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Abstract

Evacuation planning is a crucial part of disaster
management. However, joint optimization of its
two essential components, routing and scheduling,
with objectives such as minimizing average evac-
uation time or evacuation completion time, is a
computationally hard problem. To approach it, we
present MIP-LNS, a scalable optimization method
that utilizes heuristic search with mathematical op-
timization and can optimize a variety of objec-
tive functions. We also present the method MIP-
LNS-SIM, where we combine agent-based simu-
lation with MIP-LNS to estimate delays due to
congestion, as well as, find optimized plans con-
sidering such delays. We use Harris County in
Houston, Texas, as our study area. We show that,
within a given time limit, MIP-LNS finds better
solutions than existing methods in terms of three
different metrics. However, when congestion de-
pendent delay is considered, MIP-LNS-SIM out-
performs MIP-LNS in multiple performance met-
rics. In addition, MIP-LNS-SIM has a significantly
lower percent error in estimated evacuation com-
pletion time compared to MIP-LNS.

1 Introduction
Evacuation plans are essential to ensure the safety of people
living in areas that are prone to disasters such as floods, hur-
ricanes, tsunamis and wildfires. Large-scale evacuations have
been carried out during the past hurricane seasons in Florida,
Texas, Louisiana, and Mississippi. Examples of hurricanes
when such evacuations were carried out include, Katrina &
Rita (2005), Ike & Gustav (2008), Irma & Harvey (2017),
Laura (2020), Ida (2021), and Ian (2022). For instance, about
2.5 million individuals were evacuated from the coastal ar-
eas of Texas [Carpender et al., 2006] before the landfall of
Hurricane Rita. The most recent category four hurricane, Ian,
caused 119 deaths in the state of Florida alone [of Law En-
forcement, 2022]. To ensure people can evacuate in a safe and
orderly manner, a good evacuation plan needs to have two es-
sential components: (i) Evacuation Routes, i.e. what roads to
take, and (ii) Evacuation Schedule i.e. when to leave.

The focus of our paper is on jointly optimizing the routes
and schedules. Informally, the idea is to find a schedule of
when individuals can begin evacuation (within a given time
window) and a route that would be used to evacuate, so as to
minimize the objective functions capturing the system level
evacuation time (see Section 3 for formal definition of the
problems). Jointly optimizing over the routes and schedule
is significantly harder from a computational standpoint (See
Section 4 for hardness results). Existing methods, even those
designed to find bounded sub-optimal solutions, do not scale
to city or county level planning problems. Thus, finding good
evacuation routes and schedule within a reasonable amount
of time, for a city or county with a large population, remains
an open problem.

Moreover, during evacuations, large number of people try
to egress out of an area in a relatively small amount of time.
This results in traffic congestion and huge delays in the evac-
uation process. It is crucial to consider and model such de-
lays during the planning phase. However, most of the existing
works on finding optimized evacuation plans do not consider
the slowdown of traffic caused by high traffic density. For
instance, [Even et al., 2015; Romanski and Van Hentenryck,
2016; Hafiz Hasan and Van Hentenryck, 2021] all consider
a constant travel time on each road, no matter how high (or
low) the traffic density is on those roads. To overcome this,
we treat the travel time on each road, as a parameter. We then
utilize agent-based simulation, which is capable of modeling
the complex relationship among the traffic density and speed
on different roads, to learn the parameter values.

Our Contributions
First, we present MIP-LNS, a scalable optimization method
that can find solutions to a class of evacuation planning prob-
lems, while optimizing for a variety of objectives (Section
5). It is designed based on the Large Neighborhood Search
(LNS) framework. In this paper, we work with three objec-
tives: minimizing (i) average evacuation time, (ii) evacuation
completion time, and (iii) average evacuation time of ‘non-
outlier’ evacuees. We show that all of these three optimiza-
tion problems are hard to approximate within a logarithmic
factor. In MIP-LNS, we model the problems as Mixed In-
teger Programs (MIP) and then find solutions to these pro-
grams using a combination of heuristic search and mathemat-
ical optimization. A key technical challenge involves model-
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ing flows over time; this is best achieved using time expanded
graphs. But it also leads to substantial increase in the size of
the MIP and results in a significant increase in computing re-
sources (time and space). This necessitates the need to com-
bine heuristic search methods developed in the AI literature
with MIP techniques developed in the OR literature.

