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Abstract
This paper studies the use of Curriculum Learning
on Reinforcement Learning (RL) to improve the
performance of the dispatching policies learned on
the Job-shop Scheduling Problem (JSP). Current
works in the literature present a large optimality gap
when learning end-to-end solutions on this problem.
In this regard, we identify the difficulty for RL to
learn directly on large instances as part of the is-
sue and use Curriculum Learning (CL) to mitigate
this effect. Particularly, CL sequences the learning
process in a curriculum of increasing complexity
tasks, which allows learning on large instances that
otherwise would be impossible to learn from scratch.
In this paper, we present a size-agnostic model that
enables us to demonstrate that current curriculum
strategies have a major impact on the quality of the
solution inferred. In addition, we introduce a novel
Reinforced Adaptive Staircase Curriculum Learning
(RASCL) strategy, which adjusts the difficulty level
during the learning process by revisiting the worst-
performing instances. Conducted experiments on
Taillard’s and Demirkol’s datasets show that the pre-
sented approach significantly improves the current
state-of-the-art models on the JSP. It reduces the
average optimality gap from 19.35% to 10.46% on
Taillard’s instances and from 38.43% to 18.85% on
Demirkol’s instances.

1 Introduction
The Job-shop Scheduling Problem (JSP) is a combinatorial
problem with vast implications on real-world tasks. It is for-
mulated as a set of jobs, each consisting of a set of operations,
to be processed on a set of heterogeneous machines. Fur-
thermore, each operation has a specific machine assigned to
it, and the operational time it takes to complete is known in
advance. The goal is to define the scheduling order of the
operations such that the total completion time or makespan
is minimized. This problem applies to many tasks concerned
with the optimal assignment of capital goods versus means of
production, e.g., manufacturing, storage, transportation, etc.
However, the JSP is an NP-hard problem, and it is therefore
impractical to solve optimally. Optimization methods such as

integer programming or constraint programming are computa-
tionally expensive methods that are unrealistic to use when fast
solutions are required. Therefore, in practice, hand-engineered
heuristics are commonly used to find approximate solutions to
the problem.

However, designing such heuristic rules is a daunting task
that requires specialized knowledge of the problem. In the
case of the JSP, Priority Dispatch Rules (PDRs) are a family of
constructive heuristics used on scheduling problems that are
fast to compute and easy to implement. Although, it is not clear
how to extrapolate these rules to different problems. Therefore,
recent studies have focused on using Reinforcement Learning
(RL) to derive domain-specific heuristics automatically. This
technique is known in the literature as Neural Combinatorial
Optimization (NCO). Unlike traditional PDRs that use the
same dispatching rule for any instance in the problem, NCO
particularizes a solution based on the instance information,
which makes this technique very compelling. This technique
has already demonstrated promising results in the JSP [Zhang
et al.2020a, Wang et al.2021a].

This paper provides a nostrum for improving the learn-
ing strategy on the JSP using Curriculum Learning (CL). To
this end, we design a problem-specific architecture and novel
training approach that stresses this direction. Our main contri-
butions are summarized below:

• This work particularizes a deep learning model to ad-
dress the JSP. Particularly, we present an autoregressive
model that iteratively constructs the solution based on the
operations that are yet to be scheduled, as well as on the
state of the machines during the resolution process. The
model is equivariant w.r.t. the job information but also
size-agnostic, which enables to seamlessly use it on dif-
ferent problem sizes and train it performing a curriculum
strategy.

• We also present Reinforced Adaptive Staircase Cur-
riculum Learning (RASCL), a novel CL strategy that
improves the model’s performance based on the flexi-
ble assignment of difficulty levels during the learning
process. In this work, we identify the difficulty for tra-
ditional RL methods to learn on large instances of the
problem. To mitigate this issue, RASCL dynamically
reinforces the model by revisiting the worst-performing
instances. Conducted experiments show that this strategy
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presents an improvement when compared to previous CL
approaches.

The aforesaid ideas deliver an improvement in the schedul-
ing solutions when compared to state-of-the-art works on
JSP [Zhang et al.2020a]. Notably, we reduce the optimal-
ity gap from 19.35% to 10.46% on Taillard’s instances and
from 38.43% to 18.85% on Demirkol’s instances1.

