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Abstract
Multi-label Aspect Category Detection (MACD)
is essential for aspect-based sentiment analysis,
which aims to identify multiple aspect categories in
a given sentence. Few-shot MACD is critical due
to the scarcity of labeled data. However, MACD
is a high-noise task, and existing methods fail to
address it with only two or three training samples
per class, which limits the application in practice.
To solve above issues, we propose a group of Few-
shot Sample-set Operations (FSO) to solve noisy
MACD in fewer sample scenarios by identifying
the semantic contents of samples. Learning inter-
actions among intersection, subtraction, and union
networks, the FSO imitates arithmetic operations
on samples to distinguish relevant and irrelevant
aspect contents. Eliminating the negative effect
caused by noises, the FSO extracts discriminative
prototypes and customizes a dedicated query vector
for each class. Besides, we develop a multi-label
architecture, which integrates with score-wise loss
and multi-label loss to optimize the FSO for multi-
label prediction, avoiding complex threshold train-
ing or selection. Experiments show that our method
achieves considerable performance. Significantly,
it improves by 11.01% at most and an average of
8.59% Macro-F in fewer sample scenarios.

1 Introduction
Multi-label Aspect Category Detection (MACD) [Tulkens et
al., 2020] is a crucial task for aspect-based sentiment analy-
sis [Pontiki et al., 2016], which aims to identify aspect cat-
egories in a given sentence. Generally, a sentence contains
more than one aspect category, i.e., it can be viewed as a
multi-label classification problem. Last few years, MACD
received widespread attention. However, most existing meth-
ods [Li et al., 2020] heavily rely on a considerable amount of
labeled data during training. Therefore, their performances
can drop dramatically when only a few labeled samples exist
for some aspect categories. Intuitively, few-shot learning is
of great significance in solving MACD.
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Support Set

(A) Service
(1) Nice service but food cost a lot.
(2) You should ask server well in advance

about the internet connection.

(B) Money
(1) There was a charge for wifi.
(2) High rates for just ok room service but

the internet seems to only work at times.

(C) Internet
(1) There was a charge for wifi.
(2) You should ask server well in advance

about the internet connection.

Query Set
(A), (B), (C) (1) I access the ethernet cable at the corner

due free service.
(B), (C) (2) The hotel is everything I expected:great

price, good breakfast, free wifi.
(A) (3) Our server thomas made the experience

that much more enjoyable.

Table 1: A 3-way 2-shot example. The colored boxes indicate target
aspects, while the gray boxes highlight irrelevant aspects.

However, most few-shot learning methods (e.g., prototyp-
ical network) focus on single-label prediction, i.e., each sen-
tence is restricted to one label. Therefore, they are volatile
for the MACD task in the noisy scenario. The main chal-
lenges are summarized as follows: (1) Each class prototype is
closely related to the target aspects of intra-class support sam-
ples, whereas irrelevant aspects interfere with prototype ex-
traction. For example, in Table 1, for the class “Service”, its
corresponding prototype may receive negative impacts from
irrelevant aspects “food”, “cost a lot”, and “internet”. (2) Un-
der the multi-label setting, some support samples are shared
among classes, failing to distinguish the class prototypes. Ta-
ble 1 shows that the sample “There was a charge for wifi”
is shared by the classes “Money” and “Internet”. For these
two classes, the prototypes may be indistinguishable due to
the high-similar sample distribution. Inevitably, the above is-
sues complicate class prototype extraction. (3) The number
of aspect categories in a sentence is intangible for multi-label
prediction. Therefore, a low-cost and high-efficiency method
is expected to address the noisy MACD task.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5306



Existing works focus on contrastive learning paradigms
or attention networks to alleviate noise interference for the
MACD task. However, merely learning prototypes by train-
ing contrastive objects [Liu et al., 2022; Zhao et al., 2022]
or attention weights [Hu et al., 2021] fails to fully address
the noise caused by the irrelevant aspects and similar sam-
ple distribution. Therefore, they struggle to handle the noisy
MACD task in fewer sample scenarios. Shortly, their perfor-
mances drop significantly when each class only has two or
three training samples. Therefore, it remains a considerable
challenge for the noisy MACD task.

