
Topological Planning with Post-unique and Unary Actions
Guillaume Prévost1 , Stéphane Cardon1 , Tristan Cazenave2 , Christophe Guettier3 and Éric

Jacopin4

1Académie Militaire de Saint-Cyr Coëtquidan, CReC Saint-Cyr, France
2Université Paris Dauphine - PSL, LAMSADE, CNRS, France

3Safran Electronics and Defense, France
4Hawkswell Studios, France

guillaume.prevost@st-cyr.terre-net.defense.gouv.fr

Abstract
We are interested in realistic planning problems
to model the behavior of Non-Playable Characters
(NPCs) in video games. Search-based action plan-
ning, introduced by the game F.E.A.R. in 2005, has
an exponential time complexity allowing to control
only a dozen NPCs between two frames. A close
study of the plans generated in first-person shoot-
ers shows that: (1) actions are unary, (2) actions are
contextually post-unique and (3) there is no two in-
stances of the same action in an NPC’s plan. By
considering (1), (2) and (3) as restrictions, we intro-
duce new classes of problems with the Simplified
Action Structure formalism which indeed allow to
model realistic problems and whose instances are
solvable by a linear-time algorithm. We also ex-
perimentally show that our algorithm is capable of
managing millions of NPCs per frame.

1 Introduction
In 2005, F.E.A.R. was released and it is the first video game
to use action planning for the control in real-time of the
Non-Playable Characters (NPCs). The planning is exe-
cuted through the well-known Goal-Oriented Action Plan-
ning (GOAP) system [Orkin, 2005]. The behavior of these
NPCs were so relevant that reviews praised the approach
when released [Ocampo, 2007], and it is still recognized as
such today [Horti, 2017]. This Artificial Intelligence (AI)
technique has then be implemented in several other video
games such as Rise of the Tomb Raider [Conway, 2015], Mid-
dle Earth: Shadow of Mordor [Higley, 2015], Immortals Fenyx
rising and the Assassin’s Creed series since Odyssey [Girard,
2021].

Action planning is a sub-field of AI that aims to give
agents, or NPCs in our case, the capability to build sequences
of actions to plan and behave in their environment. Given the
description of an initial state, the description of a goal state
and the description of an action set, the purpose of a planner
is to find a sequence of actions, known as plan, to reach the
goal state and that is applicable in the initial state, or to return
that no such plan exists. GOAP uses finite domain variables
to represent the planning problem of the NPCs. These prob-

lems are decidable but planning remains intractable in gen-
eral [Bylander, 1994]. In particular, the planning algorithm
of GOAP is based on A* whose worst-case time complexity
is exponential with the number of actions and the size of the
plan. To give a plan to as many NPCs as possible while re-
specting the real-time constraint, which represents less than
10% of the time between two frames1, and avoiding trigger-
ing the worst-case scenarios, the GOAP developers of these
game companies have relied on tricks2. Among these tricks
are:

1. The action representation is simple. Each action has few
pre- and post-conditions. In F.E.A.R., almost all actions are
unary, i.e. each action only has one post-condition [Monolith
Productions, 2006].

2. There are pruning techniques to avoid exploring the
entire action search space while planning [Orkin, 2003;
Girard, 2021]. In F.E.A.R., each action has a Context Pre-
condition method whose role is to check whether the action
is contextually viable. If not, the action is merely withdrawn
from the search. It means that even if several actions may
have the same post-condition, only some of them (sometimes
none) will be considered.

3. Plans are short [Jacopin, 2014]. In Middle Earth:
Shadow of Mordor, to keep plans short, Higley explains that
some actions are just animations [Higley, 2015]. It means
these actions will never be considered by the planner but they
will still be animated to make the player believes NPCs have
long plans.

Even though game companies use these tricks, the planning
problems of their NPCs remain intractable. Points 1., 2. and
3. can be used to define assumptions, however:

1. Actions are unary. Each action only has one post-
condition.

2. Actions are (contextually) post-unique. Given a situa-
tion, no two actions have the same post-condition.

3. Each action has at most one occurrence in the plan.

In this paper, we propose to use these assumptions as re-
strictions so as to create classes of planning problems that are

1It represents 1, 67ms for a 60 frames per second video game.
2The Software Development Kit of F.E.A.R. is freely available

online.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5429

tractable, and with an algorithm capable of solving each in-
stance. The remainder of the paper is organized as follows:
we first give a background on action planning restrictions. We
then define an NPC planning problem with post-unique and
unary actions to introduce the SAS formalism and the issues
with these two restrictions. It follows the definition of new
tractable classes of planning problems and the introduction
of our linear time algorithm capable of solving the problem
instances of these classes, along with complexity and cor-
rectness theorems. We eventually present a concrete exper-
iment performed on abstract settings to show that our classes
of problems allow the creation of realistic problems and to
highlight the potential of our planner.