The remainder of this paper is organized as follows. In
Section 2, we present the state-of-the-art of NCO applied on
the JSP. In Section 3, we provide a formal description of the
method. Then, in Section 4 the architecture description, and
in Section 5 the learning strategy are provided. In Section 6
the method is experimentally validated. Finally, Section 7
concludes the paper.

2 Related Work
The first attempts of using RL to address scheduling problems
date back to the 90s [Mahadevan et al.1997, Mahadevan and
Theocharous1998, Zhang and Dietterich1995]. Of specific
relevance is Zhang and Dietterich’s paper [Zhang and Diet-
terich1995] on allocating resources for NASA shuttle missions.
As it was reflected in the literature, one of the advantages of
using RL for such a purpose is that it can be seamlessly used
for static, dynamic [Gabel and Riedmiller2008, Aydin and
Öztemel2000], and stochastic variants of the problem. How-
ever, due to technological limitations, this technique could
only be applied to small instances of the problem, limiting its
applicability significantly.

The recent rise of deep learning has allowed extrapolat-
ing this technique to more realistic problem instances. Prior
works have particularized deep neural networks, e.g., Pointer
Networks [Vinyals et al.2015b], to learn in combinatorial
spaces. In [Bello et al.2016], deep RL was implemented for
the first time to learn end-to-end solutions to combinatorial
problems. The authors used the Pointer Network in an actor-
critic architecture to address the Travelling Salesman Problem.
Further studies implemented Transformer networks [Deudon
et al.2018, Vaswani et al.2017, Kool et al.2018]. However, all
these works share in common that they are based on sequence-
to-sequence models, where the complete solution is output
at once. Thereby, heavy sampling and searching techniques
were required at interference to improve the solution. Our
approach is in line with [Nazari et al.2018], where the Vehicle
Routing Problem is described as a Markov Decision Process,
and the solution is iteratively constructed based on sequential
decisions.

In the particular case of the JSP, several techniques have
been applied to learn on the problem. Imitation learning was
used in [Ingimundardottir and Runarsson2018] to learn from
optimal solutions on training instances that were labeled us-
ing a Mixed-Integer Programming (MIP) solver. RL has also
been applied to the problem, e.g., to select pre-defined candi-
date PDRs according to the scheduling conditions [Aydin and
Öztemel2000, Lin et al.2019]. Other works have addressed

1Taillard and DMU datasets are publicly available on
http://optimizizer.com/TA.php and http://optimizizer.com/DMU.php
respectively.

the problem from a multi-agent perspective, e.g., in coopera-
tive manufacturing [Gabel and Riedmiller2008, Waschneck et
al.2018] where each agent controls a production line. More-
over, numerous examples of scheduling in many application
domains, including manufacturing [Lin et al.2019, Wang et
al.2021a], distributed computing [Mao et al.2019, Zhang et
al.2020b, Sun et al.2021] or supply chains. Despite the effort,
many of these approaches do not beat traditional heuristics.
In addition, a major limitation in many of these works is that
the state representation is hard-bounded by some factors (e.g.,
size of jobs or number of operations to consider), not enabling
to scale the solution to arbitrary problem sizes.

Zhang et al. [Zhang et al.2020a] presented the first size-
agnostic model on the problem. It formulates the JSP as a
disjunctive graph and uses a high discriminative Graph Isomor-
phism Network (GIN) to embed the states in the resolution
procedure. They prove to capture raw features from small
problem instances and successfully generalize solutions to
much larger instances that the ones experienced during the
training. Even though graph neural networks have shown un-
precedented success embedding not-euclidean spaces, in this
paper, we show that a simpler autoregressive neural network
is enough to better capture the state information and infer a
dispatching rule.

One of the key features of the model presented in this work
is the use of CL to stress the learning capabilities of the model
to even larger problem instances. This aspect has been pointed
out several times in the literature, e.g. [Zheng et al.2019]
employs transfer learning to reconstruct the trained policies
on problems of different sizes. However, policy transfer is
still relatively costly and inconvenient. Also, [Liu et al.2020]
uses lifelong learning, where an agent will not only learn to
optimize one specific problem instance but reuse what it has
learned from previous instances. They also proposed a parallel
training method that combines asynchronous updates with a
deep deterministic policy gradient to speed up model train-
ing. In [Lisicki et al.2020], the authors use a CL strategy
with an adaptive staircase mechanism, where, at each itera-
tion, the model changes the difficulty level according to the
model performance. In our work, we build on top of this idea,
tracking the model’s behavior during the learning stressing the
worst-performing levels.