To solve the above issues, we revisit the MACD task from a
new perspective and propose a group of Few-shot Sample-set
Operations (FSO) to handle the noisy MACD task by identi-
fying the semantic contents of samples. The set operations are
realized as the arithmetic operations on samples and gain con-
siderable progress in image synthesis [Alfassy et al., 2019].
Therefore, we apply the concept of set operations to the pro-
totypical network and design FSO to handle noisy MACD in
fewer sample scenarios. The FSO imitates arithmetic oper-
ations through intersection (Mint), subtraction (Msub), and
union (Muni) networks. The Mint receives two samples and
produces a feature vector with their common semantic con-
tent, excluding the other aspects in the original samples. In-
versely, the feature vector generated by Msub removes the
shared content and reserves the irrelevant aspects. Besides,
the Muni is implemented on the outputs of Mint and Msub to
restore the original samples. Learning the interactions among
the Mint, Msub, and Muni, the FSO analyzes the semantic
contents of the sample and distinguishes irrelevant aspects
from it. For support set, the FSO utilizes the shared fea-
tures within a class to extract discriminative prototypes. For
query set, the FSO takes category description as prior knowl-
edge to customize a dedicated query vector for each class.
To meet actual practice, we apply the FSO to a multi-label
architecture. And score-wise loss and multi-label loss are im-
plemented on the architecture to promote the learning of the
FSO and throw the trouble of threshold setting. The contri-
butions are summarized as follows:

• We propose the FSO to solve the noisy MACD task by
distinguishing the semantic contents of samples. Learn-
ing the interactions among Mint, Msub, and Muni, our
method alleviates the noises to generate discriminative
prototypes for support set and dedicated query vectors
for query set to estimate label-sample relevance. And
the FSO works well with fewer sample scenarios.

• We design a multi-label architecture that integrates with
score-wise loss and multi-label loss to optimize the FSO
for multi-label prediction, avoiding complex threshold
training and selection.

• Extensive experiments show that our method outper-
forms strong baselines. Besides, the method is not lim-
ited to the MACD task. It can also be applied to more
complex tasks, e.g., sentence embedding representation,
since it better separates embedding features than conven-
tional contrastive learning in fewer sample scenarios.

2 Related Work
2.1 Multi-label Aspect Category Detection
MACD is a subtask of aspect-based sentiment analysis, which
aims to identify aspect categories from a predefined set.
The previous works can be summarized into two groups:
supervised and unsupervised methods. Supervised meth-
ods [Schmitt et al., 2018; Cai et al., 2020] heavily rely on a
large amount of labeled data to learn features for each aspect
category. Therefore, they suffer from the long-tail distribu-
tion [Yu et al., 2021] for some aspect categories with a few
labeled data. Unsupervised methods [Tulkens et al., 2020]
are poorly performed by mining aspect knowledge in mas-
sive unstructured texts. Therefore, recent works keep an eye
on few-shot learning.

2.2 Multi-label Few-shot Learning
The meta-learning [Hospedales et al., 2021] is a mainstream
few-shot learning line, including model-based [Tsendsuren
and Hong, 2017], optimization-based [Lee et al., 2019],
and metric-based [Sung et al., 2018; Assran et al., 2022;
Wang et al., 2021; Lv et al., 2021] methods. However, most
of them only work well in the single-label setting and fail
to address high-noise multi-label tasks. To the best of our
knowledge, the research works on multi-label few-shot learn-
ing mostly focus on contrastive learning paradigms and at-
tention networks in the text domain. Yang et al. [2020] uti-
lize contrastive learning to push positive and negative sam-
ples away from each other. However, they have limited per-
formances due to the neglect of adverse effects produced by
irrelevant aspects. Then, Hu et al. [2021] and Yan et al. [2022]
leverage attention networks to alleviate the noise from irrele-
vant aspects. However, they are inefficient when many high-
similar samples exist in different classes. From a new per-
spective, we design the FSO to solve the above issues. The
concept of set operations is proposed by Alfassy et al [Al-
fassy et al., 2019], and they use label-set operations to gener-
ate more data on image synthesis. Compared with them, we
design novel sample-set operations without data generation
and introduce score-wise loss and multi-label loss to improve
performances on the MACD task.

