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Abstract

In many real-world settings, an autonomous agent
may not have sufficient information or sensory ca-
pabilities to accomplish its goals, even when they
are achievable. In some cases, the needed informa-
tion can be provided by another agent, but infor-
mation sharing might be costly due to limited com-
munication bandwidth and other constraints. We
address the problem of Helpful Information Shar-
ing (HIS), which focuses on selecting minimal in-
formation to reveal to a partially informed agent in
order to guarantee it can achieve its goal. We of-
fer a novel compilation of HIS to a classical plan-
ning problem, which can be solved efficiently by
any off-the-shelf planner. We provide guarantees of
optimality for our approach and describe its exten-
sions to maximize robustness and support settings
in which the agent needs to decide which sensors
to deploy in the environment. We demonstrate the
power of our approaches on a set of standard bench-
marks as well as on a novel benchmark.

1 Introduction
An agent, or actor, tasked with reaching a goal, may have
only partial information about its surroundings and limited
sensors to acquire new information. In situations where
safety constraints are in place and failures are to be avoided,
the lack of information may paralyze the actor, which might
fail to reach its goal even when the goal would be achiev-
able with more information. In a collaborative multi-agent
setting, another agent, the helper, may possess information
that could make it possible for the actor to achieve its goal.
At the same time, the communication bandwidth between the
actor and the helper might be limited, forcing the helper to
choose which information to transfer to the actor. We explore
the question of Helpful Information Sharing (HIS) that aims
at determining the minimal information the helper needs to
share with the actor to guarantee its goal is achievable.

HIS is relevant to a broad variety of applications in which
one may seek to minimize communication because it is ex-
pensive, unreliable, or prone to interception. Consider, for
example, underwater autonomous operations with squads of

robots (e.g. Camilli et al. 2019). Communication is typi-
cally highly constrained in these missions. Underwater, the
communication bandwidth is limited, hence the members of
the squad need to decide carefully what information to pass
to each other. Resurfacing facilitates communication, but this
option can only be used sparsely as it consumes resources that
could be devoted to performing the mission. Also in this case,
it is crucial that the agents exchange only information that is
vital to reach the goal. Similar challenges would be faced by
a human operator involved in the mission. Consider a con-
troller on a surface vehicle tasked with assisting the robots in
reaching their goals. Exploiting a different point of view and
a different set of instruments, the controller might gain useful
information to help the squad. However, being the bandwidth
of the communication channel limited and sporadic, the oper-
ator needs to cautiously select which information to transmit
and also decide which UAVs in the team to assist.

We formalize HIS as a two-agent setting. The actor uses
a partially informed planner that computes a plan to achieve
the goal by using its knowledge and available sensors. The
helper is assumed to have additional information about the
environment, as well as knowledge of the actor, its goal, and
the approach the actor takes for planning and acting. The
helper’s objective is to find minimal information to share with
the actor so that it can achieve its goal.

HIS is challenging because there may be a large number of
possible choices in regard to what information to share, and
evaluating the effect of each information sharing option may
be costly. To mitigate this challenge, we offer novel compila-
tions from the two-agent HIS problem to a single-agent plan-
ning problem, which includes both information-sharing ac-
tions and actions in the environment. After providing guaran-
tees of the optimality of our approach, we discuss how our so-
lution can be applied to additional settings. In particular, we
show how our approach can be used in single-agent settings in
which the actor needs to decide which information to acquire
(e.g., by deciding which sensors to deploy), in settings with
alternative performance guarantees, and in other sequential
decision-making under uncertainty settings, in which infor-
mation may be costly or limited.

We test our approaches on a set of standard benchmarks
as well as a novel benchmark of an Escape Room that we
developed. Our experiments demonstrate the power of our
strategy in solving a variety of HIS problems.
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Figure 1: Helpful Information Sharing (HIS) example.