3 Method
In the JSP, a finite set of m jobs {Ji}mi=1 are to be processed
on a finite set of n machines {Mk}nk=1. Each job Ji consists
of a sequence of n operations Oi,1 → Oi,2 → ... → Oi,n, that
have to be processed in a predetermined order. For each opera-
tion, Oi,j , the machine Mk is assigned for a given processing
time Di,j . The goal is to determine the scheduling order of
the operations such that the total execution time or makespan
is minimized.

There are several constraints that need to be taken into
account when obtaining a solution on the problem:

• no-overlap constraints, determine that each machine shall
process only one operation at a time;

• non-preemptive constraints, stating that once the process
of an operation is initiated, it shall not be interrupted
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before completion;
• precedence constraints, establishing that the order of op-

erations inside a job Ji, where operation Oi,j+1 shall not
be scheduled until the previous operation Oi,j of the job
Ji is completed.

3.1 Learning the Dispatching Policy
In this work, we formulate the resolution process on the JSP
as a Markov Decision Process (MDP), in which the solution is
iteratively constructed according to the dispatching decisions
inferred. This process resembles how constructive heuristic
algorithms operate. We are therefore concerned with learning
the dispatching policy that based on the state on the resolution
process infers the operation to schedule next. To this end, we
propose learning an autoregressive model that dispatches the
operations according to the scheduling policy πθ, which is
parameterized using a neural network and optimized using
RL.

More formally, we consider that a solution to an instance
x ∈ X of the JSP consists of t ∈ {1, ...,m · n} decision steps
that correspond to the dispatching operations. We denoted
as st ∈ S the state of the machinery, which evolves with the
scheduling decisions at every step. The actions denoted as
at ∈ A correspond to the job for which the next pending
operation is dispatched at that step. The goal is therefore
learning a dispatching policy π : X × S → ∆|A| that for an
instance x at the resolution state st, outputs the probability
distribution over the next pending operations. The transition
function P : X × S × A → S corresponds to the dynamics
on the problem, which are deterministic. The model dynamics
are therefore expressed as

st+1 ∼ P (·|x, st, at) at ∼ π(·|x, st). (1)
The process repeats until all operations are scheduled. At that
point, the solution y is defined as the sequence of dispatch
actions (a1, a2, ..., am·n).

Regarding the cost function C : X × S × A → R, it is
defined as the temporal increment in the completion time τ
between two successive states

Ct(x, st, at) = τ(x, st+1)− τ(x, st), (2)
where τ(x, st) refers to the time required to complete all oper-
ations from the initial state until st, which is computed using
the Gantt diagram of a given instance. The cost function can
be seen as the negative of the RL reward, and it is formulated
to easily apply the reward-to-go trick [Sutton and Barto2018].
This uses causality to remove the past sum over rewards so
that only rewards collected after the current decision step are
considered, which helps in reducing the variance of policy
gradient. The makespan T (x) is therefore directly obtained
as the sum of collected costs along the resolution process
T (x) =

∑
t Ct(x, st, at).

In order to learn the policy we resort to the Reinforce algo-
rithm [Williams1992] and the model is optimized for minimiz-
ing the expected makespan,

J π(θ) = Ex∼X ,a∼πθ(·|x,st)
[
Tπθ (x)

]
. (3)

Following the common variation of Policy Gradient Theo-
rem [Sutton et al.1999], the gradient of the objective function
is obtained as

∇θĴ π(θ) ≈

1

B

∑
b

n·m∑
t=1

(
(G(x, st)− bϕ(x, st)) · ∇θ log πθ(at|x, st)

)
,

(4)
where bϕ(st, x) is the baseline - the estimate of the value

function at state st of the problem instance x, and G, called re-
turn, is the actual cumulative cost starting at time step t and till
all n ·m operations are schedule G(st, x) =

∑n·m
t Ct(st, at).