3 Methodology
3.1 Problem Formulation
We follow the episodic paradigm to train a meta-learner
for the noisy MACD task. In the label space, the data
can be divided into Ctrain (known) and Ctest (unknown),
where Ctrain ∩ Ctest = ∅. And a meta-task includes
support set S and query set Q. In the meta-train, N
unique classes are sampled from Ctrain, and then K sam-
ples are sampled from each class to construct S (i.e., N -
way K-shot formulation), which can be denoted as S =
{(x1

1, y
1
1), ..., (x

K
1 , yK1 ), ..., (xK

N , yKN )}. And Q includes T
samples sampled from the remaining samples of the same N
classes, i.e., Q = {(x1

1, y
1
1), ..., (x

T
1 , y

T
1 ), ..., (x

T
N , yTN )}. In

the meta-test, we need to construct the support set and query
set from Ctest. The meta-learner aims to predict the class la-
bel of the query set based on the support set.
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Figure 1: The overall architecture of the proposed method. The left part depicts the support and query samples, where the colored cubes
indicate the target aspects, and the gray cubes show the noise caused by irrelevant aspects. The middle part depicts the training details of the
FSO. The right part presents the network structure of intersection, subtraction, and union but the arithmetic unit is different.

3.2 Architecture Overview
The proposed architecture is shown in Figure 1. Learning the
interactions among the Mint, Msub, and Muni, the FSO imi-
tates arithmetic operations to analyze the semantic contents of
samples. We first introduce the learning of the FSO and then
apply it to support and query sets for multi-label prediction.

3.3 Few-shot Sample-set Operations
The FSO includes three operations, i.e., Mint, Msub, and
Muni. These three operations refer to mathematical sym-
bols (e.g., ∩, −, and ∪). Given two feature vectors X and
Y , the Mint extracts the shared features between them, the
Msub identifies the exclusive features of X excluding Y , and
the Muni denotes the merged features from them. To ensure
effects, the Mint, Msub, and Muni networks map the synthe-
sized feature vectors of X and Y to feature space F :

Mint(X,Y ) = FXY
int ∈ F , (1)

Msub(X,Y ) = FXY
sub ∈ F , (2)

Muni(X,Y ) = FXY
uni ∈ F , (3)

The Mint, Msub, and Muni follow the same network struc-
ture and different arithmetic units (e.g., min(.), sub(.), and
max(.)):

H1 = Relu(LayerNorm(W1[X;Y ] + b1)), (4)

H2 = AU(X,Y ) + LayerNorm(W2H1 + b2), (5)

H3 = W3Relu(H2) + b3, (6)

where Relu(.) is activation function. [X;Y ] denotes the con-
catenation between X and Y . W1, W2, W3, b1, b2, and b3 are
learnable parameters. The AU(.) denotes the arithmetic unit.

Score-wise Loss
The score-wise loss is used to ensure that the Mint, Msub,
and Muni can capture correct semantic features on samples.
Specifically, the score-wise loss is based on cosine similarity
scores. And the cosine similarity [Yan et al., 2022] is widely
adopted in the prototypical network to measure the similarity
scores between feature vectors in the feature space F :

ConSim(X,Y ) =
XTY

||X||2||Y ||2
, (7)

where XT is transpose of X and ||.|| is L2-norm of vectors.
The cosine similarity scores range between -1 to 1. There-

fore, we use the highest score (i.e., 1) to design the score-wise
loss LFSO. The FSO utilizes the score-wise loss LFSO to
enforce the capacity to capture semantic features on samples.
The LFSO includes Lsym

FSO and Lnorm
FSO to ensure the symme-

try and normalization of the Mint, Msub, and Muni:

LFSO = Lsym
FSO + Lnorm

FSO . (8)

The following loss Lsym
FSO is used to rectify symmetric

Mint and Muni:

Lsym
FSO =

∑
((ConSim(FXY

uni , F
Y X
uni )− 1)

2

+ (ConSim(FXY
int , FY X

int )− 1)2),
(9)

where FXY
∗ and FY X

∗ derive from M∗(.) with reversed order
of the inputs, and ∗ ∈ (uni, int).

The second loss Lnorm
FSO is realized as a criterion to normal-

ize the Mint, Msub, and Muni:

Lnorm
FSO =

∑
((ConSim(Muni(F

XY
sub , F

XY
int ), X)− 1)2

+ (ConSim(Muni(F
Y X
sub , F

Y X
int ), Y )− 1)2).

(10)
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3.4 Support-set Processing (SP)
Each class in the support set includes K samples, describing
the common aspect category. However, the noises compli-
cate the prototype extraction. To alleviate noise interference,
we take category description (i.e., label description) as prior
knowledge to learn sample representations with category fea-
tures. Then, the class prototypes are extracted by the FSO
through the shared features within a class to further eliminate
the negative effect caused by noises.