2 Background
The use of restrictions to create tractable classes of prob-
lems is not new [Cooper et al., 2012]. C. Bäckström, in his
thesis, has developed the Simplified Action Structure (SAS)
formalism and has applied restrictions on his action rep-
resentation to create the first tractable class of problems:
SAS-PUS [Bäckström, 1992]. PUS are the restrictions and
stand for Post-uniqueness, Unariness, and Single-Valuedness,
which fits two of our assumptions. In SAS, actions have
post-conditions and two types of preconditions: the pre- and
prevail-conditions. The pre-conditions define what must be
true before the action execution and what will be changed
by the post-conditions. Whereas the prevail-conditions de-
fine what must be true before the action execution and what
must hold during the entire action execution. If an NPC fills
a bucket with water, the bucket is previously empty (pre-
condition), then filled (post-condition). And the bucket must
remain in hands while being filled (prevail-condition). The
(S) restriction implies that if a prevail-condition is defined for
an action, then all the other actions must either have the same
prevail-condition or not be affected by it. In our example,
if an NPC has an action requiring the bucket in hands, all the
other actions of the set must either require the bucket in hands
or not care about having it. In other words, (S) implies that
there is no action in the NPC’s set whose prevail-condition
is to not have the bucket in hands. (S) is very restrictive and
prevents the creation of some realistic problems. To general-
ize our bucket example, one cannot create On/Off situations
with the SAS-PUS class of problems.

Considering our assumptions 1. and 2., it would be great
to get rid of the single-valuedness. (S) cannot be simply re-
moved, however, C. Bäckström proved that the resulting class
SAS-PU is intractable [Bäckström, 1992]. The reason for
the intractability is the exponentially-sized minimal3 solution
plans of some problem instances. An underlying conclusion
is that some actions have an exponential number of occur-
rences inside these plans, which, in addition to making the
SAS-PU class intractable, does not respect our third assump-
tion. According to Theorem 4.4 [Bäckström, 1992, p.76],
the class SAS-PUS does not respect our third assumption ei-
ther: the minimal solution plan of each solvable SAS-PUS

3A minimal solution plan is a plan with the lowest number of
actions.

A pre post prv Name

a1 v0 = 1 v0 = 0 ⟨u, u, u⟩ DropHaystack
a2 v0 = 0 v0 = 1 ⟨u, 0, u⟩ TakeHaystack
a3 v0 = 1 v0 = 2 ⟨u, u, u⟩ FillHorseFeeder
a4 v1 = 1 v1 = 0 ⟨u, u, u⟩ DropBucket
a5 v1 = 0 v1 = 1 ⟨0, u, u⟩ PickUpBucket
a6 v2 = 0 v2 = 1 ⟨u, 1, u⟩ FillBucketWithWater
a7 v2 = 1 v2 = 2 ⟨u, 1, u⟩ FillHorseTrough

M = {v0 : Haystack, v1 : Bucket, v2 : Water}
Dv0 = {0 : none, 1 : inHands, 2 : inFeeder}

Dv1 = {0 : none, 1 : inHands}
Dv2

= {0 : inSource, 1 : inBucket, 2 : inTrough}

Table 1: The SAS action set of the Horse Breeder. Actions are (P)
and (U). Variable u means undefined.

problem instance contains actions with at most two occur-
rences. Thus, the question is: does there exist a restriction
which, once combined with (P) and (U), creates a tractable
class whose solvable problem instances are solved by a mini-
mal solution plans containing actions with at most one occur-
rence?

(P), (U) and (S) are syntactical restrictions because they
affect the action representation. There also exists struc-
tural restrictions that restrict the structure of a planning prob-
lem [Jonsson and Bäckström, 1998]. Most of the time, the
structure of a problem is represented as a graph: [Domsh-
lak and Brafman, 2002; Helmert, 2006] have used the causal
graph which focuses on the post-prevail dependencies; [Jon-
sson and Bäckström, 1998] have introduced the domain-
transition graph which, unlike the causal graph, focuses on
the post-pre dependencies. The idea is then to take ad-
vantage of this representation to find a structural restriction.
The causal graph and the domain-transition graph, however,
respectively ignore the post-pre dependencies or the post-
prevail dependencies. To fully captures the intractability of
SAS-PU problems and to define a new structural restriction
that respect our 3rd assumption, we need to consider both
the post-pre and the post-prevail dependencies. To this end,
we define in this paper two other types of graph: the domain
action graph presented in Section 3 and the action graph pre-
sented in Section 4. They focus on SAS-PU actions and the
relations between them.

3 SAS-PU Planning Problems
A SAS planning problem is defined as a couple (M,A), with
M a set of state variables and A a set of actions. Each state
variable vi ∈ M has a domain of values denoted Dvi

. A list
of size |M| of such values defines a state and the ith element
of a state is a value of Dvi assigned to the state variable vi.
Then, each action of A is defined with post-conditions (post)
and two types of preconditions: the pre-conditions (pre) and
the prevail-conditions (prv). The unariness (U) implies each
action only has one post-condition. The post-uniqueness (P)
implies there are no two actions with the same post-condition.
In SAS, the pre- and post-conditions both define the same
state variables, so, due to (U), they both only affect one state
variable. We thus define them with the state variable af-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5430

(0)

DropHaystack (a1) TakeHaystack (a2) FillHorseFeeder (a3)

(1) DropBucket (a4)(a5) PickUpBucket

(2)
FillBucketWith

Water (a6)

FillHorse

(a7) Trough

Figure 1: The domain-action graphs of the Horse Breeder.

fected (vi) and the value assigned (p, q ∈ Dvi
, p ̸= q):

∀a ∈ A, pre(a) = (vi = q) ∧ post(a) = (vi = p).
The prevail-conditions, on the contrary, are represented as a
partially-defined state: ∀a ∈ A, prv(a) = ⟨vi = p | vi ∈
M, p ∈ Dvi

∪ {u}⟩, and u is the undefined value. Table 1
gives an example of a SAS-PU planning problem with the
Horse Breeder, a NPC from the game Red Dead Redemption
2 [DefendTheHouse, 2018].