The baseline is computed using a critic head and it is used to
reduce the variance of the gradients, and therefore, to speed up
the convergence. The critic is parameterized with parameters
ϕ and it is trained to minimize

L(ϕ) =
1

B

∑
b

n·m∑
t=1

||bϕ(x, st)−G(x, st)||2 . (5)

3.2 Inference Strategies
As reflected in the literature [Bello et al.2016,Kool et al.2018],
the greedy inference of scheduling decisions from the policy
function πθ used to result in poor results in NCO. Therefore,
inference strategies, although sometimes quite computation-
ally expensive [Bello et al.2016], are commonly used to report
competitive solutions. In the following, we describe the infer-
ence strategies considered in this paper:
Sampling. This technique produces several scheduling so-
lutions by repeating the inference process directly sampling
from the policy distribution. Sometimes a temperature hyper-
parameter is used to soften the output distribution and increase
the diversity of the solutions. We denote as s the width of the
sampling strategy.
POMO [Kwon et al.2020]. Policy Optimization with Multi-
ple Optima mixes both, greedy and sampling inference strate-
gies. At the initial state, this method rolls out p initial schedul-
ing actions {a(1)0 , ..., a

(p)
0 }. Then, the solutions are completed

using the greedy strategy. This creates p solutions to the prob-
lem {y(1), ..., y(p)} that are evaluated to select the best one.
The authors demonstrate that this approach is competitive and
computationally efficient compared to the sampling strategy.
Beam search [Joshi et al.2019, Wang et al.2021a]. This
strategy explores a beam of b dispatches at each decision
step. At the initial state, the b most likely scheduling actions
{a(1)0 , ..., a

(b)
0 } are selected. Then, at the next decision step

for each candidate solution, a new set of b actions is rolled out,
thus, the total number of available actions becomes b× b. To
prevent the number of candidate solutions from exploding in
number, beam search only selects the b candidates with the
highest likelihood at each step. At the end of the inference
process, b candidate solutions are created.

4 Architecture Details
Top view of the architecture. The proposed architecture is
depicted in Fig. 1. The model receives the instance description
x as well as the internal state during the problem resolution st
and outputs π(x, st), the distribution over the next pending op-
erations at the current decision step t. The state of the problem
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Figure 1: Model Architecture. The model receives the instance description x as well as the state of the machinery st at step t and outputs
π(x, st) a distribution over the jobs indicating the next pending operations to be scheduled. The operations on each job are recurrently encoded
using an LSTM network, and a set2set network is used to combine the job information in an equivariant manner. The information regarding the
machinery and job status is concatenated and connected to the actor and critic heads respectively.

consists of the following features: the index of the operations
being currently processed, the status of machines and the re-
maining processing times. Regarding the job information, the
sequencing of the operations for each job is obtained using a
recurrent LSTM [Hochreiter and Schmidhuber1997] network.
Once the operation sequencing is encoded, the job informa-
tion is passed through a set2set module [Vinyals et al.2015a],
which is particularly useful to aggregate the job descriptions in
an equivariant manner. This module neglects the positioning
of the jobs in the instance description, which increases the
sample efficiency of the model as equivalent representations
of the problem have the same representation. Finally, the
embeddings of both descriptors are concatenated and passed
into actor-critic networks to calculate the distribution over the
dispatching actions, as well as the estimate of the return.

Operation sequencing. Considering that the dispatching
actions at any given step only depend on the remaining oper-
ations, we use a LSTM network to capture this information.
The LSTM operates backward, starting from the last operation
in this job till the current operation. The embeding for the op-
eration sequence is computed once for the instance description,
and its result is stored for being used during the resolution
process. Particularly, the index of the operation currently pro-
cessed is used to select the output of the LSTM corresponding
to the current step t. We denote this vector cit and it encodes
the information of the pending operations for the job Ji.

Decoding the solution. The solution is sequentially con-
structed in an autoregressive process where at each step the
model indicates the operation to dispatch next. This is done
by sampling from the probability distribution the policy-head
computes. The model tracks therefore the operations already
scheduled and only operates over the next available operation
in each job. Once the scheduling order is determined, we can
compute the makespan. The model needs to track also when
all the operations in a job are scheduled, as selecting the job
is no longer a valid action. To this end, we use a masking
scheme that operates on the policy-head and reduces to zero
the chances of selecting an invalid dispatch.