Support Sample Feature Extraction
Given a support sample s = {s1, s2, ..., sn} of n tokens and
its category description c = {c1, ..., cm} of m tokens, we use
special tokens [CLS] and [SEP] to concatenate the sample and
its category description. The “[CLS], s, [SEP ], c, [SEP ]” as
input is converted to the encoder (e.g., BERT [Devlin et al.,
2019]) to generate hidden states Hs:

Hs = [hCLS , hs, hSEP , hc, hSEP ], (11)

where hs ∈ Rn∗d denotes the hidden states of the support
sample with category features, and hc ∈ Rm∗d indicates the
hidden states of the category description. And d is the hidden
dimension. Therefore, we define hj

i s as the hidden states of
jth support sample in ith class.

The sample feature vector f j
i and the corresponding cate-

gory feature vector gji for jth sample in ith class are obtained
through a mean pooling layer:

f j
i = MeanPoolLayer(hj

i s), (12)

gji = MeanPoolLayer(hj
i c), (13)

where f j
i ∈ R1∗d, gji ∈ R1∗d, hj

i s ∈ Rn∗d, and hj
i c ∈ Rm∗d.

For ith class, there are K category feature vectors (i.e.,
g1i , g

2
i , ..., g

K
i ), and they express the common class informa-

tion. We assign importance weights to them to map a final
category feature vector gi:

A1 = softmax(W5tanh(W4g
′
i)), (14)

gi = AT
1 g

′
i, (15)

where A1 is the weight matrix. g′i = [g1i , g
2
i , ..., g

K
i ] ∈ RK∗d

and gi ∈ R1∗d. W4 and W5 are learnable parameters.
After processing the support set, we obtain N ∗K sample

feature vectors {f1
1 , ..., f

K
1 , ..., f1

N , ..., fK
N } and N category

feature vectors {g1, g2, ..., gN}.

Class Prototype Generation
In the same class, all samples express the common aspect
content. The FSO utilizes the shared content within a class
to extract the corresponding prototype. Specifically, the FSO
receives the sample feature vectors [f1

i , f
2
i , ..., f

K
i ] from ith

class. And then, it outputs the intersection features as the
common aspect features from the same class by learning the
interaction among Mint, Msub, and Muni networks:

F i
int = FSO([f1

i , f
2
i , ..., f

K
i ]), (16)

where F i
int ∈ Rr∗d. And r is the number of intersection

feature vectors extracted by the FSO for ith class.

The discriminative prototype pi for ith class can be ex-
tracted by assigning importance weights to the F i

int:

A2 = softmax(W7tanh(W6F
i
int)), (17)

pi = AT
2 F

i
int, (18)

where A2 is the weight matrix. pi ∈ R1∗d. W6 and W7 are
learnable parameters. The SP component can extract N class
prototypes, i.e., pi, i ∈ {1, 2, ..., N}.

3.5 Query-set Processing (QP)
The query sample may contain more than one target aspect
category in noisy scenarios. Therefore, it is non-trivial to cus-
tomize a dedicated query vector for each class.

Query Sample Feature Extraction
Given a query sample q = {q1, q2, ..., qt} of t tokens, we feed
“[CLS], q, [SEP ]” into the encoder to get hidden states Hq:

Hq = [hCLS , hq, hSEP ], (19)

where hq ∈ Rt∗d is the hidden states of the query sample.
The query-generic feature vector ū is obtained through a

mean pooling layer.

ū = MeanPoolLayer(hq), (20)

where ū ∈ R1∗d.

Dedicated Query Feature Learning
The FSO takes category description as prior knowledge and
extracts target-related features to customize a dedicated query
vector for each class. Specifically, we feed the query-generic
feature vector ū and the corresponding category feature vec-
tor gi into the FSO, then it outputs the intersection feature as
the query-special feature:

ui = FSO([ū, gi]), (21)

where ui ∈ R1∗d. The query-special feature is realized as a
dedicated query feature vector for each class. Therefore, the
QP component can obtain N dedicated query feature vectors,
i.e., ui, i ∈ {1, 2, ..., N}.

Distance Metric
Given a query sample, the distance similarities between it and
class prototypes are defined as Z = {z1, z2, ..., zN} ∈ RN :

zi = ConSim(pi, ui), (22)

where zi ∈ R1, i = {1, 2, ..., N}.

