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Abstract
Bounded numeric planning, where each numeric
variable domain is bounded, is PSPACE-complete,
but such a complexity result does not capture how
hard it really is, since the same holds even for
the practically much easier STRIPS fragment. A
finer way to compare the difficulty of planning
formalisms is through the notion of compilability,
which has been however extensively studied only
for classical planning by Nebel. This paper extends
Nebel’s framework to the setting of bounded nu-
meric planning. First, we identify a variety of nu-
meric fragments differing on the degree of the poly-
nomials involved and the availability of features
such as conditional effects and Boolean condi-
tions; then we study the compilability of these frag-
ments to each other and to the classical fragments.
Surprisingly, numeric and classical planning with
conditional effects and Boolean conditions can be
compiled both ways preserving plan size exactly,
while the same does not hold when targeting pure
STRIPS. Our study reveals also that numeric frag-
ments cluster into two equivalence classes sepa-
rated by the availability of incomplete initial state
specifications, a feature allowing to specify uncer-
tainty in the initial state.

1 Introduction
Planning is the problem of finding a sequence of actions that,
when applied to an initial state, reaches a state in which the
goal is satisfied. Numeric planning is the variant encompass-
ing both continuous and discrete state variables, and with
action representations that can make use of linear and non-
linear numeric expressions to both define applicability con-
ditions, and state transitions. Over the past few years, there
has been a renewed attention into planning problems involv-
ing numeric information—of which numeric planning rep-
resents a fundamental building block [Percassi et al., 2021;
Scala et al., 2016]—both from an application standpoint
[Kiam et al., 2020; Vallati et al., 2016; Bertolucci et al., 2019;
Parkinson et al., 2012] and from the development of planners
supporting its features [Piacentini et al., 2018; Kuroiwa et al.,
2021; Scala et al., 2020].

Unfortunately, Helmert [2002] showed that in the general
case, and also in some more specific settings, numeric plan-
ning is undecidable. However, Helmert himself has shown
as well the existence of some decidable fragments, obtained
by restricting the kind of effects and conditions that can be
expressed. In addition, he notes that one can also recover
decidability, at least in the discrete case, with bounded nu-
meric planning, i.e., by imposing a bound on the value of the
variables and looking only at those plans where the variables
respect such bounds.

Once decidability questions are settled, one can turn their
attention to the computational complexity of these problems.
It turns out that bounded numeric planning is PSPACE-
complete, as long as the kind of effects and conditions used
are polynomial-space computable. Many other planning
formalisms, from pure STRIPS [Bylander, 1994] to vari-
ants of temporal planning [Rintanen, 2007; Gigante et al.,
2020] and timeline-based planning [Bozzelli et al., 2020;
Della Monica et al., 2020], have the same complexity but, for
example, pure STRIPS is extremely easier to solve in prac-
tice. Hence, unfortunately, complexity theory tells us hardly
anything about how hard these problems really are.

A way to compare planning formalisms at a finer granu-
larity is the notion of compilability, that asks whether one
formalism can be compiled into another. Compilations are
different from complexity-theoretic reductions since they are
tasked to translate the planning domains separately, in a way
that allows later to cheaply plug different initial states and
goal conditions.

Compilability has been studied extensively in the setting
of classical planning by Nebel [2000], who set up an articu-
lated framework for comparing the expressiveness of differ-
ent fragments differing on the inclusion of features such as
conditional effects, Boolean conditions, etc. An important
feature of Nebel’s framework is to account for the growth of
plan size between a problem and its compiled version in a dif-
ferent formalism. In particular, a landmark result is that nei-
ther conditional effects nor Boolean conditions can be com-
piled away without a polynomial increase of plan size.

In this paper, we extend Nebel’s framework to the setting
of bounded numeric planning. We define a lattice of numeric
planning languages that differ both on the degree of the poly-
nomials allowed in numeric effects and conditions, and on the
presence of the features already considered by Nebel. Then,
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we compare these fragments to each other and to classical
ones in terms of compilability, obtaining a complete picture.
In particular, we show that:

1. numbers can be compiled away to classical planning if
Boolean conditions and conditional effects are allowed;

2. conversely, Boolean conditions and conditional effects
can be compiled away to numeric planning;

3. in numeric planning, conditional effects and Boolean
conditions can be compiled away;

All the above compilations preserve plan size exactly. These
results partition the numeric fragments into two equivalence
classes that are distinguished by the presence of partial initial
state specifications, i.e., by the ability to partially specify the
initial condition. To complete the picture, we prove that this
separation is strict.

The presented results highlight a strict connection between
numeric and conditional effects. The key of this connection
appears to be the state-dependency of numeric and condi-
tional effects, which allow both to perform complex com-
putations as part of the application of a single action. This
connection has not been precisely isolated before, and may
pave the way for the cross-fertilization of the two fields, for
instance in terms of search heuristics.

