.) Therefore, we omit the comparison with
GRIPS for the RoBERTaLARGE backbone.

In addition, we also compare our GAP3’s performance
with that of ICL [Brown et al., 2020], manual prompts,
gradient-based prompt tuning (PT) [Li and Liang, 2021] as
well as full-model fine-tuning (FT). For ICL, we concate-
nate the k-shot training examples in a random order (but with
a balanced label distribution) to form a prefix prompt for the
input. In regard to manual prompts, for Yelp polarity, AG’s
News, SNLI and RTE, we test all the available prompts and
choose the best score. For the other tasks, we just use the
simple prompt templates given in [Sun et al., 2022b]. For PT
and full-model FT, Adam optimisers [Kingma and Ba, 2015]
are employed. For PT, with learning rate 5e-4 and batch size
16, it runs for 1000 epochs. For full-model FT, with the same
batch size, but learning rate 1e-5, we run it for 200 epochs.
We did not choose BBTv2 [Sun et al., 2022a] as a baseline
in this work, because we consider hidden-state injection as a
much stronger violation to the black-box assumption, which
will be unfair to other methods.

Label words. We use label words slightly different from
those in [Sun et al., 2022b]. Because in our case, we intu-
itively expect the label words more substitutable to each other
from natural language point of view. In order to eliminate the
bias in the experimental results caused by this difference, for
BBT and ICL, we experiment them with both the label words
in [Sun et al., 2022b] and ours, and choose the better results
obtained. For GPS and GRIPS, the label words are embedded
in their initial manual prompts, which we keep unchanged.

Fairness of resources used. For the RoBERTaLARGE back-
bone, our GAP3 and BBT are compared under the same API
call budget. However, BBT uses an additional k-shot devel-
opment set, which means doubling the number of labelled
examples required. If we assume the general cost of an API
call to be linear to the scale of the model behind, for the GPT-
2LARGE backbone, GAP3 would be much more cost-efficient
than BBT, as 60% of its API calls are spent on the auxiliary
RoBERTaLARGE/BERTBASE that is much smaller than GPT-
2LARGE. Based on the same assumption, we can consider the
resources used by GAP3, GPS and GRIPS as approximately
comparable.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5300

Method SST-2
acc

Yelp P.
acc

AG’s News
acc

DBPedia
acc

MRPC
f1

SNLI
acc

RTE
acc Avg.

Gradient-based methods
PT [Li and Liang, 2021] 78.3(8.4) 91.7(1.2) 79.8(0.6) 88.5(0.7) 55.0(5.3) 39.3(2.2) 52.0(1.9) 69.2
Full-model FT 89.6(0.7) 96.2(0.4) 87.7(0.7) 98.0(0.7) 73.7(9.9) 74.6(4.2) 69.1(1.5) 84.1

Gradient-free methods
Manual 79.7 92.6 79.2 41.3 80.2 36.0 51.6 65.8
ICL [Brown et al., 2020] 70.1(9.6) 53.1(0.6) 62.7(14.0) 39.4(8.4) 49.1(5.1) 35.8(2.2) 48.9(4.5) 51.3
GPS [Xu et al., 2022] – 87.5(1.2) 76.3(3.5) – – 37.7(2.1) 51.9(4.5) 63.3
BBT [Sun et al., 2022b] 88.9(1.5) 91.4(1.3) 82.5(0.7) 79.8(2.0) 63.9(2.9) 44.7(1.0) 49.7(2.0) 71.5
GAP3 89.7(2.8) 93.0(2.3) 83.2(3.2) 83.7(2.9) 70.2(4.5) 51.1(4.6) 49.7(1.5) 74.4

Table 1: Experimental results for the RoBERTaLARGE backbone. All the numbers are percentage numbers with ’%’ omitted. The mean and
standard deviation computed based on 3 different splits. Bold results are the best ones in the gradient-free group. Underlined results are the
overall best ones in both groups.

Method SST-2
acc

Yelp P.
acc

AG’s News
acc

DBPedia
acc

MRPC
f1

SNLI
acc

RTE
acc Avg.