3.6 Multi-label Inference
In multi-label inference, some works [Hu et al., 2021; Liu et
al., 2022] train a policy network or multi-layer perception to
learn a threshold to determine the number of aspects. How-
ever, they may fail to get an acceptable threshold to meet the
requirement of complicated multi-label prediction. There-
fore, we introduce a multi-label loss to optimize training ob-
jectives and avoid complex threshold training or selection.

The label of the query sample is y = {y1, y2, ..., yN} ∈
RN , where yi ∈ {1, 0}, and yi = 1 indicates it belongs to ith

class. The positive score set Γ = {zi ∈ Z|yi = 1}, and the
negative score set Λ = {zi ∈ Z|yi = 0}.
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Models
5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1

Prototypical Network [Snell et al., 2017] 88.88 66.96 91.77 73.27 87.35 52.06 90.13 59.03
IMP [Allen et al., 2019] 89.95 68.96 92.30 74.13 88.50 54.14 90.81 59.84
Proto-HATT [Gao et al., 2019] 91.54 70.26 93.43 75.24 90.63 57.26 92.86 61.51
Proto-AWATT [Hu et al., 2021] 93.35 75.37 95.28 80.16 92.06 65.65 93.42 69.70
LDF [Liu et al., 2022] 94.65 78.27 95.71 81.87 92.74 67.13 94.29 71.97
LPN [Zhao et al., 2022] 96.45 82.22 97.15 84.90 95.36 71.42 96.55 76.51
FSO(ours) 96.92 83.44 97.38 85.08 95.65 73.78 96.28 76.58

Table 2: Comparison of AUC and Macro-F1 score on FewAsp (random).

Models
5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1

Prototypical Network [Snell et al., 2017] 89.67 67.88 91.60 72.32 88.01 52.72 90.68 58.92
IMP [Allen et al., 2019] 90.12 68.86 92.29 73.51 88.71 53.96 91.10 59.86
Proto-HATT [Gao et al., 2019] 91.10 69.15 93.03 73.91 90.44 55.34 92.38 60.21
Proto-AWATT [Hu et al., 2021] 91.45 71.72 93.89 77.19 89.80 58.89 92.34 66.76
LDF [Liu et al., 2022] 92.62 73.38 94.34 78.81 90.87 62.06 92.93 68.23
LPN [Zhao et al., 2022] 95.66 79.48 96.55 82.81 94.51 67.28 95.66 71.87
FSO (ours) 96.01 81.04 96.67 82.22 94.93 70.26 95.71 72.46

Table 3: Comparison of AUC and Macro-F1 score on FewAsp (multi).

Multi-label Loss
The multi-label loss based on circle loss [Sun et al., 2020] is
written as follows:

LMUL = log(1 +
∑

i∈Λ,j∈Γ

eσ(zi−zj) +
∑
i∈Λ

eσ(zi−t) +
∑
j∈Γ

eσ(t−zj))

= log(eσ(t) +
∑
i∈Λ

eσ(zi)) + log(eσ(−t) +
∑
j∈Γ

eσ(−zj)),

(23)
where t is the threshold, and σ is the temperature scale param-
eter. The optimal goal of the LMUL is that the target scores
are greater than t and the non-target scores are less than t.
Directly, we set threshold t = 0 and filter positive scores as
the multi-label prediction:

LMUL = log(1 +
∑
i∈Λ

eσ(zi)) + log(1 +
∑
j∈Γ

eσ(−zj)). (24)

Overall Training Objectives
L = αLMUL + βLFSO, (25)

where α and β are hyper-parameters.

4 Experiments
4.1 Experimental Setup
Datasets. Extensive experiments are conducted on datasets
FewAsp (multi) and FewAsp (random). These two datasets
originate from a large-scale multi-domain dataset (i.e., Yelp
aspect [Bauman et al., 2017]) for aspect recommendation.
And FewAsp (multi) consists of multi-aspect sentences,
whereas FewAsp (random) contains single- and multi-aspect

Datasets FewAsp (multi) FewAsp (random)

train dev test train dev test

#cls 64 16 20 64 16 20
#ins 25600 6400 8000 40320 10080 12600

#ins/cls 400 400 400 630 630 630

Table 4: Statistics of two datasets. #cls and #ins indicate the number
of classes and samples. And #ins/cls indicates the number of sam-
ples for each class.

sentences due to random sampling. These two datasets in-
clude 100 aspect categories, and we split the 100 aspect cate-
gories into 64, 16, and 20 for training, validation, and testing.
The detailed statistics are presented in Table 4.