Algorithm 1 RASCL algorithm
Data: Define the levels of difficulty L = {l0,...,lK} and the opti-

mality threshold δth
Initialize L = {l0}, l = l0, and k = 0

while k ≤ K do
Update {g(l) | l ∈ L} according to the optimality gaps on the

testing dataset.
if max{g(l)} ≤ δth then

Increase the difficulty k = k + 1 and L = L ∪ {lk}
else

Sample level l ∼ softmax({1 / g(l) | l ∈ L}))
end
Train policy πθ on level l

end
Result: Trained policy πθ

5 Learning Using a Curriculum Strategy
Curriculum Learning (CL) is a methodology that uses sce-
narios of increasing complexity to train the model. CL was
adopted from social and educational systems to build a cur-
ricula of increasing complexity [Wang et al.2021b]. Such an
approach allows the model to learn policies from the easiest
scenario that can be extrapolated to harder levels of difficulty.
In the case of the JSP, we identify the difficulty levels as the
different sizes on the problem m× n. The bigger the number
of jobs m and operations n, the harder is to learn. In this work,
we consider the following most popular CL strategies:

Incremental curriculum learning (ICL). In CL a set of
levels of difficulty L = {l0,...,lK} has to be predefined for per-
forming the training. Incremental CL represents the simplest
approach and it sequentially trains the model on increasing
difficulty levels in a sequential manner. The drawback of
this strategy is the model’s tendency to catastrophic forgetting
when trained on consecutive grades of complexity [Lisicki et
al.2020], as previous levels of difficulty are not revisited.

Uniform curriculum learning (UCL). In uniform CL, at
each iteration the model selects the training complexity with
equal chances from the different difficulty levels. In this way,
the model is exposed to various training levels and the policy
stays inherent to different problem sizes. However, based on
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Figure 2: Optimatlity gap (in percent) on the (a) curriculum strategies and (b) inference strategies on Taillard’s instances. In (a), all strategies
incorporate a sampling (s=128). In (b), the measurements are obtained on the RASCL model for POMO (p=3), sampling (s=128) and Beam
search (b=3).

the work of [Lisicki et al.2020], learning on small-size tasks is
more accessible rather than sampling each training level from
a uniform distribution of all sizes of interest, which eventually
may not be the most helpful learning strategy.
Adaptive staircase curriculum learning (ASCL). Adap-
tive staircase is introduced to RL in [Lisicki et al.2020]. This
strategy introduces flexibility in selecting the level of com-
plexity during the training. Specifically, the model initializes
the learning process on the easiest difficulty level l0 and adap-
tively increases the difficulty based on the observed optimality
gap. At the level lk, ASCL revisits previous difficulty levels
to not ’forget’ its corresponding policies. The levels to re-
visit are selected are randomly selected following a uniform
distribution.
Reinforced adaptive staircase CL (RASCL). In this work
we propose a methodology for dynamically adjusting the dif-
ficulty between the levels. Similar to ASCL, the agent’s is
initiated at the lowest difficulty level l0 with the aim to make
its way to the top level lK . However, the limitation of ASCL
is inherent in the randomness of revisiting the previous levels.

To tackle the problem, RASCL proposes a further improve-
ment of ASCL by revisiting the levels where model shows
the worst performance. Specifically, RASCL determines the
level of difficulty comparing the estimation of the return to
the optimal one. To this end, this method evaluates the op-
timality gap g(l) for each difficulty level and establishes a
policy for revisiting levels inversely proportional to the gap
observed. The bigger the optimality gap achieved in a level the
higher the chances to revisit the level. The complete algorithm
description can be found in Algorithm 1. Particularly, the
method tracks a subset of levels L from where the training is
performed. The subset of levels available starts as L = {l0}
and it increases during the learning. Once the set of levels
L are mastered, L is augmented incorporating the next dif-
ficulty level. The condition for incorporating the next level
is by comparing the maximum optimality gap on L to a pre-
determined threshold δth. If the model’s return is below the
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Figure 3: Increment in the optimality gap (in percent) on Taillard’s
instances when trained using (a) Base and (b) ICL learning strategies.
From (a), learning directly on large instances is hard for the model;
whereas in (b), progressively incrementing the problem size during
training reduces the optimality gap.

threshold, RASCL adds the new level of difficulty. Otherwise,
the method keeps training sampling instances from the current
subset of levels L. The proposed algorithm reinforces the
learned policy by revisiting and anchoring the most problem-
atic difficulty levels.