Second, we illustrate how our approach can scale to large
problem sizes and can be applied to realistic real-world prob-
lems. We choose Harris county in Houston, Texas as our
study area and apply MIP-LNS. The county has about 1.5
million households, spans an area of 1, 778 square miles, and
has been affected by several hurricanes in the past. We use
real-world road network data and a synthetic population data
to construct a realistic problem instance. It is ten times larger
(in terms of the size of the time expanded graph, and the num-
ber of evacuating vehicles) than the problem instance of our
baseline [Hafiz Hasan and Van Hentenryck, 2021]. We show
that, within a given time limit, MIP-LNS finds solutions for
our problem instance that are on average 13%, 20.7% and
58.43% better than the baseline method in terms of average
evacuation time, evacuation completion time and optimality
guarantee of the solution, respectively (Section 7.2).

Finally, we present MIP-LNS-SIM, where we treat the
travel time on each edge as a delay parameter and utilize
agent-based simulation to learn the parameter values (Sec-
tion 6). The MIP model, with the learned parameter values,
is then solved to find optimized evacuation plans. Agent-
based simulations provide a natural approach to capture the
delays one incurs due to congestion – dynamic flow prob-
lems cannot capture these delays. Our approach is an ex-
ample of methods that combine simulation and optimiza-
tion methods (SO) [Gosavi and others, 2015; Amaran et
al., 2016] considered in OR and has become increasingly
popular in AI [Van Hentenryck, 2013; Kambhampati, 2020;
Doppa, 2021]. Through our experiments, we show that
MIP-LNS-SIM outperforms MIP-LNS in terms of average
evacuation time, evacuation completion time, and average
time spent on the road (10%, 17%, 77% improvement respec-
tively) when delay due to congestion is considered (Sec-
tion 7.3). In addition, MIP-LNS-SIM has a significantly
lower percent error (6%) in estimated evacuation completion
time compared to MIP-LNS (76%), demonstrating the effi-
cacy of MIP-LNS-SIM in evacuation planning subject to con-
gestion constraints.

2 Related Work
Researchers have approached the evacuation planning prob-
lem in different ways in the past. [Hamacher and Tjandra,
2002] formulated it as a dynamic network flow optimization
problem and introduced the idea of time expanded graphs
to solve it using mathematical optimization methods. How-
ever, their method had prohibitively high computational cost,
which paved the way to several heuristic methods [Lu et
al., 2005; Kim et al., 2007; Shahabi and Wilson, 2014].
These methods solve the routing problem only – they ei-
ther do not consider the scheduling problem at all or pro-
pose simple schemes such as letting evacuees leave at a con-
stant rate. On the other hand, [Even et al., 2015; Romanski

and Van Hentenryck, 2016; Hafiz Hasan and Van Hentenryck,
2021] have considered the joint optimization problem of rout-
ing and scheduling. They formulated the problem as Mixed
Integer Programs and used decomposition techniques [Ben-
ders, 1962; Magnanti and Wong, 1981] to separate the route
selection and scheduling process. However, none of these
works consider the slowdown of traffic at high traffic densi-
ties. A review of existing works on evacuation planning can
be found in the survey paper [Bayram, 2016].

The use of convergent evacuation routes has been explored
in the literature [Even et al., 2015; Romanski and Van Hen-
tenryck, 2016; Hafiz Hasan and Van Hentenryck, 2021],
where all evacuees coming to an intersection follow the same
path afterwards. This is also known as confluent flow [Chen
et al., 2006]. [Golin et al., 2017] investigated the single-sink
confluent quickest flow problem where the goal is minimiz-
ing the time required to send supplies from sources to a single
sink. They showed that the problem is hard to approximate
within a logarithm factor. We prove that all the planning prob-
lems considered in this paper are also hard to approximate.

We use the most recent method (Benders Convergent or
BC) by [Hafiz Hasan and Van Hentenryck, 2021] as our base-
line and show that MIP-LNS finds better solutions in terms
of three different metrics. In addition, we provide direct MIP
formulations for three different objectives, all of which can be
optimized using MIP-LNS (as well as MIP-LNS-SIM) with-
out needing any modifications.

Heuristic search methods are generally applied to problems
that are computationally intractable. The goal is to find good
solutions in a reasonable amount of time. The Large Neigh-
borhood Search (LNS) framework [Shaw, 1998] has been
successfully applied to various hard combinatorial optimiza-
tion problems in the literature [Pisinger and Ropke, 2018].
Recently, [Li et al., 2021] applied the LNS framework to find
solutions for the Multi-Agent Path Finding Problem where
the goal is to find collision free paths for multiple agents.