The purpose of a SAS planner is then to solve a prob-
lem instance defined as the quadruple (M,A, s0, s⋆), with
s0 the start state and s⋆ the goal state. These two states are
totally defined in this paper as we work with SAS and not
with SAS+ nor SAS∗ [Jonsson and Bäckström, 1998]. Let
Ihb denote a problem instance of the Horse Breeder, Ihb =
(M,A, ⟨0, 0, 0⟩, ⟨2, 0, 2⟩) is a possible problem instance to
define the daily routine: feed the horses. His goal is to have
the water in the horse trough (s⋆[v2] = 2) and the horse feeder
filled with a haystack (s⋆[v0] = 2). At the beginning of his
daily routine, he carries nothing (s0[v0] = 0, s0[v1] = 0) and
the water is in the source (s0[v2] = 0). To solve a problem
instance, the planner will eventually build a minimal solution
plan ∆. Such plans are composed of several chains of ac-
tions, one (possibly empty) for each state variable from the
start to the goal state [Bäckström, 1992]. A chain of actions
on vi from s0[vi] to s⋆[vi], denoted chainvi(s0[vi], s⋆[vi]),
is a linear sequence of actions that focus on the relation
between the pre- and post-condition. Once all the chains
are known, the actions of these chains are ordered among
themselves according to their prevail-conditions to create ∆.
For example, ∆ = ⟨a5, a6, a7, a4, a2, a3⟩ is a linear and
minimal solution plan that solves Ihb, and ∆ is composed
of: chainv0

(0, 2) = ⟨a2, a3⟩, chainv1
(0, 0) = ⟨a5, a4⟩ and

chainv2
(0, 2) = ⟨a6, a7⟩.

In section 2, we explained that there exist problem in-
stances in SAS that can be solved by minimal solution plans
containing actions with several occurrences. In SAS, plan-
ners are allowed to instantiate several times the same action
to build a plan. This is feasible if and only if these ac-
tions are looping with some other actions via the post-pre
dependencies. The Horse Breeder can pick up and drop the
bucket as many times as he wants because DropBucket and
PickUpBucket are looping together. On the contrary, in this
problem representation, the planner can only instantiate Fill-
BucketWithWater, FillHorseFeeder or FillHorseTrough once to
solve a problem instance. The domain-action graph enables
the visualization of such cycles:

Definition 1 (Domain-action graph). Let vi ∈M, a domain-
action graph of vi, denoted G(vi), is a weakly connected and

DropHaystack (a1)

TakeHaystack

(a2)

FillHorseFeeder

(a3)

DropBucket (a4)

PickUpBucket

(a5)

FillBucketWith

Water (a6)

FillHorse

Trough (a7)

Figure 2: The action graph (G) of the Horse Breeder. The blue edges
are the post-pre dependencies (Epre(A)) while the green edges are
the post-prevail ones (Eprv(A)).

directed graph. G(vi) = (A(vi), Epre(A(vi))) s.t.:

• A(vi) = {a | a ∈ A, post(a) ∈ Dvi} is the vertex set.

• Epre(A(vi)) = {(a, b) | a, b ∈ A(vi), post(a) =
pre(b)} is the directed edge set.

The Horse Breeder has three domain-action graphs, one for
each state variable (cf. Figure 1). G(v0) and G(v1) have one
cycle with two actions while G(v2) has no cycle. It can be
highlighted that, due to (P), there are at most |Dvi | actions in
A(vi). Then, if there are less than |Dvi | − 1 actions in A(vi)
then G(vi) is disconnected and the actions of each of the dis-
connected part will never end up in the same action plan. Al-
though this is theoretically feasible, with a SAS structure, i.e.
with totally defined start and goal states, this is equivalent
to considering that there are as many state variables as there
are disconnected parts. Hence the weakly connected charac-
teristic of the domain-action graphs. Eventually, if there are
exactly |Dvi

| − 1 actions in A(vi), then there is one value in
Dvi that cannot be set by an action but only by the environ-
ment. In our example, we consider that (Water = inSource)
can only be set by the environment and not by an action of
the Horse Breeder.

Lemma 1. Let vi ∈M,

• If |A(vi)| = |Dvi
| − 1, then G(vi) is a directed tree.

• If |A(vi)| = |Dvi
|, then G(vi) has a unique cycle.

Proof. (Idea of proof) This lemma is proven by recursion and
by using the previous observations4.

This Lemma is significant as it highlights that actions re-
sponsible for the intractability of SAS-PU problems are con-
tained in identifiable cycles:

Definition 2. We denote Cycle(vi) the set of actions that are
inside the unique, possibly empty, cycle of G(vi).