1.1 Running Example
A robot is tasked with reaching a destination in a simpli-
fied indoor environment. The robot maintains an occupancy
map where each cell is marked as ‘free’ (traversable), ‘oc-
cupied’ (non-traversable), or ‘unknown’ (the robot doesn’t
know whether or not the cell is traversable). Initially, all
cells are marked as ‘unknown’. The map is updated dynami-
cally as the robot gains more information. For simplicity, the
world is static, so the value of each cell can only change from
‘unknown’ to ‘occupied’ or ‘free’ throughout execution. The
robot can move in one of the four cardinal directions and is
assumed to be able to localize itself and know which cell it
occupies. It has a sensor that allows it to detect when an ad-
jacent cell is occupied, but the sensor does not indicate which
specific cell is occupied. If a robot tries to move into an occu-
pied cell, it may get stuck without the possibility of recover-
ing. Therefore, if the robot’s sensors indicate the presence of
a nearby obstacle, the robot will only move to an adjacent cell
if it can infer that it is free and will backtrack otherwise (based
on the Wumpus domain by [Russell and Norvig, 2016]).
Example 1. Figure 1a depicts a simple room with a single en-
try point and a goal destination G. Cells with obstacles (e.g.,
cell (B, 3)) are marked by flames that emit signals, depicted
as smoke waves. Such a signal indicates to the robot the ex-
istence of an obstacle in one or more adjacent cells. Figure
1c depicts the robot’s initial belief, which corresponds to its
initial knowledge. Since the robot does not sense a nearby
obstacle, it knows that the two adjacent cells are free (the
green cells in the figure). If the robot is willing to follow a
plan that is not guaranteed to succeed and replan its behav-
ior if needed, it will compute a plan based on the assumption
that some cells are free. As shown in Figure 1b and the cor-
responding robot belief in Figure 1d, without additional in-
formation, the robot will backtrack to a cell it knows is free
every time it senses an obstacle. In this case, the robot will
abort execution of its task after examining all possible paths.

In Figure 2a, we show a minimal set of information-
sharing interventions that guarantee that a replanning agent
can achieve its goal. In this case, an optimal solution is for

(a) (b)

(c) (d)

Figure 2: HIS solution

the helper to reveal that cells (A, 4) and (D, 5) are free (the
cells marked blue are those whose true value is revealed).
Figure 2c shows the robot’s initial belief. The path that suc-
cessfully leads the robot to its goal after the additional in-
formation is provided is depicted in Figure 2b, and Figure
2d shows the robot’s path along with information that is ac-
quired during execution. Note that this information-sharing
intervention is minimal in terms of the number of information
items shared. In order to guarantee that a minimal cost plan
is achievable, more information needs to be revealed.

2 Planning Under Partial Observability
We follow Bonet and Geffner [2011; 2014] in modeling a par-
tially informed actor.

Definition 1 (Planning Under Partial Observability). A
planning under partial observability (PPO) problem is a tu-
ple P = ⟨F ,A, I, G,O⟩ where F is a set of fluent symbols,
A is a set of deterministic actions, I is a set of clauses over
F -literals (referred to as facts) defining the initial situation,
G is a set of F -literals defining the goal condition, and O
represents the agent sensor model.

An action a ∈ A has a set prec(a) of F -literals as pre-
conditions, and a set eff (a) of conditional effects C → L,
where C is a set of F -literals and L is an F -literal. The sen-
sor model O is a set of observations o ∈ O represented as
pairs (C,L), where C is a set of F -literals, and L is a posi-
tive fluent indicating that the value of L is observable when
C is true. Each observation o = (C,L) can be conceived as
a sensor on the value of L that is activated when C is true. A
state s is a truth valuation over the fluents F (‘true’ or ‘false’).
For an agent, the value of a fluent may be known or unknown.
A fluent is hidden if its true value is unknown. A belief b is
a non-empty collection of states that the agent deems as pos-
sible, which we assume always includes the actual state. For
unknown fluents, states for both values are included in the be-
lief until one of the values is refuted. A formula F holds in b
if it holds for every state s ∈ b.
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An action a is applicable in b if the preconditions of a hold
in b, and the successor belief b

′
is the set of states that result

from applying a to each state s in b. When an observation
o = (C,L) is activated, the successor belief is the set of states
in b that agree on L (i.e., the set of states where fluent L has
the sensed value). The initial belief is the set of states that
satisfy I , and the goal belief is the set of those that satisfy G.
A formula is invariant if it is true in each possible initial state
and remains true in any state reachable from it. A PPO prob-
lem is simple if the non-unary clauses in I are all invariant,
and no hidden fluent appears in the body of a conditional ef-
fect. We hereon assume our PPO problems are simple.

A history is a sequence of actions and beliefs h =
b0, a0, b1, a1, . . . , bn, an, bn+1, such that action ai is appli-
cable in belief bi. The cost of history h, denoted Ca(h), is the
accumulated cost of the performed actions (equivalent to the
path length when action cost is uniform): Ca(h) = ΣiC(ai).
Each history corresponds to a path π = a0, a1, . . . , an, which
is the sequence of actions the agent performs. A path is a plan
if the agent performing the path reaches a goal belief.