Implementation Details. The proposed method is imple-
mented with PyTorch (version 1.10.0). The uncased English
version of BERT is our encoder. Besides, the first six layers
of BERT are frozen to reduce the trainable parameters. We
conduct experiments on a single GPU (RTX 3090 Ti) with
CUDA version 11.3. The model is trained by the AdamW op-
timizer. For the learning rate, we set 5e-4 in the FSO and 1e-4
in other network structures. Meanwhile, we use the Gradu-
alWarmupScheduler to optimize the learning rate. And we
fix the hyper-parameters σ, α, and β as 0.03, 0.3, and 0.7.
(Note: the parameters are adjustable). We randomly sample
100 meta-tasks for training and 600 meta-tasks for validation
and testing in every epoch.

Evaluation Metric. We follow Zhao et al. [2022] to use
Area Under Curve (AUC) and Macro-F1 score for perfor-
mance evaluation and comparison.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5310



Models
5-way 2-shot 5-way 3-shot 10-way 2-shot 10-way 3-shot
AUC F1 AUC F1 AUC F1 AUC F1

LDF [Liu et al., 2022] 91.30 70.57 91.23 70.51 89.69 57.45 90.16 59.67
LPN [Zhao et al., 2022] 92.90 70.69 94.21 74.55 91.36 56.11 92.67 60.34
FSO (ours) 95.14 77.44 95.27 78.58 93.97 66.41 94.32 68.28

Table 5: Comparison of AUC and Macro-F1 score for fewer sample scenarios on FewAsp (multi).

Models
15-way 2-shot 15-way 3-shot 20-way 2-shot 20-way 3-shot
AUC F1 AUC F1 AUC F1 AUC F1

LDF [Liu et al., 2022] 88.30 40.98 89.25 40.07 86.71 31.35 88.42 35.28
LPN [Zhao et al., 2022] 90.88 48.24 92.21 53.38 90.42 44.14 92.20 49.33
FSO (ours) 93.30 59.25 93.69 62.85 92.39 54.11 93.47 58.59

Table 6: Comparison of AUC and Macro-F1 score for fewer sample scenarios on FewAsp (multi).

4.2 Overall Performance
Following the previous works [Liu et al., 2022], the num-
ber of query samples is fixed at 5, and the experiments are
conducted on “N = 5, 10 and K = 5, 10” (i.e., N -way K-
shot formulation) to compare the performance with the strong
baselines. Then, we set “N = 5, 10, 15, 20 and K = 2, 3” to
further analyze the performance in fewer sample scenarios.
The results are presented in Tables 2, 3, 5, and 6, with the
following observations.

(1) Overall, the proposed method outperforms most base-
lines. The results demonstrate the effectiveness of our method
on the noisy MACD task. Though the strong baseline (i.e.,
LPN [Zhao et al., 2022]) achieves competitive Macro-F1 or
AUC for the 10-shot scenario in Tables 2 and 3, the num-
ber looks large and takes high training time, which limits the
applications in practice. The proposed method achieves sig-
nificant performance in fewer sample scenarios. Specifically,
our method improves upon the most competitive baseline by
1.06%-2.61% AUC and 4.03%-10.30% Macro-F in Table 5.
Besides, it obtains 1.27%-2.42% AUC and 9.26%-11.01%
Macro-F improvements in Table 6. The reason is that the
contrastive learning and attention networks are weak in fewer
sample scenarios (i.e., 2-shot or 3-shot). We can solve the
noisy MACD task in fewer training samples by distinguishing
the semantic contents of samples. In short, all experimental
results on benchmark datasets show that our method achieves
considerable performance.