The paper is structured as follows. At first, Section 2 pro-
vides the required background about the considered planning
problems. In Section 3 we recall Nebel’s framework. Then,
Section 4 provides the full picture of compilability between
the considered numeric and classical fragments. Section 5
discusses the obtained results and possible future directions.

2 Planning Problems
Here we define the kind of planning problems considered.

Syntax and semantics Let X = {x, y, z, . . .} be a set of
numeric variables. A numeric expression e is an expression
formed according to the following syntax:

e := x | k | e · e | e+ e

where x ∈ X is a variable and k ∈ Z. Associativity and
precedence rules hold as usual, and products e1 · e2 are com-
monly shortened as e1e2 when there is no ambiguity. For ex-
ample, (3xy + 4x)(2x + 4) is a numeric expression. Note
that numeric expressions denote polynomial functions, al-
though standard-form monomials such as x2 have to be ex-
pressed as x · x because our syntax does not support expo-
nentiation (see the complexity considerations for a motiva-
tion of this choice). The degree of a numeric expression is
the maximum number of variables multiplied together when
the expression is put into the standard sum-of-products form.
For example, the above example expression is equivalent to
6xxy + 12xy + 8xx+ 16x, hence its degree is 3. A numeric
atom is a formula ψ of the form e ∼ 0 where e is a numeric
expression and ∼ ∈ {<,≤, >,≥,=} is a relational operator.

Let Σ = {p, q, r, . . .} be a set of Boolean variables, also
called Boolean atoms. An atom is either a Boolean or nu-
meric atom. A literal is either an atom ψ or its negation ¬ψ
(e.g., ¬p or ¬(x+ y = 0)).

A state specification is a set of Boolean literals and nu-
meric atoms of the form x = k with x ∈ X and k ∈ Z. A
state specification S is complete if any proposition p ∈ Σ and
any variable x ∈ X are mentioned once in S. For example,
if Σ = {p, q} and X = {x, y}, then S′ = {¬p, x = 42} is
a state specification, and S′′ = {¬p, q, x = 42, y = 0} is a
complete one.

A condition is a formula ϕ observing the following syntax:

ϕ := ⊤ | ⊥ | ℓ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where ℓ is a literal.
An elementary effect is either a Boolean literal or an as-

signment of the form x := e or x := x+ e where x ∈ X and
e is a numeric expression. An effect is a pair (Γ, E), denoted
as Γ ⇒ E, where Γ is a set of conditions and E is a set of
elementary effects. An effect is conditional or unconditional
depending on whether Γ ̸= ∅ or Γ = ∅, respectively.

An action is a pair a = ⟨pre(a), eff(a)⟩ where pre(a) is
a set of conditions and eff(a) is a set of effects. A bound
function for X is a function β : X → Z2 that maps each
variable x ∈ X to a pair β(x) = (l, u) such that l ≤ u.

We are now ready to define our planning problems.
Definition 1 (Planning problem). A planning domain is a tu-
ple D = ⟨Σ, X, β,A⟩ where Σ is a set of Boolean variables,
X is a set of numeric variables, β is a bound function for X ,
and A is a set of actions.

A planning problem (or instance) is a tuple P = ⟨D, I, G⟩
where I is a state specification and G is a set of conditions.

We can now briefly define the semantics of planning prob-
lems. A state is a pair s = (σ, ν) where σ : Σ → {⊤,⊥} and
ν : X → Z are functions that give (Boolean or numeric) val-
ues to the (Boolean or numeric) variables of the domain. The
semantics of a condition ϕ being satisfied by a state s, written
s |= ϕ, is defined as one would expect. A set of conditions
Γ is satisfied on s, denoted s |= Γ, if all the conditions in Γ
are satisfied. A state s = (σ, ν) is eligible if for all x ∈ X ,
if β(x) = (l, u), then l ≤ ν(x) ≤ u. A state specification
S induces a set of states JSK = {s | S |= s}. It is called
consistent if |JSK| > 0. Note that if S is a complete spec-
ification, it induces at most a single state, i.e., |JSK| ≤ 1.
An effect Γ ⇒ E is enabled on s if s |= Γ. Two effects
Γ1 ⇒ E1 and Γ2 ⇒ E2 are conflicting on s if they are both
enabled on s and E1 and E2 contain complementary literals
(i.e., p and ¬p) or they contain two numeric effects x := e1
and x := e2 that would assign different values to the same
variable x when evaluated on s. An action a is applicable to
a state s if s |= pre(a) and none of its effects are conflicting
on s. If a is applicable to s, a(s) is the state obtained from s
by applying all the enabled effects of a (the semantics of the
application of effects is defined as one would expect, and we
leave it out for space concerns).