Gradient-based methods
PT [Li and Liang, 2021] 82.0(0.6) 82.0(7.0) 82.1(1.5) 95.9(0.2) 65.1(8.5) 46.3(3.7) 53.1(5.0) 72.4
Full-model FT 86.4(5.5) 95.0(0.2) 88.1(1.1) 97.9(0.1) 69.8(12.3) 56.6(2.8) 54.3(3.3) 78.3

Gradient-free methods
Manual 61.4 60.2 78.7 48.5 38.9 38.7 57.0 54.8
ICL [Brown et al., 2020] 48.1(0.9) 63.0(9.8) 51.2(13.9) 37.9(9.7) 52.2(12.6) 37.6(2.6) 53.9(2.4) 49.2
GRIPS [Prasad et al., 2022] 75.8(1.5) 79.0(1.0) 68.1(3.0) 75.7(3.3) 61.7(1.1) 37.1(1.7) 52.1(2.5) 64.2
GPS [Xu et al., 2022] – 89.7(4.5) 73.7(1.2) – – 37.5(1.8) 53.7(4.1) 63.6
BBT [Sun et al., 2022b] 76.8(2.8) 84.4(4.3) 77.3(2.2) 79.8(2.0) 69.3(2.7) 42.1(1.0) 51.5(2.7) 68.8
GAP3 + RoBERTaLARGE 79.7(5.3) 90.2(3.6) 82.4(1.7) 80.1(7.1) 71.3(3.3) 41.3(1.8) 53.4(4.0) 71.2
GAP3 + BERTBASE 82.6(4.9) 89.9(4.0) 80.7(1.7) 81.7(0.7) 72.3(5.1) 37.2(2.2) 49.3(1.8) 70.5

Table 2: Experimental results for the GPT-2LARGE backbone. All the numbers are percentage numbers with ’%’ omitted. The mean and
standard deviation computed based on 3 different splits. Bold results are the best ones in the gradient-free group. Underlined results are the
overall best ones in both groups.

4.3 Results

Experimental results with RoBERTaLARGE and GPT-2LARGE
as the backbones are shown in Table 1 and 2, respectively. It
can be found that in both scenarios, the proposed GAP3 out-
performs the other baselines in the gradient-free group with
a notable margin. Interestingly, for the GPT-2LARGE back-
bone, the BERTBASE (110M) auxiliary works almost as good
as the RoBERTaLARGE (354M) auxiliary. Although showing a
slightly lower average score, the former achieves even higher
scores on SST-2, DBPedia and MRPC than the latter. This
also suggests that GAP3’s dependence on a particular auxil-
iary MLM is weak. In addition, GAP3 surpasses gradient-
based PT for RoBERTaLARGE, and achieves an average score
close to gradient-based PT for GPT-2LARGE.

However, full-model FT still appears to be the most com-
petitive paradigm. Despite the capability to tune black-box
backbones, none of the methods in the gradient-free group

achieves an overall score comparable to full-model FT. Sim-
ilar findings were also indicated in a recent study [Chen et
al., 2022] particularly designed to analyse this aspect. In ad-
dition, on RTE, none of the gradient-free methods performs
notably better than chance, which indicates the existence of
particular problems that are more difficult for DFO-style al-
gorithms to solve.

4.4 Ablation Study
Ablation experiments are conducted based on the SST-2
and AG’s News datasets and the RoBERTaLARGE backbone,
where we vary one hyperparameter, while keeping the oth-
ers fixed. The default hyperparameter values are the same as
those in §4.1, except that we use 32-shot learning by default
in this section, to reduce the variance over 3 different runs.

k-shot. We increase the number of training examples per
label (i.e. k), with k being 16, 32, 64 and 128, respectively,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5301

Figure 1: Ablation study on number of training examples (per label).

and plot the corresponding performance of GAP3 in Figure 1.
It can be found that the obtained accuracy scores grow with
k on both dataset sets. Furthermore, up to k = 128, there
is no clear trend of convergence appearing, which suggests
that GAP3 has the potential capability of learning from larger
training sets.

API call budget. The expected number of API calls for
GAP3 is jointly determined by three hyperparameters, the
population size (N), the number of iterations (M) and the
mutation probability (ρm). We plot the ablation results of
the above hyperparameters together in Figure 2, against the
number of API calls they yield. It is understandable that more
API calls normally correspond to better results. However, due
to the randomness in GAP3’s strategies, exceptions may oc-
cur by chance, where a setting with fewer API calls happen
to outperform those with more API calls.