Simulation models have been used in the literature for find-
ing optimal decision variables for a given objective func-
tion [Dangelmaier et al., 2006; Sajedinejad et al., 2011;
Osorio and Bierlaire, 2013; Teufl et al., 2018]. This is use-
ful especially when the objective function’s closed form is
unknown or is too complex, but the function’s value can
be evaluated through (possibly time-expensive) simulation.
In such cases, simulation models have been utilized as fit-
ness functions within heuristic search and meta-heuristic al-
gorithms [Sajedinejad et al., 2011; Teufl et al., 2018]. Exist-
ing research works have also proposed constructing a repre-
sentative function, often termed as a metamodel, of the actual
objective function by using its calculated values from the sim-
ulation model [Osorio and Bierlaire, 2013; do Amaral et al.,
2022]. Parameters of the metamodel are learned by methods
such as regression, artificial neural networks [Gosavi and oth-
ers, 2015]. Metamodels are mainly constructed because it is
possible or easier to optimize these models. To fulfill our goal
to find optimized evacuation plans considering congestion-
dependent delays, we use our MIP model as a metamodel
and use agent-based simulation to learn its parameter values.
Both parameter learning and metamodel optimization are per-
formed within MIP-LNS-SIM.
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3 Problem Formulation
In this section, we introduce some preliminary terms that we
use in our problem formulation.

Definition 3.1. A road network is a directed graph G =
(N ,A) where every edge e ∈ A has (i) a capacity ce, rep-
resenting the number of vehicles that can enter the edge at a
given time and (ii) a travel time Te representing the time it
takes to traverse the edge.

Definition 3.2. Given a road network, a single dynamic flow
is a flow f along a single path with timestamps av , repre-
senting the arrival time of the flow at vertex v that obeys the
travel times. In other words, av − au ≥ Tuv for edge (u, v).
A valid dynamic flow is a collection of single dynamic flows
where no edge at any point in time exceeds its edge capacity.

Definition 3.3. An evacuation network is a road network that
specifies E ,S, T ⊂ N , representing a set of source, safe and
transit nodes respectively. Furthermore, for each source node
k ∈ E , let W (k) and dk represent the set of evacuees and the
number of evacuees at source k respectively. Let W denote
the set of all evacuees.

For scheduling an evacuation, we observe that once an
evacuee has left their home, it is difficult for them to pause
until they reach their destination. We also assume that peo-
ple from the same location evacuate to the same destination.
Similarly, we assume that if two evacuation routes meet, they
should both be directed to continue to the same location.

Definition 3.4. Given an evacuation network, we say a valid
dynamic flow is an evacuation schedule if the following are
satisfied:

• all evacuees end up at some safe node,

• no single dynamic flow has any intermediary wait-time (i.e.
av − au = Tuv and,

• the underlying flow (without considering time) is conflu-
ent, where if two single dynamic flows use the same ver-
tex (possibly at different times), their underlying path af-
terwards is identical.

Two natural objectives to minimize are the average evacua-
tion time of the evacuees and the evacuation completion time.
To define these formally, let ti denote the evacuation time of
evacuee i. We then formally define the following problems:

Problem 1. Average Dynamic Confluent Flow Problem (A-
DCFP). Given an evacuation network, let Tmax represent an
upper bound on evacuation time. Find an evacuation schedule
such that all evacuees arrive at some safe node before time
Tmax while minimizing 1

|W |
∑

i∈W ti.

Problem 2. Completion Time Dynamic Confluent FLow
Problem (CT-DCFP). Given an evacuation network, find an
evacuation schedule such that all evacuees arrive at some safe
node while minimizing maxi∈W ti.

We define a third problem, Outlier Average Dynamic Con-
fluent Flow Problem (O-DCFP), where the goal is to mini-
mize average evacuation time of ‘non-outlier’ evacuees. For
brevity, its formal definition is provided in the supplementary
materials [Islam et al., 2023].

3.1 Time Expanded Graph for Capturing Flow
Over Time

Joint routing and scheduling over networks requires one to
study flows over time, as static flows make the unrealistic as-
sumption that flows travel instantaneously (detailed discus-
sion in the supplementary materials [Islam et al., 2023]).
For this purpose, researchers have defined dynamic flows
([Skutella, 2009; Ford and Fulkerson, 2015]) and used time
expanded graphs to solve dynamic flow problems ([Roman-
ski and Van Hentenryck, 2016; Hafiz Hasan and Van Hen-
tenryck, 2021]). In this paper, we also use a time expanded
graph (TEG) to capture the flow of evacuees over time.