A plan is a finite sequence of actions π = ⟨a1, . . . , an⟩.
Given an initial state s0, a plan π = ⟨a1, . . . , an⟩ induces
a sequence of states π(s0) = ⟨s0, . . . , sn⟩ where si+1 =
ai+1(si) for all i ≥ 0. This definition is well-behaved and
π(s0) exists only if ai+1 is applicable to si for all i ≥ 0.
Definition 2. Given a planning problem P = ⟨D, I, G⟩, a
plan π is a solution plan for P if I is consistent and, for all
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eligible states s0 ∈ JIK, π(s0) exists, its last state sn |= G,
and all the states of π(s0) are eligible.
Fragments The problems with complete state specifica-
tions as for Definition 1 can be expressed by PDDL2.1 [Fox
and Long, 2003; Haslum et al., 2019]. Here, we focus on the
relationships between the expressive power of some restricted
fragments. Following Nebel [2000], we introduce a compact
notation to identify the fragments obtained by restricting dif-
ferent aspects of the language.

Let D = ⟨Σ, X, β,A⟩ be a domain and P = ⟨D, I, G⟩ be
a problem. At first, note that if X = ∅, P is a classical plan-
ning problem, with no numeric features, of the kind already
studied by Nebel. Hence, we use the symbols N (for numeric)
and S (for STRIPS) to denote the language of planning prob-
lems where X ̸= ∅ and X = ∅, respectively. Then, we use
additional symbols as sub/superscripts to denote the availabil-
ity of certain features. The following are used by Nebel:

1. I: the initial state specification can be incomplete;
2. C: effects are allowed to be conditional;
3. L: conditions are allowed to be literals;
4. B: the general Boolean syntax for conditions is allowed.

We introduce further notation for numeric features:
5. Pn: numeric expressions are allowed up to degree n;
6. P: numeric expressions of any degree are allowed.

Thus we denote as SB and NC,E
B withB ⊆ {I,C, L,B} and

C,E ⊆ {Pn,P} the language of planning problems (respec-
tively with X = ∅ and X ̸= ∅), where the features in B are
allowed, the features in C are allowed in conditions, and the
features in E are allowed in effects. It is worth to note that B
subsumes L and P subsumes Pn. Note that features L and B
refer to conditions appearing both as action’s preconditions,
in conditional effects, and as goals.1

For example, NP,P
BCI is the most general language defined

in Definition 1, while SBCI is the most general classical lan-
guage that we consider (and that has been considered by
Nebel as well). Instead, NP1,P0

is the language of numeric
planning problems where the underlying classical language
is the most restrictive, numeric expressions in conditions are
linear, and numeric effects are limited to assignments and in-
crease/decrease by a constant.
Complexity considerations It is useful to recall some com-
putational complexity aspects of the problems studied here. It
is known that the plan existence problem for SBCI is PSPACE-
complete [Bylander, 1994; Nebel, 2000]. Instead, numeric
planning is in general undecidable [Helmert, 2002]. How-
ever, Helmert also notes that for integer variables, imposing
bounds recover decidability, and it is folklore knowledge that
numeric planning is PSPACE-complete with any kind of nu-
meric effects and conditions, as long as they are polynomial-
space computable.

This assumption includes numeric expressions as defined
above, hence the plan existence problem for NP,P

BC is PSPACE-
complete as well. Instead, the assumption does not hold if

1Nebel [2000] considers goals to always be sets of literals, but
states that his results apply as well on problems with condition goals.

succinct exponentiation is allowed, such as ek for some ex-
pression e and k ∈ N, because one needs an exponential
amount of space to represent the result of ek. For this rea-
son, it is likely that numeric planning with general exponen-
tiation does not indeed belong to PSPACE. Also considering
that PDDL 2.1 does not support it as well, this is not a too
restrictive assumption.

With incomplete state specifications, the situation is a
bit more involved. The semantics in this case involves a
universal quantification over the eligible states that satisfy
the initial state specification, so it is not obvious a pri-
ori whether an efficient nondeterministic algorithm could be
given. Indeed, this setting is similar to conformant plan-
ning [Haslum and Jonsson, 1999], which in its usual formula-
tion is EXPSPACE-complete. However, Nebel [2000] shows
that SBCI is still PSPACE-complete, and this holds because
the set of initial states in conformant planning is usually de-
fined as a Boolean condition, while our state specifications
are only partial assignments. Nebel’s argument does not hold
in the numeric case, but we will show, as a consequence of
our compilations, that NP,P

BCI is PSPACE-complete as well.

3 Compilation Schemes
We are concerned with the compilability of the fragments de-
fined above between themselves. Since all those formalisms,
from S to NP,P

BCI, are PSPACE-complete, we know there are
polynomial-time reductions between the respective decision
problems. However, when talking about compilations, sim-
ilarly to Nebel [2000], we look for something stronger, i.e.,
transformations from/to planning domains, where initial and
goal conditions can be plugged subsequently after a further
but very light translation. Here we slightly extend the defini-
tion by Nebel [2000] to account for numeric features:

Definition 3 (Compilation scheme). A compilation scheme is
a tuple of functions f = ⟨fξ, fi, fg, ti, tg⟩ that induce a func-
tion from instances P = ⟨D, I, G⟩, with D = ⟨Σ, X, β,A⟩,
to instances f(P), as follows:

f(P) = ⟨fξ(D), fi(D) ∪ ti(Σ, X, I), fg(D) ∪ tg(Σ, X,G)⟩

where:

1. there is a solution plan for P iff there is one for f(P);

2. the functions ti and tg are polynomial-time computable
and are modular, i.e., if Σ = Σ1 ∪ Σ2, and S is a state
specification, then:

tx(Σ, X, S) = tx(Σ1, X, S|Σ1
) ∪ tx(Σ2, X, S|Σ2

)

3. the size of f(P) is polynomial in the size of P .