We are interested in bridging the gap between what is
achievable in the environment and what can be accomplished
by a partially informed agent. Given a PPO problem P , we
let SP be the set of possible world states in P . Similarly, the
set BP is the set of possible beliefs in P , and b0 is the initial
belief. We refer to a path as executable in the environment if
it is executable in the real-world state. An executable plan is
an executable path that achieves the goal.
Definition 2 (Executable Path). Given a PPO problem P
and state s ∈ SP , a path π = ⟨a0, a1, . . . , an⟩ is executable
in s if a0 is applicable in s and, for any 0 < i ≤ n, ai is
applicable in ai−1(. . . (a0(s))).
Definition 3 (Executable Plan). Given a PPO problem P
and a state s ∈ SP , a path π = ⟨a0, a1, . . . , an⟩ is an
executable plan in s if it is an executable path in s and
an(. . . (a0(s))) satisfies G.

The above definitions account for what an agent (with full
information) can achieve in the environment. To account
for what is achievable with limited information and sens-
ing capabilities, we define a PO-executable path and PO-
executable plan below.
Definition 4 (PO-executable Path). Given a PPO problem
P and belief b ∈ BP , a path π = ⟨a0, a1, . . . , an⟩ is a PO-
executable path in b if a0 is applicable in b and, for any 0 <
i ≤ n, ai is applicable in ai−1(. . . (a0(b))).
Definition 5 (PO-executable Plan). Given a PPO problem
P and belief b ∈ BP , a plan π = ⟨a0, a1, . . . , an⟩ is a PO-
executable plan in b if it is a PO-executable path in b and
an(. . . (a0(b))) satisfies G.

Note that, since the actor is partially informed, there is a
difference between goal states, in which the goal is achieved,
and goal beliefs, in which the actor knows the goal has been
achieved. It’s easy to show that, since an action is applicable
in a belief only if it is applicable in every state in the be-
lief (including the actual state), every PO-executable plan is
a plan that is guaranteed to be executable in the actual state.
Our objective is to find an efficient way to make sure that at

least one executable plan is PO-executable by the actor. Since
we assume our conservative actor only performs actions it
knows the outcome of, the set of executable plans that can be
sequentially applied to achieve the goal subsumes the set of
PO-executable plans.

Two issues need to be addressed when planning with in-
complete information: belief tracking and planning. Belief
tracking considers the task of keeping track of the agent’s
belief as it operates in the environment and collects new in-
formation [Geffner and Bonet, 2013]. In the worst case, the
computation of the belief states is exponential in the number
of state variables. In this work, we focus on understanding
which information is needed by a partially informed planner
and assume its belief tracking is sound and complete.

There are two main approaches to planning under partial
information, offline and online [Brafman and Shani, 2014],
and a variety of approaches of these two types have been de-
veloped for PPO planning. A common technique for online
planning is replanning [Zelinsky, 1992], where an agent finds
a plan for its current state based on some simplification of
its planning problem and on assumptions it makes about un-
known variables. The agent then executes a prefix of the plan
until discrepancies between the plan and the information ac-
quired during the execution emerge and require replanning.
Our focus here is on providing relevant information to a par-
tially informed replanning agent; we are agnostic to the ap-
proach it uses for planning as long as it complies with our
assumption that the agent is conservative.

3 Helpful Information-Sharing (HIS)
We consider a two-agent setting where the first agent, the
actor, is a partially informed replanning agent that uses a
PPO problem to decide how to act to achieve its goal. The
second agent, the helper, has access to the actor’s planning
model and additional information in the form of facts (i.e. F -
literals), which it knows are true and can be shared with the
actor. For convenience, we indicate the set of facts over F
as LF . We assume that each fact f ∈ LF is revealed and
added separately to the actor’s knowledge. We refer to each
revelation as an information-sharing intervention.
Definition 6 (Information-Sharing Intervention). Given
PPO problem P = ⟨F ,A, I, G,O⟩ and fact f ∈ LF ,
information-sharing intervention δf adds f to I , δf (I) =
I ∪ {f}.

We assume that the set of facts known to the actor is sub-
sumed by the set known to the helper, but the helper is not
necessarily fully informed (in Example 1, it may be aware of
only a subset of the blocked cells). The helper uses its knowl-
edge, which may include both invariant and non-invariant
facts, and knowledge of the actor to find a minimal set of
facts to reveal to the actor to guarantee it can achieve its goal.