6 Experimentation
Datasets. We train and evaluate our model on scheduling
instances of the sizes used on Taillard’s [Taillard1993] and
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Instances SPT FDD/WKR MWKR MOPNR [Zhang et al.2020a] RASCL
(s=128)

Obj. 1546.1 1808.6 1464.3 1481.3 1547.4 1339.8
15×15 Gap (25.89%) (47.15%) (19.15%) (20.53%) (25.96%) (9.02%)

Obj. 1813.5 2054.0 1683.6 1686.7 1774.7 1509.3
20×15 Gap (32.82%) (50.57%) (23.35%) (23.55%) (30.03%) (10.58%)

Obj. 2067.0 2387.2 1969.8 1968.3 2128.1 1793.1
20×20 Gap (27.75%) (47.61%) (21.81%) (21.71%) (31.61%) (10.87%)

Obj. 2419.3 2590.8 2214.8 2195.8 2378.8 2038.1
30×15 Gap (35.27%) (45.02%) (23.91%) (22.83%) (33.0%) (13.98%)

Obj. 2619.1 3045.0 2439.0 2433.6 2603.9 2261.5
30×20 Gap (34.44%) (56.3%) (25.17%) (24.94%) (33.62%) (16.09%)

Obj. 3441.0 3736.3 3240.0 3254.5 3393.8 3030.8
50×15 Gap (24.11%) (34.77%) (16.86%) (17.37%) (22.38%) (9.32%)

Obj. 3570.8 4022.1 3352.8 3346.9 3593.9 3125.1
50×20 Gap (25.54%) (41.5%) (17.95%) (17.68%) (26.51%) (9.89%)

Obj. 6139.0 6620.7 5812.2 5856.9 6097.6 5578.9
100×20 Gap (14.41%) (23.39%) (8.31%) (9.15%) (13.61%) (3.96%)

(a) Taillard’s instances

Instances SPT FDD/WKR MWKR MOPNR [Zhang et al.2020a] RASCL
(s=128)

Obj. 4951.5 4666.3 4909.9 4513.2 4215.3 3610.0
20×15 Gap (64.13%) (53.57%) (62.15%) (49.16%) (38.95%) (19.36%)

Obj. 5690.5 5298.2 5489.0 5052.3 4804.5 4028.9
20×20 Gap (64.57%) (52.52%) (58.16%) (45.17%) (37.74%) (15.98%)

Obj. 6306.2 6016.5 6252.9 5742.8 5557.9 4522.0
30×15 Gap (62.57%) (54.12%) (60.95%) (47.14%) (41.86%) (16.35%)

Obj. 7036.0 6827.3 6925.0 6491.9 5967.4 5106.0
30×20 Gap (65.91%) (60.09%) (63.16%) (51.97%) (39.48%) (20.0%)

Obj. 7601.2 7420.0 7484.2 7105.5 6663.9 5731.9
40×15 Gap (55.88%) (51.42%) (52.87%) (44.72%) (35.38%) (17.49%)

Obj. 8538.1 8210.9 8460.9 7870.7 7375.8 6584.1
40×20 Gap (63.0%) (55.52%) (61.11%) (49.22%) (39.38%) (25.42%)

Obj. 8975.4 9150.2 8906.0 8436.5 8179.4 7242.1
50×15 Gap (50.37%) (52.53%) (48.93%) (40.79%) (36.2%) (21.54%)

Obj. 10132.8 9899.6 9807.0 9408.0 8751.6 7176.9
50×20 Gap (62.2%) (57.26%) (56.4%) (49.61%) (38.86%) (14.66%)

(b) DMU’s instances

Table 1: Results on (a) Taillard’s and (b) DMU instances. Objective indicates the average makespan for a given problem size; and Gap, the
average difference (in percent) to the upper bound known for the instances.