Intuitively, Definition 3 states that we can compile the plan-
ning domain separately once (with fξ), and then, when given
a complete instance, form the compiled instance by forming
the initial and goal conditions with some components that de-
pend only on the domain (with fi and fg) and some compo-
nents that depend only on the original initial and goal con-
ditions (with ti and tg). These have to be easy and simple
mappings, i.e., the “hard work” has to be done by the map-
ping between the domains.
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When studying compilations, we are also interested in the
length of the plans of the compiled problems. Again, follow-
ing Nebel [2000], we say that a language L can be compiled
to L′ preserving plan size exactly, linearly, or polynomially,
written L ⪯1 L′, L ⪯c L′, or L ⪯p L′, respectively, if
there is a compilation scheme f such that, for any problem
P of L and any solution plan π for P , then f(P) has a solu-
tion plan π′ such that |π′| ≤ |π| + k, |π′| ≤ c|π| + k, and
|π′| ≤ p(|π|, |P|), respectively, for some k, c ∈ N and some
polynomial p. If L ⪯x L′ and L′ ⪯x L, with x ∈ {1, c, p},
we write L ≈x L′.

This definition of compilability is quite more restrictive
than the complexity-theoretic reducibility relation. For ex-
ample, we recall some results proved by Nebel [2000],
Proposition 1. The following holds:

1. SC ̸⪯c SBI, SB ̸⪯c SLCI, and SBI ̸⪯p SBC.
2. SLCI ⪯p S and SBC ⪯p S

In other words, while conditional effects and Boolean con-
ditions can be compiled away preserving plan size polynomi-
ally, this cannot be done preserving plan size linearly, and
when Boolean conditions are paired with incomplete state
specifications, plan size cannot even be preserved polynomi-
ally. With compilability, we obtain a much more fine-grained
lens to tell how hard a planning formalism is, w.r.t. complex-
ity theory, which puts everything into the PSPACE pot.

4 Compilability Results
Now that the framework of compilability has been set up, we
can provide some results. Given that the compilability be-
tween classical formalisms has been already studied exhaus-
tively by Nebel [2000], the most natural question is how nu-
merical fragments fit in the picture. To answer this question,
we provide results that classify the numerical fragments de-
fined in Section 2 in terms of compilability between them-
selves and torwards classical fragments. An overview of the
results is pictured in Figure 1.

We first show an initial result about the relationship of nu-
merical fragments with different allowed polynomial degree.
It turns out the complexity of the conditions can be transferred
to the effects if needed, preserving plan size exactly.

Theorem 1. NPn,Pm

BCI ⪯1 NP1,Pd

BCI where d = max(m,n).

Proof. This first compilation scheme is based on the idea that
numeric expressions e ∼ 0 used in the conditions of actions
or conditional effects can be replaced by simple comparisons
xe ∼ 0 where xe is an additional numeric variable that is
always kept to hold the value of e.2

Given two numeric expressions e1 and e2, let us denote
as e1[x/e2] the expression obtained by replacing with e2 any
occurrence of x in e1. Then, to compute the correct bounds
for the computation of an expression e, we define β(e) as:

β(k) = (k, k)

2The procedure subsumes a result by Kuroiwa et al. [2021] who
have shown that linear numeric conditions can be compiled into so
called restricted numeric tasks [Hoffmann, 2003], i.e., into bound
conditions of the form x ≥ k.

Cor. 5

NP1,P

NP,P

NP,P
C NP,P

L

NP,P
CL NP,P

B

NP,P
BC

NP1,P
I

NP,P
I

NP,P
ILNP,P

CI

NP,P
LCI NP,P

BI

NP,P
BCI

SBC

SBCI

Thm. 1

Thm. 1

Cor
. 4

C
or

. 4

Cor. 2

Cor
. 2

Figure 1: Compilability landscape of numerical and classical frag-
ments. Dashed arrows are natural inclusions between fragments,
solid arrows represent compilability preserving plan size exactly.
The gray line separates the two equivalence classes modulo ≈1,
whose separation is strict.

β(e1 + e2) = (l1 + l2, u1 + u2)

β(e1 · e2) = (l1 · l2, u1 · u2)
where β(e1) = (l1, u1) and β(e2) = (l2, u2).