For the Horse Breeder, we have: Cycle(v0) = {a1, a2},
Cycle(v1) = {a4, a5}, Cycle(v2) = ∅. Although, for each
vi ∈ M, Cycle(vi) contains actions that are likely to be
instantiated several times, if none of them satisfy one de-
fined prevail-condition of another action, then the planner
does not need to pass through Cycle(vi) several times. Let
consider that the Horse Breeder only has two actions: Drop-
Bucket and PickUpBucket: the minimal solution plan to solve
s0[v1] = s⋆[v1] is ∆ = ∅; and, the minimal solution plan to

4Feel free to contact the authors to get the technical appendices.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5431

solve s0[v1] ̸= s⋆[v1] is of size 1 and contains either an in-
stance of DropBucket or an instance of PickUpBucket depend-
ing on which one satisfies s⋆[v1]. Now, no matter how many
actions the planning problem is composed of, if none of them
requires DropBucket or PickUpBucket to satisfy their prevail-
condition, the planner will never loop through Cycle(v1). In
fact, this is crucial to identify what we called the requestable
actions:

Definition 3 (Requestable Action). A requestable action is
an action that solves the prevail-condition of at least another
action of A. We denote Req the set of requestable actions
andReq(vi) the set of requestable actions affecting vi ∈M.
∀vi ∈ M, Req(vi) = {a | a ∈ A(vi), ∃b ∈ A, post(a) =
prv(b)[vi]} andReq =

⋃
vi∈M

Req(vi)

For the Horse Breeder, the requestable actions are: Req =
{a1, a4, a5}. Definitions 2 and 3 allow us to define a new
structural restriction in function of the number of actions per
cycle:

Definition 4. Let vi ∈M, k ∈ N. Given a SAS-PU problem,
we denote Ck the structural restriction that limits to at most
k the number of actions inside each Cycle(vi) having at least
one requestable action. If Req(vi) ∩ Cycle(vi) ̸= ∅, then
|Cycle(vi)| ≤ k.

In the next section, we introduce the new classes of prob-
lems SAS-PUCk. In particular, with respect to some k ∈ N,
we introduce new classes of tractable problems and we indi-
cate from which k our 3rd assumption is no longer respected.

4 The Classes of Problems SAS-PUCk

Our 3rd assumption is: there is no two times the same action
in an NPC’s plan. This assumption is an output restriction,
however, and does not give information on how to design a
SAS planning problem. The purpose of this section is thus
to study SAS-PUCk problems for some k ∈ N so as to find
problems whose solvable instances are necessarily solved by
a solution plan respecting our 3rd assumption. If such classes
of problems exist, then we will say that they respect the 3rd

assumption.
In the following, we only consider k = 0, k = 2 and

k ≥ 3. More precisely, we prove that the class SAS-PUC0

respects our 3rd assumption but not the class SAS-PUC2 nor
the class SAS-PUCk when k ≥ 3. With additional restric-
tions on SAS-PUC2 problems, however, we created two sub-
classes, namely SAS-PUCS

2 and SAS-PUC∗
2, that respect our

3rd assumption. Concerning k = 1, this case is meaningless
as it implies there is an action whose pre-condition is equal
to its post-condition. This is not possible due to inner restric-
tions of the SAS formalism [Bäckström, 1992, p.52].

Theorem 1. SAS-PUC0 problems respect our 3rd assump-
tion.

Proof. (Idea of proof) In these problems, for each vi ∈ M,
there is no Cycle(vi) containing a requestable action. If the
planner instantiates some actions from these cycles, it is just
to link the start to the goal state. The planner will never loop
through these cycles to seek for a requestable action. For

the actions outside such cycles, they can obviously only be
instantiated once. The theorem is then proved by recursion.

Theorem 2. SAS-PUC2 problems are intractable.

Proof. (Idea of proof) The Gray Code problem defined in
Proof 6.14 [Bäckström, 1992, p.138] is also of the class SAS-
PUC2. The conclusion is that it exists problem instances with
an exponentially-sized minimal solution plan.

Lemma 2. For k ≥ 3, every SAS-PUCk problem has at least
one problem instance whose minimal solution plan has at
least one action with two occurrences in it.

Proof. (Idea of proof) For each of these problems, we can
build a problem instance similar to the one presented in Fig-
ure 4.3 [Bäckström, 1992, p.75]. It results the statement of
this Lemma.

According to our 3rd assumption and Lemma 2, we cannot
model a NPC problem with the class SAS-PUCk with k ≥ 3.
The Horse Breeder problem is of the class SAS-PUC2. It is
(P) and (U) and both Cycle(v0) and Cycle(v1) are concerned
by the restriction (C2). |Cycle(v0)| = |Cycle(v1)| = 2 and
they both contain at least one requestable action: Req(v0) ∩
Cycle(v0) = {a1} and Req(v1) ∩ Cycle(v1) = {a4, a5}.
It can be proved by hands that the Horse Breeder problem
respects our 3rd assumption. So there exists sub-classes of
SAS-PUC2 problems that respect our 3rd assumption: SAS-
PUCS

2 and SAS-PUC∗
2 are two of them.

Definition 5. SAS-PUCS
2 is a sub-class of SAS-PUC2 and

there is at most one requestable action per domain-action
graph cycle: ∀vi ∈M, |Req(vi) ∩ Cycle(vi)| ≤ 1.

The letter S in (CS
2) recalls (S), the single-valuedness re-

striction.

Theorem 3. SAS-PUCS
2 problems respect our 3rd assump-

tion.

Proof. (Idea of proof) Let vi ∈ M, consider Cycle(vi) =
{a−, a+} such that post(a+) = + and post(a−) = −, and
a+ is the requestable action. If s0[vi] = +, then the planner
does not need to pass through Cycle(vi) as + is satisfied by
s0[vi] and a− is not requestable. If s0[vi] = −, then the plan-
ner can search for a+ in Cycle(vi). it does not need to do it
more than once, however, thus respecting the 3rd assumption.
If s0[vi] ∈ Dvi \ {−,+}, then the planner cannot reach the
actions in Cycle(vi). So the problem instance is not solvable
if a+ is requested while planning. The theorem is proved by
recursion using this idea of proof.