Time expanded graph is a directed graph denoted by Gx =
(N x = Ex∪T x∪Sx,Ax). To construct it, we first fix a time
horizon H and discretize the temporal domain into discrete
timesteps of equal length. Then we create copies of each node
at each timestep withinH. After that, for each edge e(u, v) in
the road network, we create edges in the TEG as et(ut, vt+Te)
for each t ≤ H − Te where the edges et have the same flow
capacity as e. Finally, we add a super sink node vt that con-
nects to the nodes ut for each u ∈ S and each t ≤ H. Edges
to the super sink node are assigned an infinite amount of ca-
pacity. Note that, when creating the time expanded graph,
we are adding an additional dimension (i.e. time) to the road
network. The size of the TEG is about H times as large as
the road network in terms of number of nodes and edges. –
yielding a substantially larger problem representation.

A sample evacuation network and its corresponding TEG
with time horizon H = 3 are shown in Figure (1a-1b). The
source, safe and transit nodes are denoted by squares, trian-
gles, and circles respectively. In the TEG, there may be some
nodes that are (i) not reachable from the source nodes, or (ii)
no safe node can be reached from these nodes within the time
horizon. These nodes are greyed out in Figure 1b. An optimal
solution of A-DCFP (and CT-DCFP) for this sample problem
instance is to use the routes 0 → 2 → A from source node 0
and 1 → 2 → A from source node 1, where the evacuee at
source node 0 and 1 leave at timestep 1 and 0 respectively.

(a) Sample Evacuation Net-
work. Edges are labeled with
travel time and flow capacity
respectively. Source, safe and
transit nodes are denoted by
squares, triangles, and circles
respectively. Source nodes are
labeled with number of evac-
uees.

(b) Time Expanded Graph
(TEG) for the Sample Network.
Edges are labeled with capacity.
Construction of this TEG sets
an upper bound of 3 time units
for evacuation completion.

Figure 1: Sample Problem Instance
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3.2 Mixed Integer Program (MIP) Model
Now, we present the Mixed Integer Program (1–8) that we use
to represent a class of evacuation planning problems. We can
have different objectives in the program (Objective 1), each
representing a certain planning problem. We use two types of
variables: (i) Binary variable xe, ∀e ∈ A, which will be equal
to one if and only if the edge e is used for evacuation. Other-
wise, it will be zero. (ii) Continuous variable ϕet , ∀et ∈ Ax,
which denotes the flow of evacuees on edge e at timestep t.

Constraint (2) ensures that there is exactly one outgoing
edge from each evacuation node. Constraint (3) ensures that
at each transit node, there is at most one outgoing edge. Con-
straint (4) enforces that the total flow coming out of every
evacuation node is equal to the number of evacuees at the
corresponding node. Constraint (5) ensures flow conserva-
tion in the time-expanded graph; here, δ−(i) and δ+(i) de-
note the set of incoming and outgoing edges to/from node i,
respectively. Constraint (6) allows flow on chosen edges
only; it also enforces flow capacity on each edge of the time-
expanded graph. Constraint (7) defines ϕ as continuous and
non-negative variable; constraint (8) defines x as binary vari-
able. The constraint that evacuation completion time needs to
be less than the given upper bound is implicit in the model, as
we set the time horizon of the TEG to this upper bound.

Objective to Optimize (1)

s.t.
∑

e∈δ+(k)

xe = 1 ∀k ∈ E (2)

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ T (3)

∑
e∈δ+(k)

∑
t≤H

ϕet = dk ∀k ∈ E (4)

∑
e∈δ−(i)

ϕe =
∑

e∈δ+(i)

ϕe ∀i ∈ T x ∪ Sx (5)

ϕet ≤ xecet ∀e ∈ A, t ≤ H (6)
ϕe ≥ 0 ∀e ∈ Ax (7)
xe ∈ {0, 1} ∀e ∈ A (8)

To solve A-DCFP using model (1–8), we represent the total
evacuation time using the variables x and ϕ as follows:

Total Evacuation Time =
∑

e∈δ−(vt)

ϕets(e) (9)

Here, ts(e) denotes the timestep of the starting node of
edge e. Note that, minimizing the average evacuation time
and the total evacuation time are equivalent. So, the A-DCFP
objective would be: minx,ϕ

∑
e∈δ−(vt)

ϕets(e).
We have just provided details on how to formulate A-DCFP

as a MIP. Details on CT-DCFP and O-DCFP are provided in the
supplementary materials [Islam et al., 2023].