Now, let D = ⟨Σ, X, β,A⟩. The core component fξ of the
compilation scheme is fξ(D) = ⟨Σ, X ′, β′, A′⟩ where:

X ′ = X ∪ {xe | e appears in a condition e ∼ 0 in D}

β′(x) =

{
β(x) if x ∈ X

β(e) if x = xe for some e

and A′ is defined as follows. For each a ∈ A and any con-
dition e ∼ 0 appearing in pre(a) or in conditional effects in
eff(a), we replace the condition with xe ∼ 0. But now, we
have to ensure that at any point in the plan, the value of xe
reflects the evaluation of e at that point. Hence for any other
b ∈ A, let Γ ⇒ E be an effect of b. Let x1, . . . , xn be the
variables that are assigned in E (to expressions e1, . . . , en)
and are mentioned by e. Then, we add an effect Γ ⇒ E′

where E′ = {xe := e[xi/ei]}.
Then, we have to take care of the initial value of xe. If I is

a complete state specification, we can get from I the values
v1, . . . , vn of the variables x1, . . . , xn mentioned by e, com-
pute its value ve, and set fi(D) =

⋃
e{xe = ve}. If I is

incomplete, we set fi(D) =
⋃

e{xe = e}.
To translate the goal condition, the function fg replaces any

numeric atom e ∼ 0 with xe ∼ 0. The functions ti and tg do
nothing, i.e., ti(Σ, X, I) = tg(Σ, X,G) = ∅.

It can be checked that f = ⟨fξ, fi, fg, ti, tg⟩ so defined
satisfies Definition 3. Note that f preserves plan size exactly
since actions are mapped 1-to-1 in the compiled problem.
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Moreover, if the degree of the expressions used in conditions
is higher than those used in effects, f increases the degree
of effects accordingly. Hence we go from NPn,Pm

BCI to NP1,Pd

BCI
where d = max(m,n).

Now we can turn to the relationship between numeric and
classical planning. We first show that numbers alone are pow-
erful enough to compile away both conditional effects and
Boolean conditions, preserving plan size exactly.

Theorem 2. SBCI ⪯1 NP,P
I and SBC ⪯1 NP,P.

Proof. To define this compilation scheme we recall that
Boolean functions, such as those described by Boolean condi-
tions of our planning problems, can be represented by particu-
lar real polynomials (see e.g., [O’Donnell, 2014]). The basic
underlying observation is that arithmetic multiplication be-
tween numeric values ranging in {0, 1} exactly corresponds
to Boolean conjunction.

In detail, given a set Σ of Boolean variables, we define a
set of numeric variables as XΣ = {xp | p ∈ Σ}. Then,
given a Boolean condition ϕ, we define the numeric expres-
sion num(ϕ) as follows:

num(⊤) = 1

num(p) = xp
num(¬ϕ) = 1− num(ϕ)

num(ϕ1 ∧ ϕ2) = num(ϕ1) · num(ϕ2)

num(ϕ1 ∨ ϕ2) = num(¬(¬ϕ1 ∧ ¬ϕ2)) =
= 1− ((1− num(ϕ1)) · (1− num(ϕ2)))

Note that one can prove by a simple induction that if xp ∈
{0, 1} for xp ∈ XΣ, then the value of num(ϕ) is either 0 or
1, and it corresponds to the truth value of ϕ.

Now, let D = ⟨Σ,∅,∅, A⟩ be a planning domain in the
SBCI language. We define fξ(D) = ⟨∅, XΣ, β, A

′⟩ where
β(x) = (0, 1) for all x ∈ XΣ, and A′ has exactly one action
a′ = ⟨pre(a′), eff(a′)⟩ for each a ∈ A, defined as follows.
First of all, pre(a′) = (num(pre(a)) = 1). Then, for each
p ∈ Σ, let ∆+

p and ∆−
p be the following:

∆+
p = {

∧
ϕ∈Γ

ϕ | (Γ ⇒ E) ∈ eff(a) and p ∈ E}

∆−
p = {

∧
ϕ∈Γ

ϕ | (Γ ⇒ E) ∈ eff(a) and ¬p ∈ E}

That is, ∆+
p and ∆−

p collect all the sufficient conditions for p
to become true or false, respectively, when applying a. Now,
we can define:

ϕp ≡ (p ∧
∧

ϕ∈∆−
p

¬ϕ) ∨ (
∨

ϕ∈∆+
p

ϕ)

eff(a′) = {∅ ⇒ {xp := num(ϕp)} | p ∈ Σ}

The rest of the compilation scheme is easy to define:

fi(D) = ∅
fg(D) = ∅

ti(Σ, X, I) = {xp = 1 | p ∈ I} ∪ {xp = 0 | ¬p ∈ I}
tg(Σ, X,G) = {num(ϕ) = 1 | ϕ ∈ G}

It can be checked that f = ⟨fξ, fi, fg, ti, tg⟩ so defined is
a compilation scheme, by Definition 3, from SBCI to NP,P

I ,
and Boolean conditions and conditional effects become un-
necessary in the compiled problem. Moreover, given any P
of SBCI, f(P) has exactly one action for each action of P , and
this reflects on the size of the plans which are preserved ex-
actly. Finally, note that f does not introduce incomplete state
specifications if not present in the original problem. Hence,
when starting from a problem in SBC, the resulting problem
is in NP,P.