SAS-PUCS
2 problems suffer from the same issue as the

SAS-PUS problems: On/Off situations cannot be modeled.
The Horse Breeder is not of the class SAS-PUCS

2 as Drop-
Bucket and PickUpBucket are both requestable and loop-
ing together: |Req(v1) ∩ Cycle(v1)| = 2. A corollary of
both Theorems 2 and 3 is that a domain-action graph cy-
cle, in which both actions are requestable, is the underly-
ing cause of intractability in certain SAS-PUC2 problems.
Proof 6.14 [Bäckström, 1992, p.138] is a very good example

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5432

A ID Npre Nprv Name

a1 a0v0
{a2} ∅ DropHaystack

a2 a1v0
{a1} {a4} TakeHaystack

a3 a2v0
{a2} ∅ FillHorseFeeder

a4 a0v1
{a5} ∅ DropBucket

a5 a1v1
{a4} {a1} PickUpBucket

a6 a1v2
{ghost} {a5} FillBucketWithWater

a7 a2v2
{a6} {a5} FillHorseTrough

Table 2: Identifiers and predecessor sets for the Horse Breeder.

to understand how a planner can loop through such a cycle:
the two requestable actions must be instantiated several times
to alternatively satisfy the prevail-condition of some others
action instances who already have a specific ordering.

SAS-PUC∗
2 problems, on the contrary, allow the use of

domain-action graph cycles with two requestable actions,
which is essential to model some On/Off situations such as
Cycle(v1) in the Horse Breeder problem, and still respect our
3rd assumption. To define this class, we need to introduce the
action graph, which is a graph that captures both the post-pre
and the post-prevail dependencies between the actions. Fig-
ure 2 gives the action graph of the Horse Breeder.

Definition 6 (Action graph). An action graph is the directed
graph G = (A, EA), with A the vertex set and EA the di-
rected edge set. EA = Epre(A) ∪ Eprv(A) such that:

• Eprv(A) = {(a, b) | a ∈ Req(vi), ∃b ∈ A, post(a) =
prv(b)[vi]}, stores the post-prevail dependencies.

• Epre(A) =
⋃

vi∈M
(Epre(A(vi))), stores the post-pre de-

pendencies.

Definition 7. SAS-PUC∗
2 is a sub-class of SAS-PUC2 and for

each Cycle(vi) = {a+, a−} with two requestable actions,
the actions requesting a+ must not be related to the actions
requesting a− in the action graph G \ G(vi).

The Horse Breeder is of the class SAS-PUC∗
2: a4, a5 ∈

Cycle(v1) are both requestable and a2, a6, a7 ∈ A are such
that {(a4, a2), (a5, a6), (a5, a7)} ⊂ Eprv(A) and a2 is not
related to either a6 nor a7 in G \ G(v1). That is, if a4 and
a5 are removed from G, a2 is in a different subgraph as a6
and a7. Let Cycle(vi) = {a+, a−}, the idea of SAS-PUC∗

2 is
that, in any instance of these problems, the actions requesting
a+ can be ordered independently of the actions requesting
a−. Thus, the planner can instantiate a+ and ordered all the
actions requesting a+ before instantiating a− and ordered all
the actions requesting a−.

Theorem 4. SAS-PUC∗
2 problems respect our 3rd assump-

tion.

Proof. (Idea of the proof) When G(vi) is removed from G,
the results is a disconnected graph with two or more parts.
And each part is an action graph that models either a SAS-
PUC0 problem, a SAS-PUCS

2 problem or a SAS-PUC∗
2 prob-

lem. The theorem is then proved by recursion.

Procedure 1 BuildChain(vi, s, g,D, ED,A)
Input: vi ∈ M, s, g ∈ Dvi

, s ̸= g and agvi
is white; D, a

set of yellow actions; ED, a set of orders between the actions
of D; Parameters: x, y, two values of Dvi . Output: Each
browsed action a is colored yellow, added to D and the order
(Npre(a), a) is added to ED.

1: x← ∅; y ← ∅
2: if agvi

is a ghost action then fail
3: end if
4: Color(agvi

) ← yellow; D ← D ∪ {agvi
}; y ← pre(agvi

);
ED ← ED ∪ {(ayvi

, agvi
)}

5: if Next(ayvi
) = ∅ {ayvi

can be a ghost action.} then
6: Next(ayvi

)← agvi

7: end if
8: while y ̸= s do
9: if ayvi

is a ghost action then fail
10: end if
11: if Color(ayvi

) = yellow then fail
12: end if
13: Color(ayvi

) ← yellow; D ← D ∪ {ayvi
}; x ← y; y ←

pre(ayvi
); ED ← ED ∪ {(ayvi

, axvi
)}

14: if Next(ayvi
) = ∅ {ayvi

can be a ghost action.} then
15: Next(ayvi

)← axvi

16: end if
17: end while

5 Topological Planning
In this section, we present our algorithm TopoPlan and two
procedures that composes it: BuildChain and DFSTopo. The
specification of our algorithm is the following:
Definition 8. (TopoPlan’s specification)

Input: (M,A, s0, s⋆), a problem instance of the class
SAS-PUC0, SAS-PUCS

2 or SAS-PUC∗
2.

Output: If the instance is solvable, then TopoPlan returns
∆, a linear and minimal solution plan with at most one oc-
currence of each action of A. If the instance is not solvable,
TopoPlan yields a failure.