Instances Greedy POMO [Kwon et al.2020] (p=3) Sampling (s=128) Beam (b=3)

TA
IL

L
A

R
D

15×15 1404.2 (14.26%) 1381.9 (12.43%) 1339.8 (9.02%) 1382.9 (12.52%)
20×15 1590.3 (16.52%) 1588.6 (16.40%) 1509.3 (10.58%) 1582.9 (15.97%)
20×20 1896.5 (17.27%) 1887.5 (16.71%) 1793.1 (10.87%) 1892.1 (17.01%)
30×15 2118.9 (18.52%) 2105.0 (17.78%) 2038.1 (13.98%) 2104.8 (17.7%)
30×20 2365.7 (21.47%) 2350.8 (20.70%) 2261.5 (16.09%) 2354.0 (20.87%)
50×15 3111.6 (12.23%) 3079.1 (11.08%) 3030.8 (9.32%) 3090.9(11.5%)
50×20 3219.6 (13.24%) 3185.9 (12.05%) 3125.1 (9.89%) 3203.4 (12.68%)
100×20 5680.9 (5.86%) 5633.3 (4.97%) 5578.9 (3.96%) 5637.5 (5.05%)

Table 2: Inference strategies for RASCL on Taillard’s instances. Results are reported as average Objective (Gap).

Demirkol’s (DMU) [Demirkol et al.1998] datasets: 15x15,
20x15, 20x20, 30x20 and 30x15. The instances are expressed
as JSP m× n, where m represents the number of jobs, and n
is the number of operations. To test the model’s performance,
we use substantially larger instances that are not included in
the training set: 50x15, 50x20, and 100x20.

Baselines. For the choice of baselines, we resort to the anal-
ysis on priority dispatch rules (PDRs) in [Sels et al.2012]
and choose the most popular ones in the research community:
Shortest Processing Time (SPT), Minimum Ratio of Flow Due
Date to Most Work Remaining (FDD/WKR), Most Work Re-
maining (MWKR), Most Operations Remaining (MOPNR).
Among neural combinatorial solvers, we use the latest state-
of-the-art results of the graph neural model on the public JSP
benchmarks presented in [Zhang et al.2020a]. For approx-
imating the optimal solution, required when estimating the
optimality gap in RASCL, we resort to the constraint program-
ming solver of Google OR-Tools CP-SAT. In the following,
we refer to the Base model as architecture presented in Fig. 1
trained for a particular size of the JSP, without performing a
curriculum.

First, we train five instances of the base model on five sizes:
15x15, 20x15, 20x20, 30x15, and 30x20. Each instance of the
base model is dedicated to one of five problem sizes. Then,
we test all base model instances on an extended set of sizes,
adding 50x15, 50x20, and 100x20. The results reflect that the
model achieves best performance when trained on the smallest

size 15x15, where it shows the smallest optimality gap on all
testing sizes, from 14.98% for 15x15 to 9.58% for 100x20.
This reflects the difficulty for the model to directly learn on
larger instances of the problem.

The model’s results can be improved further, as the base
model trained on a small size can hardly capture all combina-
torial space of action policies inherent in large-size problems.
To validate this hypothesis we incorporate different CL meth-
ods in the training. We start with ICL, for which we train
five instances of the base model in the following manner: the
model assigned to the 15x15 size is trained on this size only,
the model assigned to 20x15 is trained sequentially on the
previous size, which in this case 15x15, and on its assigned
20x15 size. The same logic applies for all sizes up to 30x20,
and each learning cycle takes n iterations. Fig. 3 shows the
results of this approach. Here, the 20x15 model, being trained
consecutively on 15x15 and 20x15 sizes, exhibits the best
performance reducing the average gap across all sizes tested.
However, the ICL approach has an obvious drawback. The
best result is still achieved on a small-size problem, 20x15,
meaning that learning on larger-size instances is still hard.

To address the problem, we test three additional CL strate-
gies including our proposed RASCL, see Fig. 2(a). One can
see that UCL generally shows near-ICL behavior, while ASCL
and RASCL models demonstrate notably better performance.
Particularly, RASCL shows the smallest optimality gap on
all test sizes, except for 15x15, where ASCL slightly outper-
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(c) JSP 100x20

Figure 4: Average makespan observed during the training for (a)
50x15 (b) 50x20, and (c) 100x20 sizes. RASCL finds more compet-
itive solutions when compared to ASCL, and stresses the learning
process during more iterations.

forms RASCL by 0.24%. The reinforced approach displays
the smallest optimality gap from 10.58% for 20x15 instances
to 3.96% for 100x20 instances.