Specifically, HIS consists of the helper finding a mini-
mal set of facts to reveal to the partially informed actor to
guarantee that it can execute at least one executable plan de-
spite its partial knowledge. Given the set ∆ of information-
sharing interventions the helper can perform (i.e., the facts it
can reveal), we let P∆

0 represent the model that results from
applying the set of interventions ∆ ⊆ ∆ to P0 such that P0
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and P∆
0 are equivalent except for IP∆

0
= IP0∪LF (∆), where

LF (∆) is the set of facts in ∆. Also, given a PPO problem
P , we let Πe(P) and Πpoe(P) represent the executable plans
in the initial state of P and the PO-executable plans in the
initial belief of P , respectively. We seek to find a minimum
set of facts to reveal offline to the actor to guarantee that, if
an executable plan in the initial state of P0 exists, then a PO-
executable plan in the initial belief of P∆

0 also exists.

Definition 7 (HIS). Given an actor’s initial model P0 =
⟨F ,A, I, G,O⟩ and an intervention set ∆, the problem that
HIS aims to solve is as follows:

∆∗ = arg min
∆⊆∆

(|∆|)

s.t. if Πe(P0) ̸= ∅ then Πpoe(P∆
0 ) ̸= ∅

(1)

We note that if there is no solution to the HIS problem, that
does not necessarily entail there is no way for the actor to
achieve the goal based on its sensors. It may mean that the
helper cannot provide an offline guarantee that there is a plan
that will succeed based on the information it possesses.

For the sake of simplicity, we assume that the cost of
communication is uniform among all facts that can be re-
vealed. Extending this approach to non-uniform cost settings
is straightforward and requires minimizing the total cost of
communication instead of the number of facts that are re-
vealed. In addition, recall that our actor is a replanning agent
that can only make assumptions about unknown facts that can
be discovered by using one of its sensors, i.e. facts f ∈ L in
some sensor (C,L) ∈ O. The actor can make new assump-
tions and replan if one of its previous assumptions is refuted.
Since we are interested in minimizing communication, it is
wasteful to reveal facts that can be sensed by the actor. The
solution to HIS will, therefore, include only facts that hinder
goal achievement and cannot be acquired by the actor.

Example 1 (continued). It is redundant to reveal to the ac-
tor that cell (A,3) is ‘free’ since the actor can infer this when
its sensors indicate no signal at adjacent cells. In contrast,
its sensors are insufficient to guarantee that cell (A,4) is free
given the signal detected at cell (A,3). An optimal HIS solu-
tion for this case is depicted in Figure 2.

4 Finding Optimal Solutions for HIS
We propose two approaches to seek optimal solutions to HIS.

4.1 Lazy Breadth-First Search
A baseline approach for solving HIS is to perform a breadth-
first search (BFS) in the space of interventions, computing
the actor’s cost to goal at each node (in the case of non-
uniform communication cost, a Dijkstra search can be applied
instead). The root node is the initial model P0 (and empty in-
tervention set), and the operators (edges) are the interventions
δ ∈ ∆ that make transitions between models. The value of
each node and the corresponding intervention set ∆ represent
whether the goal is reachable, i.e. whether Πpoe(P∆

0 ) ̸= ∅.
The search explores intervention sets of increasing size, using
a closed list to avoid the computation of pre-computed sets.
To find a solution that complies with Equation 1, the search

halts if a solution is found or if there are no more nodes to ex-
plore and returns the shortest path (smallest intervention set)
to a node that achieves the optimal value. This approach is
guaranteed to find an optimal solution but does not scale to
large problems.

To increase efficiency over the exhaustive approach, we
suggest Lazy Breadth-First Search (Lazy-BFS), which avoids
the need to compute the value of nodes that are guaranteed
not to represent optimal solutions. The structure of the search
tree is similar to the one described for BFS. The novelty is
that, instead of fully evaluating each node, we use a lazy ap-
proach to node evaluation; when a node is expanded during
the search, we map it to a relaxed intervention set, which is
guaranteed to overestimate the value of the node. We com-
pute the exact value of the node only if the value for its re-
laxed set achieves the objective. Computational savings are
achieved by storing the values of the relaxed sets and reusing
them for future nodes that are mapped to the same relaxed set.
To achieve a relaxation of the examined intervention set, we
exploit the parameterized representation of our information-
sharing interventions and use parameterized padding [Keren
et al., 2017], which associates each intervention set to a su-
perset that includes all interventions that share the same value
of one or more of its parameters. A full description of Lazy-
BFS is given in the appendix1.