Other hyperparameters. As shown in Figure 3, GAP3 is
to some extent sensitive to the crossover probability. It sug-
gests that some further heuristics would need to be designed
in the future, to seek an optimal value for ρc. In addition, we
also experiment with an alternative secondary fitness func-
tion (cf. §3.4), which is obtained by omitting the Kronecker
delta in Eq. 7. The results indicate that doing so will re-
duce the mean accuracy by 1.0% on SST-2 and 0.5% on AG’s
News.

Figure 2: Ablation study on expected number of API calls, with re-
spect to iteration number, population size and mutation probability.

5 Further Discussions
Label word selection. The label words in this work are
manually assigned. Preliminary attempts were made to
search for label words automatically, based on the method
proposed in [Gao et al., 2021], which, however, resulted in
serious overfitting. Better strategies to gain label words for
GAP3 will be addressed in our feature research.

Prompt length. In GAP3, prompt length is not predefined,
but the iteration number hyperparameter will determine an
upper threshold of the maximum possible prompt length. In
addition, the template defined in §3.1 does not necessarily
mean that every prompt slot [Ti]will have tokens in the end.
There are possibilities that the final survival individual has
some of its chromosomes remain empty. The above features
make the prompts generated by GAP3 more flexible and less
hyperparameter-dependent.

Interpretability of prompts. Generally speaking, the
prompts generated by GAP3 are not understandable by hu-
man, since it is not designed to gain human-readable text.
Nevertheless, one can still find some ‘keywords’ within the
prompts interpretable. Example prompts learned in §4.3 can
be found in the supplementary material2.

2https://github.com/zjjhit/gap3/blob/main/learned-prompts.pdf

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5302

https://github.com/zjjhit/gap3/blob/main/learned-prompts.pdf

Figure 3: Ablation study on crossover probability.

Limitation. Due to the M×N×(1+2ρm) API calls yielded
during GAP3’s evolutions, it will be computationally expen-
sive to apply it directly to a full-sized training set. This is
also a common limitation of the existing DFO-based prompt-
ing methods. In our GAP3 case, reshaping the evolution and
evaluation processes in a k-fold manner will possibly relieve
the computational complexity problem, which we will further
investigate in future studies.

6 Conclusion
This paper introduces GAP3, an LM probability guided GA,
to search prompts automatically for black-box PLM back-
bones. Despite its outstanding performance on diverse bench-
marks, the most significant superiority of GAP3 is the waiver
of the preconditions required by existing DFO-based prompt-
ing methods, such as injection APIs or manual prompts. The
zero or minimal dependency of GAP3 on additional resources
suggests it to be an out-of-box complementary to those LM-
as-a-Service instances. The computational cost of applying
it to full-sized training problems would be the current major
limitation of GAP3. Addressing this limitation will be one of
our future research directions.

A Prompt Templates and Labels for GAP3
Prompt templates and label words (verbalisers) used in our
GAP3 experiments for the RoBERTaLARGE and GPT-2LARGE

Task Template Labels

SST-2 [T1][X][T2][Y] bad, good
Yelp P. [T1][X][T2][Y] bad, good

AG’s
News [X][T][Y]

world,
sports,
business,
technology

DBPedia [T1][Y][T2][X]

company,
education,
artist, ath-
lete, office,
transporta-
tion, build-
ing, nature,
village, ani-
mal, plant,
album, film,
literature

MRPC [T1][X1][Y][T2][X2] No, Yes

SNLI [T1][X1][Y][T2][X2]
Yes,
Maybe,
No

RTE [T1][X1][Y][T2][X2] Yes, No

Table 3: Templates and labels for the RoBERTaLARGE backbone.

Task Template Labels

SST-2 [T1][X][T2][Y] –
Yelp P. [T1][X][T2][Y] –
AG’s
News [X][T][Y] –

DBPedia [T1][X][T2][Y] –
MRPC [T1][X1][T2][X2][T3][Y] no, yes

SNLI [T1][X1][T2][X2][T3][Y]

always,
some-
times,
never

RTE [T1][X1][T2][X2][T3][Y]
true,
false

Table 4: Templates and labels for the GPT-2LARGE backbone. ‘–’
stands for labels identical to those in Table 3.

backbones are listed in Table 3 and 4, respectively.