5.1 Pre-processing
First of all, there is a pre-processing phase for our algorithm
in which each action is associated with the state variable it af-
fects, the value of its pre- and post-condition, and its prevail-
conditions. (P) and (U) allow the use of the post-condition
of each action as an identifier (ID) for creating a hashing ta-
ble. Let vi ∈ M, p ∈ Dvi

, a ∈ A : apvi
identifies a

iff post(a) = (vi = p). We also created two sets of pre-
decessors: Npre(a) = {b | (b, a) ∈ Epre(A)} is the set of
predecessors that establish the pre-condition of a. Due to (P),
this set is a singleton. Nprv(a) = {b | (b, a) ∈ Eprv(A)}
is the set of predecessors that establish the defined prevail-
conditions of a. Eventually, if |A(vi)| = |Dvi |−1, then there
is exactly one ID that identifies a ghost action. A ghost ac-
tion is an action with an ID but that does not exist in the action
set. The concatenation of Table 1 and Table 2 is an example
of this pre-processing applied to the Horse Breeder.

The post-uniqueness does not mean pre-uniqueness. For
example, the Horse Breeder’s actions FillHorseFeeder and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5433

Procedure 2 DFSTopo(apvi
,D, ED, s0,∆)

Input: apvi
, a yellow action affecting vi with the value p ∈

Dvi
; s0 ∈ S; ∆, a linear sequence of green actions.

Output: apvi
is colored in green once all its neighbors have

been topologically sorted; It is then enqueued to ∆.
1: Color(apvi

)← blue
2: for aqvj

∈ ED(a
p
vi
){i.e. (aqvj

, apvi
) ∈ ED} do

3: if aqvj
/∈ Npre(a

p
vi
)∨apvi

is not the first action to modify
s0[vi] then

4: if Color(aqvj
) = blue then fail {Cycle spotted.}

5: end if
6: if Color(aqvj

) = yellow then
7: DFSTopo(aqvj

,D, ED, s0,∆)
8: end if
9: end if

10: end for
11: Color(apvi

)← green; ∆← ∆+ {apvi
};

TakeHaystack are post-unique but both have the same pre-
condition. TopoPlan plans backwards to benefit from the
post-uniqueness, but we gave actions a pointer, called Next,
that TopoPlan will dynamically set (1.6, 1.15) and use (3.20,
3.23, 3.24) while planning to refer in constant time to the suc-
cessor of an action in a chain5.

Eventually, each action can have four different colors:
(white) the action is not in the solution plan, (yellow) the ac-
tion is in the solution plan, (blue) the action is being topolog-
ically sorted, (green) the action is topologically sorted.

5.2 How TopoPlan Works
According to Theorems 1, 3 and 4, solvable instances of a
SAS-PUC0, SAS-PUCS

2 or SAS-PUC∗
2 problem are solved

by a minimal solution plan that respects our 3rd assumption.
We previously explained that such action plans are composed
of chains of actions. The strategy of our algorithm, TopoPlan,
is therefore to find and create every required chain of actions,
then to order the actions of these chains via their post-prevail
dependencies. The building of the chains is done backwards
by the procedure BuildChain (3.4, 3.15 and 3.21). The post-
prevail orders are done by browsing each action a colored
yellow by BuildChain (3.9, a is therefore in a chain) and by
looking after the predecessors of a via Nprv(a) (3.10).

Due to the fact that we work with totally defined start and
goal states, and due to the shape of a domain-action graph
with (P) and (U) actions, i.e. a directed tree with a (possi-
bly empty) unique cycle (cf. Lemma 1), a chain of actions
derived from this graph that respects our 3rd assumption can
only have 3 different forms. The first form (σ1) consists of
a unique path from the start value to the goal value. For
instance with the Horse Breeder, chainv0

(0, 2) = ⟨a2, a3⟩
and chainv2

(0, 2) = ⟨a6, a7⟩ are of the form of (σ1). In
our algorithm, these chains are built during Phase 1 (3.2 to
3.6) by the BuildChain procedure (3.4) for each state vari-
able whose value in the start and goal states is different. The

5We refer to the procedures with the notation (procedure.line).

Procedure 3 TopoPlan(M,A, s0, s⋆)
Input/Output: (Definition 8). Parameters: D, T , two yel-
low action sets; EDT , an order set for the actions of D ∪ T .

1: ∆← ∅; D ← ∅; T ← ∅; EDT ← ∅
2: for vi ∈M do {Phase 1}
3: if s0[vi] ̸= s⋆[vi] then
4: BuildChain(vi, s0[vi], s⋆[vi],D, EDT ,A)
5: end if
6: end for
7: if D = ∅ then return ∅ {s0 and s⋆ are equal.}
8: end if
9: for apvi

∈ D ∪ T do {Phase 2}
10: for aqvj

∈ Nprv(a
p
vi
) do

11: if q ̸= s0[vj] then
12: if aqvj

/∈ A then fail
13: end if
14: if Color(aqvj

) = white then
15: BuildChain(vj , s0[vj], q, T , EDT ,A)
16: end if
17: EDT ← EDT ∪ {(aqvj

, apvi
)}

18: end if
19: if q ̸= s⋆[vj] then
20: if Next(aqvj

) = ∅ then
21: BuildChain(vj , q, s0[vj], T , EDT ,A)
22: end if
23: if prv(Next(aqvj