(2) The results on FewAsp (multi) are inferior to those
on FewAsp (random). FewAsp (multi) presents a more
challenging scenario than FewAsp (random) because it in-
cludes masses of multi-aspect sentences. In most cases, the
proposed method still obtains remarkable improvement over
other methods on FewAsp (multi), esp. fewer sample scenar-
ios. Compared with the best baseline, we achieve an average
of 1.84% AUC improvement on 2-shot and 3-shot settings.
Generally, more classes contain more noise. For 15 and 20
classes, the results surpass strong baselines by 2.42% at most,
with an average of 1.79% AUC. Besides, we improve the per-
formance better on the “20-way 3-shot” than on the “5-way

Model AUC ∆ AUC F1 ∆ F1
Full model 95.14 77.44
w/o FSO 93.10 -2.04 71.22 -6.22
w/o Msub 93.80 -1.34 76.02 -1.42
w/o Muni 94.11 -1.03 77.18 -0.26
w/o Msub & Muni 94.74 -0.40 76.89 -0.55

Table 7: Comparison of AUC and Macro-F1 for ablation study on
the 5-way 2-shot scenario from FewAsp (multi).

3-shot”. The fact indicates that the proposed method can al-
leviate the noises to address the noisy MACD task.

(3) Under the Macro-F metric, we obtain at most 11.01%
and an average of 8.59% Macro-F improvements when there
are two or three samples. Therefore, the proposed method is
superior to the strong baselines LPN [Zhao et al., 2022] and
LDF [Liu et al., 2022] for multi-label prediction. To achieve
multi-label results, LPN trains an adaptive multi-label module
to determine the threshold, and LDF utilizes empirical knowl-
edge to make threshold selections. However, these meth-
ods are unfaithful in fewer sample scenarios. The proposed
method can address the noisy MACD task in fewer sample
scenarios, avoiding complex threshold training or selection.
In conclusion, all experimental results verify the effectiveness
of our method.

4.3 Ablation Study
We conduct an ablation study on the 5-way 2-shot scenario
from FewAsp (multi). A set of ablation experiments are im-
plemented to examine the structure design of the proposed
method. The detailed results are depicted in Table 7. First,
the performance drops by 2.04% AUC and 6.22% Macro-F1
when we remove the FSO. The result indicates that the FSO
positively solves the noisy MACD task by learning the inter-
actions among the Mint, Msub, and Muni networks. Then,
we further implement the ablation study on the FSO. Without
Msub or Muni network, the performance of the method is re-
duced. Besides, the performance is worse when we remove
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Figure 2: Visual comparisons of prototype embeddings for the 5-way 2-shot scenario from FewAsp (multi) in feature space.

LDF LPN Ours

Figure 3: Visual comparisons of prototype embeddings for the 10-way 2-shot scenario from FewAsp (multi) in feature space.

the Msub and Muni networks at the same time. These nega-
tive results denote that the interactions among these three net-
works are of the essence to solving the MACD task. There-
fore, any absence of the FSO can decrease our performance.
In conclusion, the design of our method is reasonable and
achieves the best performance.

4.4 Visualizations
To further analyze the performance, we visualize the embed-
ding representations of prototypes in the feature space com-
pared with dominant LDF and LPN. Specifically, we sam-
ple 3000 episodes in the testing set of FewAsp (multi) and
visualize the prototype per class by using the visual tool T-
SNE [Laurens and Hinton, 2008]. The prototypes are gen-
erated by intra-class sentences and are closely related to the
target aspects. Visualizing the embedding representations of
prototypes, we leverage colored spots to observe the proto-
type distribution. To fair comparison, we set the seed is 15
and perplexity is 30 for all methods. The results are presented
in Figure 2 (i.e., 5-way 2-shot) and Figure 3 (i.e., 10-way 2-
shot). For 20 classes from the testing set, we clearly separate
the prototype embeddings in the feature space. The LDF has
many spots scattered around clusters, whereas the LPN in-
cludes many fuzzy clusters. Compared with LDF and LPN,
the results denote that our method can eliminate the negative
effect caused by noises to extract representative prototypes.

5 Conclusion

We propose a simple yet effective FSO method to solve the
noisy MACD task by distinguishing the semantic contents of
samples. Learning the interactions among the Mint, Msub,
and Muni networks, the FSO imitates arithmetic operations
on samples to distinguish relevant and irrelevant aspects,
which aims to automatically analyze the semantic contents of
samples. Eliminating the negative effect caused by noises, the
FSO extracts discriminative prototypes and customizes the
corresponding dedicated query vector for each class. Mean-
while, we design a multi-label architecture integrated with
score-wise loss and multi-label loss to optimize the FSO for
multi-label prediction, avoiding complex threshold training
or selection. Extensive experiments on benchmark datasets
show that the proposed method obtains convincing improve-
ments on the noisy MACD task, esp. fewer sample scenarios.
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