4.2 The Tka Translation

To increase efficiency, we transform HIS into a planning
problem, which can be solved to obtain an optimal solution
to the original HIS problem by using a single call to an off-
the-shelf classical optimal planner. Our approach is an ex-
tension of the Tk translation of Bonet and Geffner [2011],
which finds a plan for a partially informed agent [Bonet and
Geffner, 2014]. At the core of the Tk translation is the
substitution of each fluent L in the original problem with
a pair of fluents KL and K¬L, representing whether L is
known to be true or false, respectively [Albore et al., 2009;
Palacios and Geffner, 2009]. Each original action is trans-
formed into an equivalent action that replaces the use of ev-
ery literal to the need to know its value. The agent can
make assumptions about observations it can perform during
execution and infer new information based on sensory in-
put. This representation captures the underlying planning
problem at the knowledge level [Petrick and Bacchus, 2002;
Bonet and Geffner, 2014], accounting for the exploratory be-
havior of a partially informed agent. By using the Tk trans-
lation, the actor can follow a planning under optimism ap-
proach: it makes the most convenient assumptions about the
values of hidden variables and replans its behavior if an as-
sumption is refuted during execution.

We extend Tk by encoding the helper’s knowledge into the
actor’s problem description and by allowing the actor to se-
lect which information it needs to acquire to reach the goal.
Importantly, this approach will exhibit which information is
necessary to reveal to the agent since it will not be able to
acquire or deduce this information on its own.

1Appendix: https://github.com/sarah-keren/HIS-IJCAI-23
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Our translation, denoted as Tka, takes as input the ac-
tor’s planning problem as well as the helper’s possible
information-sharing options. In addition to execution, as-
sumption, and ramification actions, which appeared in Tk,
Tka also includes knowledge acquisition actions A′

ka, which
are modeled as part of the planning problem and represent
the sharing of information by the helper. We also add a cost
function, which we use to guarantee that an optimal solution
to the translation minimizes communication cost.
Definition 8 (Tka Translation). For any HIS problem M =
⟨P0,∆⟩, Tka(M) = ⟨F ′, I ′, G′,A′, C′⟩ is the fully observ-
able planning problem where

• F ′ = {KL,K¬L : L ∈ F}
• I ′ = {KL : L ∈ I}
• G′ = {KL : L ∈ G}
• A′ = A′

exe ∪ A′

ram ∪ A′

as ∪ A′

ka where

– A′

exe includes all actions a ∈ A, but with each
precondition L replaced by KL, and each condi-
tional effect C → L replaced by KC → KL and
¬K¬C → ¬K¬L.

– A′

ram = {aram| for invariants ¬C∨L in I} where

* prec(aram) = {KC} and
* eff (aram) = {KL}

– A′

as = A′+
as ∪ A′−

as where

* A′+
as = {a(C,L)|o = (C,L) ∈ O, L ∈ L∆}

where
· prec(a(C,L)) = {KC,¬KL,¬K¬L,L} and
eff (a(C,L)) = {KL})

* A′−
as = {a(C,¬L)|o = (C,L) ∈ O,¬L ∈ L∆}

where
· prec(a(C,¬L)) = {KC,¬KL,¬K¬L,¬L}

and eff (a(C,¬L)) = {K¬L}
– A′

ka = A
′+
ka ∪ A

′−
ka where

* A
′+
ka = {aL|L ∈ L∆} where

· prec(aL) = {¬KL,¬K¬L} and eff (aL) =
{KL})

* A
′−
ka = {a¬L|¬L ∈ L∆} where

· prec(a¬L) = {¬KL,¬K¬L} and
eff (a¬L) = {K¬L})

• C′(a) =


0 ≤ C

′

exe < ∞ if a ∈ A′

exe

0 ≤ C′

as < ∞ if a ∈ A′

as

0 ≤ C′

ram < ∞ if a ∈ A′

ram

0 ≤ C′

ka < ∞ if a ∈ A′

ka

In the definition above, F ′, I ′ and G′ are the same as in
the Tk translation. The key difference is in the definition of
A′ and the addition of the cost function C′. Tka includes an
action in A′

ka for every fact in L∆ that is known by the helper
and that can be shared with the actor. In addition, instead
of allowing the planner to make any assumption that is part
of the actor’s sensor model, in Tka, we only allow making
assumptions that are known to be true by the helper. This

is because Tka takes the point of view of the helper, which
uses the translation to find facts to reveal to the actor that are
guaranteed not to be refuted during execution and that ensure
the goal is achievable by the actor.