))[vi] ̸= p then
24: EDT ← EDT ∪ {(apvi

,Next(aqvj
))}

25: end if
26: end if
27: if q = s0[vj]∧ aqvj

∈ Cycle(vj)∧ Cycle(vj) is con-
cerned by (C∗

2) then
28: EDT ← EDT ∪ {(a

s0[vj]
vj , apvi

)}
29: end if
30: end for
31: end for
32: for a ∈ D ∪ T do {Phase 3}
33: if Color(a) = yellow then
34: DFSTopo(a,D ∪ T , EDT , s0,∆)
35: end if
36: end for
37: return ∆

second form (σ2) consists of the unfolding of the domain-
action graph cycle. It happens when the start value is equal
to the post-condition of one of the two actions inside that
cycle and the other action of the cycle is requested to solve
the problem instance. This action chain (σ2) therefore leaves
and returns to the start value6. For instance with the Horse
Breeder, chainv1

(0, 0) = ⟨a5, a4⟩ is of the form of (σ2).
These chains can be built during Phase 2 (3.9 to 3.31). In
this phase, actions instantiated in a chain are ordered in re-
lation to each other according to their post-prevail depen-
dencies (3.17, 3.24 and 3.28). But some requested actions

6It can be highlighted that if the cycle is unfolded more than
once, the 3rd assumption is no longer respected.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5434

may not be instantiated yet because they are in a domain-
action graph cycle. The two BuildChain procedures (3.15)
and (3.21) thus build the missing chains. Let consider the
Horse Breeder instance Ihb = (M,A, ⟨0, 0, 0⟩, ⟨2, 0, 2⟩), at
the end of Phase 1, the chains chainv0

(0, 2) = ⟨a2, a3⟩ and
chainv2

(0, 2) = ⟨a6, a7⟩ are built but chainv1
(0, 0) = ⟨⟩. Yet

a5 is required by a6 and a7, so the first BuildChain procedure
(3.15) builds chainv1

(0, 1) = ⟨a5⟩ and the other one (3.21)
builds chainv1

(1, 0) = ⟨a4⟩. The concatenation of the two
results in chainv1(0, 0) = ⟨a5, a4⟩ which is a chain of the
form of (σ2). The last possible form (σ3) is the concatena-
tion of (σ2) followed by (σ1). In the Horse Breeder problem,
it can happen for the state variable v0: if s0[v0] = 1 and
s⋆[v0] = 2, then chainv0

(1, 2) = ⟨a1, a2, a3⟩ is feasible such
that: σ1 = ⟨a3⟩ and σ2 = ⟨a1, a2⟩. It should be noticed that,
in this case, the first action of (σ1) and the first action of (σ2)
both have their pre-condition equal to the start value, hence
the second stop condition (2.3) in the DFSTopo procedure.
Eventually, in Phase 3 (3.32 to 3.36), TopoPlan topologically
sorts the partially ordered sequence of actions ⟨D ∪T , EDT ⟩
returned by Phase 2.

Theorem 5. TopoPlan satisfies its specification so it is cor-
rect and complete.

Proof. (Idea of the proof) We prove that the three phases of
TopoPlan are correct and complete. To do so, we define a
loop invariant for each phase and we show that each loop ter-
minates.

Theorem 6 (Time Complexity). TopoPlan worst-case time
complexity is O(|A| + |EA|), with A the set of actions and
EA the set of orders between the actions of A.

Proof. We explained that the BuildChain calls (3.4), (3.15)
and (3.21) never build the same chain of actions: (3.4) builds
σ1 chains, (3.15) and (3.21) builds two different parts of
σ2. This is also ensured by the if statements (3.14), (3.20)
and (1.11): they check the BuildChain procedure only builds
chains with white actions, i.e. actions that are not yet in the
plan. It results D ∩ T = ∅. It also results that, between (3.2)
and (3.31) the three BuildChain calls execute O(|D ∪ T |) ≡
O(|A|) instructions: |D| instructions in Phase 1 (3.2 to 3.6)
plus |T | instructions in Phase 2 (3.9 to 3.31).

Now, for the two for loops (3.9) and (3.10), assume that
all the necessary chains have been built, then the core of the
second for loop (from 3.11 to 3.29) has a constant cst number
of instructions. The first for loop (3.9) only take 1 instruction
to execute. It results the formula:∑

a∈D∪T
(1 +

∑
b∈Nprv(a)

cst) =
∑
a∈A

(1 + cst ·
∑

b∈Nprv(a)

1)

=|A|+ cst ·
∑

(b,a)∈Eprv(A)

1

=O(|A|+ |Eprv(A)|) (1)

Eventually, at the end of Phase 2 (3.31), TopoPlan has exe-
cuted O(|A|) +O(|A|+ |Eprv(A)|) ≡ O(|A|+ |Eprv(A)|)
instructions. Phase 3 (3.32 to 3.36), performs a topologi-
cal sort to sort the non-linear plan ⟨D ∪ T , EDT ⟩. It takes

O(|D ∪ T | + |EDT |) ≡ O(|A| + |EA|) instructions which
dominates the whole.

Theorem 7 (Space Complexity). TopoPlan requires at most
O(|A|2) space.

Proof. A (PU) action a takes O(|M|) space: the pre- and
post-condition can be reduced to one variable each, plus a
variable for the ID; the set Npre(a) is a singleton due to re-
strictions (P) and (U); the prevail-conditions, on the contrary,
are stored on a list of |M| elements and the set Nprv(a) has
at most |M| elements. Then, the hashing table that stores IDs
takes O(|A|) space. Finally, the pre-processing phase creates
an action graph G which takes at most O(|A|2) space: The
set of actions takes O(|A|) space and each action can have at
most O(|A|) predecessors. Hence O(|A|2), which dominates
the whole.