4 Inapproximability Results
In this section, we show that the problems we consider are
not only NP-hard but also hard to approximate. A summary
of the hardness results is found in Table 1.

Hardness Problems
A-DCFP CT-DCFP O-DCFP

O(log n)-hard
to approx.

Thm. 1 See [Golin et
al., 2017]

Thm. 1

Table 1: Summary of Hardness

Theorem 1. For A-DCFP and O-DCFP with many sources and
one safe node, it is NP-hard to approximate within a factor
of O(log n).

The proof of Theorem 1 is provided in the supplementary
materials [Islam et al., 2023]. In addition, we show that all
the three problems remain NP-hard even when we consider
the road network G to be a sub-graph of a grid and all desti-
nations are along the border. Street networks in several city
neighborhoods resemble such networks.

5 Heuristic Optimization
In this section, we present the method MIP-LNS where we
use MIP solvers in conjunction with heuristic search.

Within MIP-LNS, we first calculate an initial feasible so-
lution in two steps: (i) calculating an initial convergent route
set, and (ii) calculating the schedule that minimizes the target
objective using the initial route set. For (i), we take a shortest
path from each source to its nearest safe node by road. This is
done using Algorithm 3 (in the supplementary materials [Is-
lam et al., 2023]) to make sure the route set is convergent.
For (ii), we use the just calculated route set to fix the binary
variables xe in model (1-8). This gives us a linear program
that can be solved optimally to get the schedule.

Next, we search for better solutions in the neighborhood of
the solution at hand (Algorithm 1). Here, we run n iterations.
In each iteration, we select q = (100 − p)% of sources uni-
formly at random and keep their routes fixed. This reduces

Algorithm 1: MIP-LNS Method
Input: Initial solution: sol, Time Expanded Graph:

TEG, Time horizon: T , Model to optimize:
model, (%) of routes to update: p, Number of
Iterations: n, Positive number: pinc

Output: Solution of model
1 for 1 to n do
2 Select (100− p)% of the source locations

uniformly at random. Let their set be S.
3 Fix the routes from the source locations in S. Set

xe = 1 if e is on any of the routes from S in sol.
4 sol← Solution of model from a MIP solver
5 T ′ ← evacuation completion time for solution sol
6 if T − T ′ > +threshold then
7 Update the model by setting the time horizon

to T ′. Prune TEG and model by removing:
8 (i) nodes that are unreachable from the

evacuation nodes within time horizon T ′, and
9 (ii) nodes from which none of the safe nodes

can be reached within time horizon T ′

10 p← p+ pinc
11 return sol
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the size of the MIP as we have fixed values for a subset of
the variables. We then optimize the ‘reduced’ MIP model
using a MIP solver [Gurobi Optimization, LLC, 2023]. Es-
sentially, we are searching for a better solution in the neigh-
borhood where the selected q% routes are already decided.
Any solution found in the process will also be a feasible so-
lution for the original problem. If we find a better solution
with an evacuation completion time T ′ that is less than the
current time horizon (T ), then we also update the model by
setting the time horizon to T ′. When resetting the time hori-
zon, we prune the TEG and the MIP model (lines 7–9). This
reduces the number of variables in the MIP model and simpli-
fies the constraints. At the end of each iteration, we increase
the value of p by pinc amount. Note that, when p = 100,
we will be solving the original optimization problem. In our
experiments, we start with p = 75 and set pinc = 0.5.

When solving the reduced problem in each iteration
(line 4), we use (i) a time limit, and (ii) a parameter
threshold gap to decide when to stop. MIP solvers keep
track of an upper bound (ZU ) (provided by the current best
solution) and a lower bound (ZL) (obtained by solving re-
laxed LP problems) of the objective value. We stop the op-
timization when the relative gap (ZU − ZL)/ZU becomes
smaller than the threshold gap. In our experiments, we set
this to 5%. In total, MIP-LNS has four parameters: n, p, pinc,
and threshold gap.