A solution π′ to the Tka translation is a sequence of actions
in A′, which includes execution actions (A′

exe), ramification
actions (A′

ram), assumptions (A′

as) and knowledge acquisi-
tion actions (A′

ka). The solution to the HIS problem is the set
Πka(π

′) of knowledge acquisition actions in π′, which repre-
sents the information the helper should share with the actor
to guarantee goal reachability. We denote the sequence of
execution action in π′ as Πexe(π

′).

4.3 Theoretical Analysis
We start our formal analysis of the Tka translation by showing
that the output of the translation is a valid solution for HIS,
i.e., it finds a set of facts to share with the actor to guarantee
the goal is achievable. Then, we provide conditions under
which the set is minimal. All proofs are in the appendix. We
first show that, under the assumption that the actor’s belief
tracking is sound and complete, at every execution step, the
belief of the actor in the original model M is subsumed by
the belief in the translated problem Tka(M).
Lemma 1. Given a HIS problem M = ⟨P0,∆⟩, and a solu-
tion π′ to Tka(M), we let bi and b′i represent the actor’s be-
lief directly before applying action ai in Πexe(π

′) in M and
Tka(M), respectively. If the actor’s belief tracking is sound
and complete, then for any i, bi ⊆ b′i.

We will now show that the solution produced by the trans-
lation represents a valid solution to the HIS problem.
Theorem 1. For a HIS problem M = ⟨P0,∆⟩, assuming
belief tracking is sound and complete, there exists a solution
to Tka(M) if and only if there is a solution to M .
Corollary 1. For a HIS problem M = ⟨P0,∆⟩ and a solu-
tion π′ of Tka(M), Πexe(π

′) is a PO-executable plan of M .
The intuition behind the proofs is that the translation repre-

sents all possible behaviors of the PPO actor because it cap-
tures all possible changes that can be applied to the actual
state as well as the agent’s belief. Also, based on Lemma 1,
we know that the solution to the translation is applicable in
the original PPO problem, and therefore it represents a PO-
executable plan.

So far, we have shown that the Tka translation reveals a
set of interventions that guarantee the goal is achievable. We
now specify conditions that guarantee the solution minimizes
communication cost. This is achieved by manipulating the
cost function so that a single information-acquisition action is
more costly than all other actions. This computational artifice
is used to guarantee the conditions under which the transla-
tion will find the minimal set of facts to reveal to achieve the
objective and does not correspond to actual cost.
Theorem 2. For any HIS problem M = ⟨P0∆⟩ if

C
′

exe · |A
′

exe|+ C
′

as · |A
′

as|+ C
′

ram · |A
′

ram| < C
′

ka

then, for any optimal solution π′∗ to Tka(M), Πka(π
′∗) rep-

resents a minimal set of information-sharing interventions
that guarantee the actor can achieve its goal.
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5 Tka Extensions
In the HIS setting described above, we have a helper agent
that can reveal known facts to the actor. In many real-world
settings, the actor itself can choose to perform information
acquisition actions but needs to decide which of the possi-
ble costly actions to perform. Such actions can correspond
to placing or activating sensors in the environment, perform-
ing information-gathering actions, or proactively requesting
information from other agents. The key difference of such
settings is that, as opposed to the two-agent setting described
above in which the actual values of the revealed information
items are known to the actor, here the actual outcome of the
information acquisition actions is not known. To support such
settings, we extend our approach by letting the actor itself
apply Tka to its planning problem such that ∆ now repre-
sents the information the actor can request (e.g., which sen-
sors to deploy). Since the real values of the facts in L∆ are not
known, we have knowledge acquisition actions for every pos-
sible value of each fact (i.e., for each fact L ∈ L∆, the agent
can acquire L or ¬L). Actions for which the agent decides
to acquire a specific value are those which represent valuable
information acquisition actions.

Our approach can also be used in settings in which the ob-
server may not have enough knowledge to guarantee the actor
can accomplish its goal but may be willing to settle for operat-
ing under a robustness guarantee, which quantifies the plan’s
ability to avoid failure. For this purpose, we rely on Keren et
al. [2020a], where plan robustness is defined as the number
of states in the belief for which the plan is guaranteed to suc-
ceed. Thus, we can find a minimal intervention set that yields
a solution that complies with a robustness threshold. This is
achieved by allowing the solution to include a specified num-
ber of assumptions in A′

as for which the value is not known
(the larger the number, the lower the robustness guarantee).