The result of Theorem 2 could actually be sharpened.
When building num(ϕ), note that if xp ∈ {0, 1}, xp ·xp = xp
(which is nothing more than the fact that p∧p ≡ p). Hence, if
we put num(ϕ) in standard form, each variable would appear
at most with degree 1, so num(ϕ) has at most degree n where
n is the number of variables mentioned in ϕ. This means
that from a given planning problem P in SBC (resp. in SBCI)
we obtain a planning problem in NPn,Pm

(resp. in NPn,Pm

I ),
where n and m are the maximum number of Boolean vari-
ables mentioned in the precondition of a single action or in
the condition of a single conditional effect, respectively.

Theorem 2 and Proposition 1 imply that numbers cannot be
compiled away, preserving plan size linearly, without making
use of conditional effects and Boolean conditions.

Corollary 1. NP,P
I ̸⪯c SI and NP,P ̸⪯c S.

Now we can show in some sense the converse of Theo-
rem 2, that is, that numeric planning can be compiled to clas-
sical planning preserving plan size exactly if we allow condi-
tional effects and Boolean conditions.

This result requires some background about the complex-
ity of Boolean circuits and arithmetic circuits that we are
going to briefly cover here. Boolean circuits are a com-
mon computation model for Boolean functions, i.e., functions
f : {0, 1}n → {0, 1}m, that has been extensively studied
in the computational complexity literature for decades. A
Boolean circuit is a directed acyclic graph made of logic gates
(in our case, and, or, and not gates) and input variables, with
edges going from input variables or gates outputs to gates in-
puts. Some of the gates are marked as the output gates of
the circuit. The depth of a circuit is the maximum length of
a path from an input variable to an output node. A Boolean
formula is a circuit where the output of each gate is used at
most once (we say the fan-out is 1). The study of the min-
imal size and depth of circuits that compute given functions
is an interesting and complex field. For more details we re-
fer the reader to the many textbooks on the topic (see e.g.,
Wegener; Vollmer [1987; 1999]).

Another well-studied computation model that will come
useful here is the arithmetic circuits, which are similar to
Boolean ones with the difference that the gates compute arith-
metic operations (in our case, sums and products) and the
inputs are numbers (or elements in a field, more generally).
Similar to Boolean formulas, arithmetic formulas are arith-
metic circuits with fan-out 1. Note that numeric expressions
defined in Section 2 can be directly seen as arithmetic formu-
las. For more details the reader can refer to [Vollmer, 1999].
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Here, we are interested in how to compute arithmetic for-
mulas with Boolean formulas. To answer this question, we
need a small detour through circuit complexity results. In all
the following statements, it is understood that the circuits and
formulas whose existence is stated can be obtained in poly-
nomial time. To start, the following result links evaluation of
arithmetic formulas to arithmetic circuits.
Proposition 2 (Buss et al. [1992]). Arithmetic formulas of
size n can be computed over semi-rings by arithmetic circuits
of size O(nk), for some k > 0, and depth O(log n).

Note that integers modulo m, which is what concerns us,
form a semi-ring and thus apply to Proposition 2.

Then, the following result, proved by Jung [1985] and also
remarked by von zur Gathen and Seroussi [1991], connects
arithmetic circuits over the integers to Boolean circuits.
Proposition 3. Any arithmetic circuit of size s with n inputs
and depth d can be computed over the integers modulo m by
a Boolean circuit of size O(sk) and depth O(d log∗ n).

Here, log∗ n is the iterated logarithm function, which
grows very slowly. In particular, log∗m ∈ O(logm).

Finally, the size of Boolean formulas is strictly related to
the size of Boolean circuits. In particular, it is well known
that formulas grow exponentially on the depth of circuits.
Proposition 4. Any Boolean circuit of size n and depth d is
equivalent to a Boolean formula of size O(n2d).

The above results have the following simple consequence.
Proposition 5. A numeric expression of size m can be com-
puted by a Boolean formula of size polynomial in m.

Proof. Consider a numeric expression e of size m involving
n variables. We can see it as an arithmetic formula and
apply Proposition 2 to get an arithmetic circuit of size
mO(1) and depth d ∈ O(logm). Then, Proposition 3
finds a Boolean circuit of size still mO(1) and depth
O(d log∗ n) = O(logm log∗ n). Since n = O(m), the depth
is O(log2m). Then, by Proposition 4 we can get an equiva-
lent Boolean formula of size O(mO(1)2logm) = mO(1).

Recall that a Boolean formula in this setting is a cir-
cuit with fan-out 1, not some string of symbols such as the
Boolean conditions of Section 2, but the connection is strict.
From a Boolean formula with n outputs we can immedi-
ately recover n single-output Boolean formulas, and then n
Boolean conditions usable to compute the single output bits.