6 Simulation-Assisted Model for
Optimization (MIP-LNS-SIM)

In our formulation (Section 3), we assume the travel time on
each edge to be a constant. However, in practice, travel time
on a road is affected by the number of vehicles on it (i.e. traf-
fic density). Moreover, travel time on an edge also affects
how many cars can enter it in a given amount of time (i.e. the
flow capacity) [Mannering and Washburn, 2020, Chapter 5].
We, therefore, treat the edge travel times as ‘parameters’ and
aim to learn suitable values of these parameters to realistically
model congestion-dependent delays.

To estimate the parameters, we use the agent-based queu-
ing network simulation system QueST [Islam et al., 2020]
with the logistic traffic model. The simulator is able to model
the complex relationship between traffic density and effective
speed of vehicles on the road. Given the routes and schedule,
we simulate the evacuation process using QueST and deter-
mine the average travel time on each edge used during evacu-
ation. This provides us a reasonable estimate of travel time on
the edges when certain routes and schedule are used. How-
ever, simulating the evacuation of the entire population is a
time consuming task. Therefore, we only simulate the evac-
uation of a certain percentage (pe) of the evacuees at each
source. To be more precise, we simulate the departure of
the first pe% of the evacuees from each source, following the
evacuation schedule. Our intuition is: congestion faced by
the first pe% of evacuees provides us a good estimation of the
overall congestion faced by all evacuees throughout the entire
evacuation. This is because people who leave first should not
overlap too much with people who leave much later.

Based on the above idea, we present the method MIP-LNS-

Algorithm 2: MIP-LNS-SIM Method
Input: Evacuation network: G, Initial solution: sol,

Number of iterations: m, Percentage of
Evacuees to simulate: pe

Output: Evacuation routes and schedule.
1 for each edge e ∈ A do
2 Te ← Time it takes to traverse e at speed limit.
3 ce ← Updated flow capacity of e.
4 for 1 to m do
5 TEG← Time expanded graph of G with current

travel time and capacity values of the edges.
6 model←MIP model (1–8) from G and TEG.
7 sol← Solution of model from MIP-LNS.
8 Simulate evacuation of first pe% evacuees at each

source with routes and schedule from sol.
9 for each edge e ∈ A used in sol do

10 Te ← Avg. travel time on e from simulation.
11 ce ← Updated flow capacity of e.
12 return sol

SIM (Algorithm 2). Initially, we assume that vehicles travel
on each edge at the maximum speed allowed and calculate the
travel time (i.e. the parameters) and flow capacity accordingly
(line 1–3). We then create the time-expanded graph based
on these values and construct the MIP (i.e. our metamodel).
Next, We solve the MIP using MIP-LNS. We use the routes
and schedule given by the solution to simulate the evacuation
of first pe% of the evacuees at each source. From the simula-
tion results, we calculate the average travel time on each edge
used in the solution and update the travel time as well as the
flow capacity of these edges (details in supplementary materi-
als [Islam et al., 2023]). We do this iteratively for m times. In
our experiments, we have used pe = 5, 10 and m = 10. Note
that, both parameter estimation (line 10) and the metamodel
optimization (line 7) are performed within MIP-LNS-SIM.

7 Experiments
In this section, we present details of our problem instance and
our experiment results.

7.1 Problem Instance
We use Harris County in Houston, Texas as our study area.
We have used data from HERE maps [HERE, 2023] to con-
struct its road network. The network contains roads of five (1
to 5) different function classes, which correspond to different
types of roads. For instance, function class 1 roads are major
highways, and function class 5 roads are residential roads.

For our experiments, we consider the nodes which con-
nect and lead from function class 3/4 roads to function class
1/2 roads as the start/source locations of the evacuees. We
then consider the problem of (i) when should evacuees tar-
get to enter the function class 1/2 roads and (ii) how to route
them through the function class 1/2 roads to safely. As safe
locations, we selected six locations at the periphery of Har-
ris County which are on major roads. A visualization of the
dataset is presented in Figure 2. Additional details regarding
the problem instance are provided in Table 2.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5363



Figure 2: Harris County Problem Instance

# of nodes, edges in the road network 1338, 1751

# of (evacuee) source locations 374

# of Households in the study area ∼ 1.5M

Time Horizon 15 Hours

Length of one time unit 2 minutes

# of nodes, edges in the TEG 684.7K, 841.6K

# of binary, continuous variables in
A-DCFP MIP

1751, 843.7K

# of Constraints in A-DCFP MIP 1.4M

Table 2: Problem Instance Details

We use a synthetic population [Adiga et al., 2015] to find
the location of the households. We then assign the nearest exit
ramp to each household as their source location. We assume
that one vehicle is used per household for evacuation.