Acknowledgements

The first author thanks the members of the Algorithm and
Development Team at the Data Intelligence Centre of China
Mobile Online Services Co., Ltd. for fruitful discussions on
this work. The second author thanks XREAL for supporting
this research by providing the computing power.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5303

References
[Ben-David et al., 2022] Eyal Ben-David, Nadav Oved, and

Roi Reichart. PADA: Example-based Prompt Learning for
on-the-fly Adaptation to Unseen Domains. Transactions of
ACL, 10:414–433, 2022.

[Bowman et al., 2015] Samuel R. Bowman, Gabor Angeli,
Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference.
In Proceedings of EMNLP, 2015.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Sys-
tems, volume 33, 2020.

[Chen et al., 2022] Guanzheng Chen, Fangyu Liu, Zaiqiao
Meng, and Shangsong Liang. Revisiting parameter-
efficient tuning: Are we really there yet? CoRR,
abs/2202.07962, 2022.

[Clark et al., 2020] Kevin Clark, Minh-Thang Luong,
Quoc V. Le, and Christopher D. Manning. ELECTRA:
Pre-training text encoders as discriminators rather than
generators. In Proceedings of ICLR, 2020.

[Deng et al., 2022] Mingkai Deng, Jianyu Wang, Cheng-
Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimiz-
ing discrete text prompts with reinforcement learning. In
Proceedings of EMNLP, 2022.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, 2019.

[Diao et al., 2023] Shizhe Diao, Zhichao Huang, Ruijia Xu,
Xuechun Li, Yong Lin, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language mod-
els. Transactions on Machine Learning Research, 2023.

[Gao et al., 2021] Tianyu Gao, Adam Fisch, and Danqi
Chen. Making pre-trained language models better few-
shot learners. In Proceedings of ACL-IJCNLP, 2021.

[Hansen et al., 2003] Nikolaus Hansen, Sibylle D. Müller,
and Petros Koumoutsakos. Reducing the time complex-
ity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary Computation,
11(1):1–18, 2003.

[Hou et al., 2022] Bairu Hou, Joe O’Connor, Jacob Andreas,
Shiyu Chang, and Yang Zhang. PromptBoosting: Black-
box text classification with ten forward passes. CoRR,
abs/2212.09257, 2022.

[Houlsby et al., 2019] Neil Houlsby, Andrei Giurgiu, Stanis-
law Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for NLP. In Proceed-
ings of the ICML, 2019.

[Jiang et al., 2021] Zhengbao Jiang, Jun Araki, Haibo Ding,
and Graham Neubig. How can we know when language
models know? on the calibration of language models for
question answering. Transactions of ACL, 9, 2021.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Proceed-
ings of ICLR, 2015.

[Kolda et al., 2003] Tamara G. Kolda, Robert Michael
Lewis, and Virginia Torczon. Optimization by direct
search: New perspectives on some classical and modern
methods. SIAM Review, 45(3):385–482, 2003.

[Lester et al., 2021] Brian Lester, Rami Al-Rfou, and Noah
Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of EMNLP, 2021.

[Lewis et al., 2020] Mike Lewis, Yinhan Liu, Naman Goyal,
Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART:
Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In
Proceedings of ACL, 2020.

[Li and Liang, 2021] Xiang Lisa Li and Percy Liang. Prefix-
tuning: Optimizing continuous prompts for generation. In
Proceedings of ACL-IJCNLP, 2021.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692, 2019.

[Liu et al., 2021a] Xiao Liu, Kaixuan Ji, Yicheng Fu,
Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning v2:
Prompt tuning can be comparable to fine-tuning univer-
sally across scales and tasks. CoRR, abs/2110.07602,
2021.

[Liu et al., 2021b] Xiao Liu, Yanan Zheng, Zhengxiao Du,
Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
understands, too. CoRR, abs/2103.10385, 2021.

[Liu et al., 2022] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng
Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt tuning can be comparable to fine-tuning across
scales and tasks. In Proceedings of ACL (Volume 2: Short
Papers), 2022.

[Liu et al., 2023] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):no.195:1–35, 2023.

[Loshchilov and Hutter, 2019] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. In Pro-
ceedings of ICLR, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5304

[Mishra et al., 2022] Swaroop Mishra, Daniel Khashabi,
Chitta Baral, and Hannaneh Hajishirzi. Cross-task gener-
alization via natural language crowdsourcing instructions.
In Proceedings of ACL, 2022.