Thanks to the above results, we can simulate the arithmetic
operations expressed in numeric actions by means of Boolean
conditions used to define suitable conditional effects.
Theorem 3. NP,P

BC ⪯1 SBC and NP,P
BCI ⪯1 SBCI

Proof. Let P = ⟨D, I, G⟩ and D = ⟨Σ, X, β,A⟩ be a prob-
lem and a domain from NP,P

BC . We start by simplifying the
problem in two ways. First, we can normalize the bounds
given by β in the following sense. We can assume w.l.o.g.
that for each x ∈ X there is a wx > 0 such that β(x) =
(−2wx , 2wx−1). If this is not the case, and β(x) = (l, u), we
can find a suitable wx such that −2wx ≤ l and 2wx − 1 ≥ u,
set β(x) accordingly, and add to any action of the domain two

preconditions x ≥ l and x ≤ u. Then, thanks to Theorem 1,
we can assume w.l.o.g. that P is of NP1,P

BC , i.e., conditions are
expressed with numeric atoms of degree 1. Note that, in par-
ticular, we can assume w.l.o.g. that all such atoms are of the
form x ≥ 0, with x ∈ X .

With these assumptions in place, we can simulate the arith-
metics of the numeric planning problem by bit-blasting, i.e.,
representing each numeric variable x with a set of wx + 1
Boolean variables x̄ = {x0, . . . , xwx

}. By using a two’s
complement representation, the most significant bit xwx

also
acts as a sign bit, i.e., we will have wx = 0 if x ≥ 0 and
wx = 1 otherwise. Recall that a (w + 1)-bits two’s comple-
ment number represents an integer between −2w and 2w − 1,
which explains the assumptions on bounds made above. Re-
call as well that arithmetics in two’s complement coincides
with arithmetics in integers modulo 2w+1. For each numeric
variable xwe also keep an additional Boolean variable ox that
will be used to keep track of overflows.

Now, the component fξ of the compilation scheme can
be defined such that fξ(D) = ⟨Σ′,∅,∅, A′⟩, where Σ′ =
Σ∪{x0, . . . , xwx

, ox | x ∈ X}, and A′ is defined as follows.
Each a ∈ A is replaced by an action a′ = ⟨pre(a), eff(a)⟩.
Let us see at first how to deal with the precondition. Intu-
itively, to encode x ≥ 0 we only need to test the sign bit of x.
Given a condition ϕ, let enc(ϕ) be the following:

enc(p) = p for p ∈ Σ

enc(x ≥ 0) = ¬xwx for x ∈ X

enc(¬ϕ1) = ¬ enc(ϕ1)

enc(ϕ1 ∨ ϕ2) = enc(ϕ1) ∨ enc(ϕ2)

Then, we can define pre(a′) = enc(pre(a)). The conditional
effects are the hardest part. Let e be a numeric expression.
We can compute the number of bits needed to represent any
possible value held by e, given the bounds of the variables
involved in the expression, as we+1, where we is defined as:

wk = ⌈log(|k|)⌉+ 1 for k ∈ Z
we1+e2 = max(we1 , we2) + 1

we1·e2 = we1 + we2 + 1

For each numeric expression e, thanks to Proposition 5, we
can obtain a set of Boolean conditions ϕ0, . . . , ϕwe comput-
ing the bits of the value of e given the bits of the involved vari-
ables. This computation is done modulo 2we+1, which corre-
sponds exactly to two’s complement arithmetic over (we+1)-
bits words. If involved variables have a lower bit width, they
can be trivially extended to the higher bit width.

Now, let us assume w.l.o.g. that each effect Γ ⇒ E in
eff(a) is such that |E| = 1; when |E| > 1 we can split
Γ ⇒ E in |E| different effects each with the same condi-
tion Γ. Now, let Γ be a set of conditions. We can define
enc(Γ) = {enc(ψ) | ψ ∈ Γ}, similarily to the action’s pre-
condition. Then, let Γ ⇒ E be an effect. If E contains a
Boolean effect, we can define enc(Γ ⇒ E) = enc(Γ) ⇒ E.

Otherwise, if E = {x := e}, the effect can be encoded as:

enc(Γ ⇒ E) =

wx⋃
i=0


Γ+
i ⇒ {xi},

Γ−
i ⇒ {¬xi},

Γo ⇒ {ox}
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where:
Γ+
i = enc(Γ) ∪ {ϕi}

Γ−
i = enc(Γ) ∪ {¬ϕi}

Γo = enc(Γ) ∪ {¬
(∧we

i=wx

ϕi ∨
∧we

i=wx

¬ϕi
)
}

Then, we can define eff(a′) as the union of enc(Γ ⇒ E) for
all the effects (Γ ⇒ E) ∈ eff(a). Intuitively, what we do
here is to set each bit of the target variable with different con-
ditional effects that depend on the value of the Boolean con-
ditions ϕi representing the i-th bit of the numeric expression
to be assigned to the numeric variable. We detect overflow
when the value of e exceeds the value of x with an additional
fluent. The extra bits of e can be safely truncated if they are
equal to the first non-truncated bit. For example, the 8-bit
word 11110110 (−10) can be assigned to a 5 bit word since
the four most significant bits are equal (10110 is still −10).