7.2 MIP-LNS Results and Baseline Comparisons
We performed all our experiments and subsequent analyses
on a high-performance computing cluster, with 128GB RAM
and 4 CPU cores allocated to our tasks. In addition to MIP-
LNS, we used two more methods to solve A-DCFP. We used
a time limit of one hour for each method and compared the
best solutions found within this time. The three methods we
experimented with are described here.

1. Gurobi In this experiment, we used Gurobi to directly
solve model (1-8) with the A-DCFP objective. Gurobi was
not able to find any feasible solution within the time limit.
However, Gurobi was able to come up with a lower bound
for the objective value. We used the lower bound to calcu-
late the optimality guarantee of the solutions.

2. Benders Decomposition [Hafiz Hasan and Van Henten-
ryck, 2021] presented Benders Convergent (BC) method
to solve the ‘Convergent Evacuation Planning’ problem.
Their problem is similar to A-DCFP, differing in the ob-
jective function, which is maximizing flow of evacuees in-
stead of minimizing average evacuation time. We repur-
posed their method and used it as our baseline.

Baseline MIP-LNS Improvement

Avg. Std. Dev. Over Baseline (%)

Average evacuation time (hours)
2.54 2.21 0.06 13

Evacuation completion time (hours)
7.83 6.21 0.35 20.69

Optimality guarantee (%)
20.47 8.51 2.43 58.43

Table 3: MIP-LNS results for A-DCFP over ten experiment runs and
comparison with the baseline method in terms of three metrics: av-
erage evacuation time, evacuation completion time and optimality
guarantee. On average, we see a ∼ 13%, ∼ 21%, and ∼ 58% im-
provement in the three metrics respectively.

3. MIP-LNS In our experiments with MIP-LNS, for A-
DCFP, we used thirty iterations (i.e. n = 30 in Algorithm
1 line 1). Also, since we have a random selection process
within MIP-LNS, we ran ten experiment runs with differ-
ent seeds.

To compare the quality of our solutions with the baseline,
we use three metrics: average evacuation time, evacuation
completion time, and optimality guarantee. Optimality guar-
antee is defined as follows: let the objective value of the so-
lution sol be zsol and the optimal objective be zopt. Then,
the optimality guarantee of sol is (zsol − zopt)/zsol, i.e. the
smaller the value of optimality guarantee, the better. If zopt
is unknown, we can use a lower bound of it. Table 3 shows a
comparison of our solutions with the baseline in terms of the
three metrics.

Let the value of a metric m for the baseline and the MIP-
LNS solution be mbase and mlns respectively. Then, we
quantify the improvement over the baseline as (mbase −
mlns)/mbase. On average, we see an improvement of 13%,
21%, and 58% over the baseline in the three above-mentioned
metrics respectively. This indicates that MIP-LNS finds bet-
ter solutions than the baseline within the given time limit.

We also applied MIP-LNS to find solutions of CT-DCFP
and O-DCFP for our problem instance. Due to limited space,
we provide the results in the supplementary materials [Islam
et al., 2023]. In general, the experiment results show that
MIP-LNS can effectively solve the problems with different
objectives.

7.3 MIP-LNS-SIM Results
Within MIP-LNS-SIM, we set the parameter m = 10. We
then experimented with two values for the parameter pe,
which are 5, 10. We refer to these two settings as MIP-LNS-
SIM-5% and MIP-LNS-SIM-10%. We ran MIP-LNS-SIM
with the two settings and found two different solutions. We
then performed agent-based simulations of the entire evac-
uation process (i.e. evacuate 100% of the evacuees) using
a solution of MIP-LNS and then also using solutions from
MIP-LNS-SIM-5% and MIP-LNS-SIM-10%. We used the
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QueST simulator with the logistic traffic model here. We now
compare the simulation results.

Figure (3a) shows the departure rate of the evacuees from
their initial locations, in the final solution of the three set-
tings. We observe that, MIP-LNS-SIM-5%, and MIP-LNS-
SIM-10% regulates the departure of evacuees to a significant
extent (compared to MIP-LNS). As evacuees leave late in
these solutions, we might expect the evacuation completion
time to be higher in these solutions compared to MIP-LNS.
Surprisingly, we observe in Figure (3b) that the evacuation
completion time is actually smaller in MIP-LNS-SIM-5%,
and MIP-LNS-SIM-10% compared to MIP-LNS. This im-
plies that although evacuees left early in the MIP-LNS so-
lution, they could not reach safety early due to the resulting
congestion on the roads. In the MIP-LNS-SIM-5% and MIP-
LNS-SIM-10% solutions, evacuees departed from their ini-
tial location over a longer period of time. This way there was
less congestion on the road and the evacuation was completed
early even though many people started late.