We also provide in Table 2 a comparison for different infer-
ence strategies: Greedy, POMO, Sampling and Beam search,
all applied to the RASCL model. POMO (p = 3) and Beam
(s = 3), show very similar results, only slightly better than
greedy inference. The sampling strategy (s = 128) shows
the best result across all test sizes, and, consequently, it is the
inference strategy used in the following experiments.

At this point, we summarize the results using RASCL at
learning and Sampling as the inference strategy. Table 1(a)
provides the comparison results on Taillard’s dataset. RASCL
model displays robust behavior on all test sizes, improving pre-
vious best results [Zhang et al.2020a] on average by 45.94%.
This model shows a maximum optimality gap of 16.09% on
Taillard’s dataset, which is a much tighter bound than the
offered by traditional PDRs.

To further test our model, we refer to DMU dataset con-
sisting of 80 instances from 20x15 to 50x20 sizes. Table 1(b)
shows outperforming behavior of RASCL model again. On
average, it improves previous best results by 50.95%.

7 Conclusions and Future Work
In this work, we present a deep-RL model to automatically
learn a dispatching policy on the JSP. To this end, we for-
mulate the resolution process as MDP, in which a solution
is iteratively constructed based on intermediate states on the
resolution process. In this work, we present a particularized
deep learning model on the JSP that is size-agnostic and also
equivariant w.r.t. the job information, which benefits the train-
ing as equivalent instances are similarly encoded. In order to
improve the behavior of the model, this work relies on Curricu-
lum Learning. In this direction, we present a novel RASCL
strategy, which dynamically adjusts the difficulty of the learn-

Hyper-parameter Value
Instance input dimension 2×m× n
Machinery state input dimension 2× n
Encoder dimension 128
LSTM [layer, dim] [1, 128]
Actor/Critic [depth,width] [2, 16]
Activation function ReLU
Learning rate 1E-04
Optimizer Adam
Batch size 128
Training iterations (per level) - n 45000
Level evaluation (iterations) 100th
Threshold opt. gap - δth 15%

Table 3: Hyper-parameter values.

ing according to the model’s performance during the learning
process. Experiments on Taillard’s and Demirkol’s instances
show that our model improves the optimality gap w.r.t. the
current state-of-the-art model by 45.94% and 50.95%, respec-
tively. Our results corroborate that learning using a curricula
is key for improving the results on the problem.

There are several future directions for this work. For exam-
ple, we would like to remark the potential of this technology
for addressing stochastic or partially observable problems,
domains where traditional approaches have shown limited
capabilities.

A Models and Configurations
We train the models using the same set of hyperparameters
for every size on the problem (see Table 3). The validation
set consists of 1,000 randomly generated JSP instances. Both
the actor and critic utilized fully-connected networks with
two layers: the first layer contained 16 neurons, while the
second layer contained m neurons for the Actor and a single
neuron for the Critic. ReLU activation was used for all layers.
The training was conducted using the Adam optimizer with
a learning rate of 10−4 and a batch size of 128. The Base,
ICL and UCL models are trained for 45,000 iterations. Each
model including ASCL and RASCL is tested every 100th
iteration. During training, for ASCL and RASCL, a maximum
gap of δth = 15% between the optimal test solutions and the
model’s solutions was used as the criterion for proceeding to
the next level. Figure 4 shows the average makespan results for
50x15, 50x20, and 100x20 size instances during the training.
Regarding the inference strategy, a tree-width of 3 is used
for the Beam search and POMO selection strategies, and a
sample size of 128 is used for the sampling strategy. Our
implementation is available online.2 Detailed instructions for
reproducing the training, evaluation, and plotting the results
are included. The model is implemented in PyTorch, and
the JSP environment was created using the Gym library. The
training was conducted on an NVIDIA A100 SXM 40GB
GPU with 2x AMD EPYC 7742 CPUs (8 cores) and 256GB
RAM. To train the RASCL model from scratch, it required
approximately 8 hours using the described hardware.

2https://github.com/Optimization-and-Machine-Learning-Lab/
Job-Shop/tree/main nips
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