Now, given xi ∈ Σ′ and k ∈ Z, let xi(k) be xi if the i-th
bit of the (wx + 1)-bits two’s complement representation of
k is 1, and ¬xi otherwise. We have:

fi(D) = {¬xo | x ∈ X}
fg(D) = {¬xo | x ∈ X}

ti(Σ, X, I) = I ∪ {xi(k) | (x = k) ∈ I, i ∈ {0, . . . , wx}}
tg(Σ, X,G) = {ℓ | ℓ ∈ G is Boolean} ∪ {enc(ϕ) | ϕ ∈ G}

It can be checked that f = ⟨fξ, fi, fg, ti, tg⟩ so defined is a
compilation scheme by Definition 3. Moreover, it is easy to
see that the initial state specification remains complete, if it is
so before the compilation. Finally, the plan size is preserved
exactly as each action of the original problem is replaced 1-
to-1 with the new actions.

Theorems 2 and 3, together, tell us that NP,P and SBC are
strongly related as one can be compiled in the other preserv-
ing plan size exactly.

Corollary 2. SBC ≈1 NP,P and SBCI ≈1 NP,P
I

As promised in Section 2, Theorem 3 also gives us a com-
plexity bound on the plan existence problem for NP,P

BCI, since
the provided compilation runs in polynomial time.

Corollary 3. NP,P
BCI is PSPACE-complete.

Moreover, thanks to Theorem 2 we can go, preserving plan
size exactly, from NP,P

BC to SBC, and then from SBC to NP,P,
thus compiling away both Boolean conditions and conditional
effects from the numerical problem.

Corollary 4. NP,P
BC ⪯1 NP,P and NP,P

BCI ⪯1 NP,P
I

Recall from Proposition 1 that removing Boolean condi-
tions and/or conditional effects from classical problems was
only possible by growing plan size polynomially, while here
we can do so preserving size exactly. This is further evidence,
if it was needed at all, of the power of numbers in planning.

We also have an interesting negative consequence of The-
orems 2 and 3, namely that incomplete state specifications
cannot be compiled away from numeric planning, even pre-
serving plan size polynomially.

Corollary 5. NP,P
I ̸⪯p NP,P

Proof. Suppose by contradiction that NP,P
I ⪯p NP,P. Recall

that we have SBI ⪯1 NP,P
I by Theorem 2, and NP,P ⪯1 SBC

by Theorem 3. Hence we have:

SBI ⪯1 NP,P
I ⪯p NP,P ⪯1 SBC

This implies SBI ⪯p SBC, contradicting Proposition 1.

Note that Corollary 5 tells us that incomplete state specifi-
cations are more powerful in numeric planning than in clas-
sical planning. In the latter (see Proposition 1), they can
be compiled away polynomially, and only when paired with
Boolean conditions they make the compilation impossible.

5 Discussion and Conclusions
We considered numeric planning problems with bounds on
the value of variables, and studied their compilability to nu-
merical fragments obtained by restricting certain syntactic
features, and to classical planning. We based our work on the
framework set up by Nebel [2000], where he studied in great
details the compilability between classical fragments also in
terms of the growth of the length of the compiled plans.

The results, pictured in Figure 1, show a different land-
scape w.r.t. classical planning. In particular, if we focus on
compilability preserving plan size exactly, only a few classi-
cal fragments are compilable to each other, while in the nu-
meric case, the space is partitioned into two large equivalence
classes. The watershed between the two is the incomplete
space specifications, which cannot be compiled away even
with a polynomial increase in plan length. Our results also
locate the numeric fragment w.r.t. the classical ones. We saw
that numbers can be compiled away (preserving plan size ex-
actly) to a classical problem if we admit Boolean conditions
and conditional effects and, vice versa, these two features can
be compiled away if we admit numbers. In hindsight, this re-
lationship can be explained by a common feature that both nu-
meric and conditional effecs have in common: their outcome
is state-dependent, meaning that it changes depending on the
state where they are applied. This connection was never ex-
plicitly quantified before.

We distinguish fragments mainly by the same syntactic fea-
tures already considered by Nebel [2000], besides the degree
of the involved polynomials. However, one could enrich the
picture by considering more granularity at the level of the
syntax of numeric conditions and effects, e.g., by restricting
the kinds of allowed assignments and increments. Our work
only focused on bounded numeric planning over discrete vari-
ables. A natural extension would be to study numeric frag-
ments over dense or continuous variables, which invalidate
many assumptions used to prove our results. Finally, we only
considered polynomial expressions, but PDDL 2.1 supports
divisions as well, which may further enrich the picture.

While this work has naturally mostly theoretical interest,
it is not devoid of potential practical consequences worth ex-
ploring in the future. In particular, the connection between
numeric and conditional effects, especially considering that
plan length does not change when going from one to the
other, can be useful to transfer techniques from one field to
the other, e.g., in the definition of new heuristic functions.
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