Figure 4 verifies our last statement. We see that traffic den-
sity on the edges (i.e. number vehicles per lane and per km)
is higher in the MIP-LNS solution (than MIP-LNS-SIM-5%,
MIP-LNS-SIM-10%) throughout the evacuation time period.
The higher traffic density then causes the evacuees to spend
more time on the road. In summary, MIP-LNS-SIM is better
than MIP-LNS in terms of average evacuation time, evacu-
ation completion time, and average time spent on the road
(10%, 17%, 77% improvement respectively, detailed results
in the supplementary materials [Islam et al., 2023]). These
results indicate that MIP-LNS-SIM is better at evacuation
planning than MIP-LNS in terms of reducing congestion on
the roads.

Finally, Table 4 shows the estimated and the simulated
evacuation completion time for Baseline [Hafiz Hasan and
Van Hentenryck, 2021], MIP-LNS, MIP-LNS-SIM-5%, and
MIP-LNS-SIM-10%. For instance, MIP-LNS predicts that
when using the routes and schedule provided by its solution,
the evacuation will be completed within 5.77 hours. How-
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(a) Departure rate of evacuees.
We observe that in the MIP-
LNS solution, evacuees leave
very early compared to the so-
lutions from MIP-LNS-SIM-5%
and MIP-LNS-SIM-10%.
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(b) Arrival rate of evacuees at
safe locations. MIP-LNS-SIM-
10% has the best evacuation rate
and evacuation completion time,
followed by MIP-LNS-SIM-5%
and then MIP-LNS.

Figure 3: Comparison of MIP-LNS, MIP-LNS-SIM-5%, and MIP-
LNS-SIM-10% in terms of departure rate from sources and arrival
rate at safe nodes. Even though MIP-LNS-SIM-5%, and MIP-LNS-
SIM-10% regulates the departure of evacuees, they evacuate every-
one faster than MIP-LNS.
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(b) Boxplots showing time spent
on the road by evacuees. Due to
congestion (as in seen Figure 4a),
evacuees spend a significantly
larger amount of time on the road
in the MIP-LNS solution, com-
pared to MIP-LNS-SIM-10%,
MIP-LNS-SIM-5% solutions.

Figure 4: Congestion on the roads in terms of traffic density and
time spent on the road by evacuees.

Algorithm Estimated
ECT (hrs)

Simulated
ECT (hrs)

Percent
Error

Baseline 7.83 30.28 74.14

MIP-LNS 5.77 24.29 76.25

MIP-LNS-SIM-5% 18.43 22.2 16.98

MIP-LNS-SIM-10% 18.97 20.15 5.86

Table 4: Estimated and simulated Evacuation Completion Time
(ECT) in hours for the three settings and the baseline. The percent
error of the estimated ECT decreases significantly with pe = 5, 10.
This shows the effectiveness of MIP-LNS-SIM in capturing delays
due to congestion.

ever, when simulated, it actually took 24.29 hours to evacuate
everyone. We also observe that the percent error in estimation
decreases considerably in MIP-LNS-SIM-5% and MIP-LNS-
SIM-10% where we have used pe = 5 and 10 respectively.
The lower percent error is earned at a cost of higher algorithm
run time (MIP-LNS-SIM-5%: ∼ 6.5 hours, and MIP-LNS-
SIM-10%: ∼ 7.55 hours).

8 Conclusion
In this paper, we have presented an optimization method
MIP-LNS to solve a class of evacuation planning problems.
We demonstrated its efficacy by applying it on our study
area of Harris county, Houston, Texas. We showed that, for
our problem instance, MIP-LNS finds better solutions than
the baseline method in terms of three different metrics. We
have also presented MIP-LNS-SIM to capture congestion-
dependent delays. Through our experiments we have showed
that MIP-LNS-SIM outperforms MIP-LNS in terms of multi-
ple metrics when congestion-dependent delay is considered.
Our method can be incorporated into disaster management
systems for effective evacuation planning. Additionally, it
can help assess social vulnerability1 of regions.

1https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
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