[Mitchell, 1998] Melanie Mitchell. An Introduction to Ge-
netic Algorithms. The MIT Press, 1998.

[Ouyang et al., 2022] Long Ouyang, Jeff Wu, Xu Jiang,
Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. Training lan-
guage models to follow instructions with human feedback.
CoRR, abs/2203.02155, 2022.

[Petroni et al., 2019] Fabio Petroni, Tim Rocktäschel, Se-
bastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang
Wu, and Alexander Miller. Language models as knowl-
edge bases? In Proceedings of EMNLP-IJCNLP, 2019.

[Pfeiffer et al., 2020] Jonas Pfeiffer, Andreas Rücklé,
Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebas-
tian Ruder, Kyunghyun Cho, and Iryna Gurevych.
AdapterHub: A framework for adapting transformers. In
Proceedings of EMNLP: System Demonstrations, 2020.

[Prasad et al., 2022] Archiki Prasad, Peter Hase, Xiang
Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based
instruction search for prompting large language models.
CoRR, abs/2203.07281, 2022.

[Qin and Eisner, 2021] Guanghui Qin and Jason Eisner.
Learning how to ask: Querying LMs with mixtures of soft
prompts. In Proceedings of NAACL-HLT, June 2021.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan,
Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. Technical report,
OpenAI, 2018.

[Radford et al., 2019] Alec Radford, Jeff Wu, Rewon Child,
David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical re-
port, OpenAI, 2019.

[Raffel et al., 2020] Colin Raffel, Noam Shazeer, Adam
Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67,
2020.

[Rios and Sahinidis, 2013] Luis Miguel Rios and Niko-
laos V. Sahinidis. Derivative-free optimization: a review of
algorithms and comparison of software implementations.
Journal of Global Optimization, 56(3):1247––1293, 2013.

[Sanh et al., 2022] Victor Sanh, Albert Webson, Colin Raf-
fel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan
Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim,
Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta,
Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo

Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos
Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry,
Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Bi-
derman, Leo Gao, Thomas Wolf, and Alexander M. Rush.
Multitask prompted training enables zero-shot task gener-
alization. In Proceedings of ICLR, 2022.

[Schick and Schütze, 2021a] Timo Schick and Hinrich
Schütze. Exploiting cloze-questions for few-shot text
classification and natural language inference. In Proceed-
ings of EACL, 2021.

[Schick and Schütze, 2021b] Timo Schick and Hinrich
Schütze. Few-shot text generation with natural language
instructions. In Proceedings of EMNLP, 2021.

[Schick and Schütze, 2022] Timo Schick and Hinrich
Schütze. True few-shot learning with Prompts—A
real-world perspective. Transactions of ACL, 10:716–731,
2022.

[Shin et al., 2020] Taylor Shin, Yasaman Razeghi, Robert L.
Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of EMNLP,
2020.

[Sun et al., 2022a] Tianxiang Sun, Zhengfu He, Hong Qian,
Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. BBTv2:
Towards a gradient-free future with large language models.
In Proceedings of EMNLP, 2022.

[Sun et al., 2022b] Tianxiang Sun, Yunfan Shao, Hong Qian,
Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In Proceedings of ICML,
2022.

[Wang et al., 2018] Alex Wang, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, 2018.

[Xu et al., 2022] Hanwei Xu, Yujun Chen, Yulun Du, Nan
Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. GPS:
Genetic prompt search for efficient few-shot learning.
CoRR, abs/2210.17041, 2022.

[Yu and Gen, 2010] Xinjie Yu and Mitsuo Gen. Introduction
to Evolutionary Algorithms. Springer, 2010.

[Zhang et al., 2015] Xiang Zhang, Junbo Zhao, and Yann
LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Process-
ing Systems, volume 28, 2015.

[Zhang et al., 2020] Jingqing Zhang, Yao Zhao, Mohammad
Saleh, and Peter Liu. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization. In
Proceedings of ICML, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5305

	Introduction
	Related Work
	Methodology
	Prompt Template
	Genetic Algorithm for Prompting
	Mutation Guided by LM Probabilities
	Fitness Function

	Experiments
	Settings
	Baselines
	Results
	Ablation Study

	Further Discussions
	Conclusion
	Prompt Templates and Labels for GAP3