Finally, Theorem 2 provides conditions on the cost func-
tion under which Tka finds a minimal set of interventions
that guarantee goal achievement, thus focusing on settings in
which communication is costly. Applying this idea to settings
in which execution actions or ramification actions should be
minimized is straightforward. Using the cost function, we can
impose any ordering by which actions of each type are per-
formed. For example, by creating a strict ordering between
execution, information-acquisition, assumptions (on values
that are known to be true) and ramification actions, we can
find the minimal information that is needed to guarantee an
optimal plan is achievable by the partially informed actor.

6 Empirical Evaluation
The objective of the evaluation is to examine our approaches
in terms of the computational resources used and their ability
to find helpful interventions in a variety of domains.
Dataset. We use seven partially observable planning do-
mains: WUMPUS, TRAIL, COLOR-BALLS, COLOR-
BALLS-E, LOGISTICS, and UNIX [Bonet and Geffner,
2011; Albore et al., 2009]. The adaptation to HIS involves
limiting the actor’s sensors and specifying the information
that can be revealed. We also introduce a new domain,
ESCAPE-ROOM, in which the helper seeks a minimal set

BFS Lazy-BFS Tka

sol time sol time sol time

WUMPUS 0.81 27.12 0.81 18.33 0.71 13.18
TRAIL 1 21.24 1 21.17 0.69 15.76

COLOR-BALLS 0 – 0 – 0.77 16.69
COLOR-BALLS-EX 0 – 0 – 0.45 21.07

UNIX 0.56 16.35 0.56 15.39 0.99 3.01
LOGISTICS 0.54 36.59 0.52 32.08 1 0.29

ESCAPE-ROOM 0.84 0.84 0.84 1.25 0.84 0.53

Table 1: Comparing performance of the different HIS approaches.

of clues that guarantee a puzzle is solvable. For each domain,
we generated at least 100 benchmarks by randomly select-
ing the initial state and the set of items that are known to the
helper. The Appendix includes a description of all the do-
mains and the complete dataset and code.
Setup. We compare three HIS solution approaches: BFS,
Lazy-BFS (Section 4.1), and the Tka transformation (Sec-
tion 4.2). We use PDDL [McDermott et al., 1998] to specify
the domains and the available information-sharing interven-
tions. The BFS approaches are implemented using an adap-
tation of pyperplan (https://github.com/aibasel/pyperplan) to
parse the intervention file and provide the set of applicable
information-sharing interventions for each node in the search
and the model that results from applying each intervention.
While our method is agnostic to the planner used by the ac-
tor, we use the K-planner [Bonet and Geffner, 2011] with
Fast-Downward [Helmert, 2006] classical planner (FD) and
the Lm-cut heuristic [Helmert and Domshlak, 2009].

We run each instance on the three approaches with a time
limit of 10 minutes, a memory limit of 2548 MB, and 1000
explored nodes. All evaluations were run on an 11th Gen
Intel® Core™ i9-11900F @ 2.50GHz ×16.

We evaluate the following information-sharing settings:
• MININF: HIS setting described in Definition 7 in which

the helper reveals a minimal set of facts that guarantees
goal achievement.

• OPOP (Section 5): the helper reveals a minimal set of
facts that guarantee an optimal plan is PO-executable.

• ROB (Section 5): the helper reveals a minimal set of
facts to achieve the required robustness. We examine
settings with decreasing robustness guarantees by allow-
ing 1, 2 and 3 assumptions to be made by the agent, de-
noting them as ROB1, ROB2, and ROB3.

Results. Table 1 compares the computational resources
used by BFS, Lazy-BFS and Tka. For each approach and do-
main, we measure ‘sol’ as the ratio of solved instances, i.e.,
instances for which the approach finishes before the allocated
time bound is reached (best result is underlined), and ‘time’ as
the average computation time in seconds for instances solved
by all methods (best result in bold). For COLOR-BALLS(-
EX), we indicate the average computation time for Tka, since
BFS and Lazy-BFS fail on all instances.

Results show that for WUMPUS and TRAIL, BFS solved a
higher percentage of instances (with lower computation time
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MININF OPOP

WUMPUS 1.3 1.52

TRAIL 1 1

COLOR-BALLS 1.23 1.23

COLOR-BALLS-EX 2.09 2.09

UNIX 1.82 1.82

LOGISTICS 1.84 4.17

ESCAPE-ROOM 1.1 1.3

Table 2: Tka extensions: Comparing the effect of information shar-
ing in MININF and OPOP.

ROB1 ROB2 ROB3

WUMPUS 2.67 2.39 2.28

TRAIL 3.31 2.73 2.38

COLOR-BALLS 2.33 2.33 2.33

COLOR-BALLS-EX 4.18 4.18 4.18

UNIX 2.19 2.19 2.19

LOGISTICS 1.84 1.84 1.84

ESCAPE-ROOM 2.79 2.5 1.5

Table 3: Tka extensions: Comparing the effect of information shar-
ing interventions under different robustness requirements.

for Lazy-BFS for all but ESCAPE-ROOM), while Tka solves
more instances on the other domains. In addition, Tka sub-
stantially reduces computational time for all domains (most
notably for the LOGISTICS domain).

An investigation of the instances for which Tka did not
complete, but BFS did, reveals instances with large spaces
of information-sharing interventions for which the grounded
version of the compiled problem exhausted the allocated
memory. A direction for future investigation would be to ex-
plore ways to prune the space of grounded operators.

In Tables 2 and 3, we present the performance of the ex-
tensions of Tka presented in Section 5. Table 2 examines the
average number of information-sharing interventions needed
to achieve the requirement in MININF and OPOP settings in
which the observer has sufficient information for achieving
the requirement (which is that some path is PO-executable
for MININF and an optimal one is achievable for OPOP).
As expected, the average number of information-sharing in-
terventions increases as the requirements are more restrictive,
i.e. more (or an equal number of) interventions are needed for
OPOP than for MININF. In Table 3, we compare the number
of interventions needed to achieve a required level of robust-
ness when the observer does not necessarily have the needed
information to guarantee goal achievement, but the actor can
make 1− 3 assumptions. We note that when we compromise
robustness (i.e. the agent can make more assumptions), fewer
interventions are needed.

7 Related Work
The idea that information is malleable has been investigated
in a variety of research disciplines, including economics [Ka-
menica, 2019], business management [Drucker, 2012], pol-
itics [Murphy and Shleifer, 2004], and more. We focus on
controlling the information of a partially informed planning

actor and the effect of additional information on the actor’s
behavior. Our work is most related to the extensive body of
work on selective information revelation in multi-agent AI.

One relevant line of work considers communication in col-
laborative settings. Kamar et al. [2009] provide a mechanism
for reasoning about the utility of communicating information
relevant to an agent’s plans in a collaborative setting. Simi-
larly, several lines of work [Xuan et al., 2001; Wu et al., 2011;
Unhelkar and Shah, 2016; Sarne and Grosz, 2007; Macke et
al., 2021] consider limited communication settings and in-
vestigate the gain to effective coordination versus communi-
cation cost. To address this challenge, a unified framework
is created where communication becomes part of the overall
agent decision problem. In [Marcotte et al., 2020] a team of
robots can share observations to improve team performance,
but communication bandwidth is limited. The decision of
what to communicate is based on forward simulations and
a bandit-based combinatorial optimization algorithm. Our
technique is different as it focuses on planning agents, en-
suring the helper shares minimal information with the actor
so that it can achieve its goal.

Information sharing can also be viewed as a special case
of environment design [Zhang et al., 2009], which provides a
framework for an interested party to seek an optimal way to
modify an environment to maximize some utility. Among the
many ways to instantiate the general model, policy teaching
[Zhang and Parkes, 2008; Zhang et al., 2009] enables mod-
ifying the reward function of a stochastic agent to entice the
agent to follow specific policies. We focus here on perform-
ing design by controlling the information an agent uses for
planning, rather than by reward shaping, and on using infor-
mation sharing to ensure that the goal is achievable.

Recent work [Shmaryahu et al., 2019; Nguyen et al., 2017;
Keren et al., 2020b] provides various comparative criteria for
plans and policies for partially informed planning and ways
to compute plans that comply with those criteria, i.e., plans
that maximize robustness. Specifically, Keren et al. [2020b]
offer a translation of the problem to classical planning that
accounts for a user-specified level of robustness by associat-
ing a corresponding cost to making assumptions. Here, we
extend this approach by allowing the actor to ‘buy’ the infor-
mation it needs and exploit the cost function to guarantee that
the generated solution minimizes communication costs.

8 Conclusion
We presented HIS as the problem of finding a minimal set of
information-sharing interventions that guarantee that a par-
tially informed actor can achieve its goal. To find optimal
solutions, we offer a variation of BFS and a transformation of
HIS to a single-agent planning problem that can be solved us-
ing any off-the-shelf classical planner. Our evaluation, based
on a set of domains adapted from the literature, shows the
computational benefit of our suggested approaches.

Possible extensions include an account of information-
sharing settings with stochastic sensor models and faulty
communication. Another extension considers the cost of sen-
sor placement in settings in which the helper’s knowledge is
not sufficient to guarantee the goal is achievable.
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