6 Experiments
We have carried out experiments on abstract settings to test
TopoPlan. Given the description of three different realis-
tic SAS-PUC∗

2 problems (Different NPCs from Red Dead
Redemption 2 (including the Horse Breeder), citizens from
Assassin’s Creed: Origins [Ubisoft, 2017] and the acquisi-
tion machines from Horizon Zero Dawn [Games, 2017]), we
wanted to test how many of these NPCs can get a plan in
real time by our C++ implementation of TopoPlan? With the
following configuration: AMD Ryzen™ 7 2700X (8-Core)
CPU (3.7GHz), 32Gb of RAM and Windows 10 (64 bits),
TopoPlan was able to provide more than 3.000.000 plans with
up to 10 actions in it in less than 1.67ms, which is 10% of the
time between two frames in a 60FPS video game7.

7 Conclusion
Based on three assumptions made by studying commercial
video games using planning systems, we have introduced
three new tractable classes of planning problems (SAS-PUC0,
SAS-PUCS

2 and SAS-PUC∗
2) that allow the design of realis-

tic NPCs. The instances of these problems are all solvable
by a correct, complete and a linear-time planning algorithm,
called TopoPlan, that we provide in this paper.

We used the SAS formalism which imposes the start and
the goal states to be totally defined. In a future work,
we can study other structures such as SAS∗ [Jonsson and
Bäckström, 1998] that allows s⋆ to be partially-defined, or
SAS+ [Bäckström, 1992] that allows both s0 and s⋆ to be par-
tially defined. Such structures may be easier to use to define
NPC problem instances for example. Among our assump-
tions are the post-uniqueness (P), although it is an acceptable
restriction to create NPC planning problems, as shown in this
paper, it remains a restriction GOAP developers would like
to relieve. Our new structural restriction defined in this paper
can surely help to study how (P) can be relieved to create new
tractable classes of problems without (P).

7More details can be found in [Prévost et al., 2022] about the
benchmarks, the experiments and the results. There is no mention
of the classes SAS-PUC0, SAS-PUCS

2 and SAS-PUC∗
2 in this paper

which, instead, groups them under the class SAS-PUT1, where T1 is
the concatenation of T (totally-ordered) and T1 (our 3rd assumption).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5435

Acknowledgments
Musical thanks to Aline Hufschmitt for her reviews and con-
stant support during this work.

We also would like to thank Gabriel Robert and Simon Gi-
rard, AI experts from Ubisoft, for sharing their game devel-
opment experience which definitely helped us to define our
assumptions and create our NPC models.

Eventually, we would like to express our sincere gratitude
to Peter Jonsson and Aurélie Beynier, the reviewers of Guil-
laume’s thesis, for their invaluable appreciation and their en-
couragement to publish in this conference.

References
[Bäckström, 1992] Christer Bäckström. Computational

Complexity of Reasoning about Plans. PhD thesis, Depart-
ment of Computer and Information Science, Linköping
University, september 1992.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 69(1-2):165–204, 1994.

[Conway, 2015] Chris Conway. GOAP in Tomb Raider.
https://youtu.be/gm7K68663rA?t=1200, March 2015. Ac-
cessed on May 12th, 2023.

[Cooper et al., 2012] Martin Cooper, Frédéric Maris, and
Pierre Régnier. Tractable monotone temporal planning.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 22, pages 20–28,
2012.

[DefendTheHouse, 2018] DefendTheHouse. NPC
daily life in Read Dead Redemption 2.
https://youtu.be/MrUJJgppMn4?t=434, November 2018.
Accessed on May 12th, 2023.

[Domshlak and Brafman, 2002] Carmel Domshlak and Ro-
nen Brafman. Structure and complexity in planning with
unary operators. In Proceedings of the 6th International
Conference on Artificial Intelligence Planning Systems,
pages 34–43. AAAI Press, 2002.

[Games, 2017] Guerilla Games. Horizon Zero Dawn.
https://www.guerrilla-games.com/games, December 2017.
Accessed on May 12th, 2023.

[Girard, 2021] Simon Girard. Postmortem:
AI action planning on Assassin’s Creed
Odyssey and Immortals Fenyx Rising.
https://www.gamedeveloper.com/programming/postmortem-
AI-action-planning-on-Assassins-Creed-Odyssey-and-
Immortals-Fenyx-Rising-, November 2021. Accessed on
May 12th, 2023.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Higley, 2015] Peter Higley. GOAP at monolith productions.
https://youtu.be/gm7K68663rA, March 2015. Accessed
on May 12th, 2023.

[Horti, 2017] Samuel Horti. Why F.E.A.R.’s AI is still
the best in first-person shooters – Flank, cover and run
away. https://www.rockpapershotgun.com/why-fears-ai-
is-still-the-best-in-first-person-shooters, April 2017. Ac-
cessed on May 12th, 2023.

[Jacopin, 2014] Éric Jacopin. Game AI planning analytics:
The case of three first-person shooters. In Proceedings of
the 10th AIIDE, pages 119–124. AAAI Press, 2014.

[Jonsson and Bäckström, 1998] Peter Jonsson and Christer
Bäckström. State-variable planning under structural re-
strictions: algorithms and complexity. Artificial Intelli-
gence, 100(1-2):125–176, April 1998.

[Monolith Productions, 2006] Monolith Pro-
ductions. F.E.A.R. public tools.
https://www.gamefront.com/games/f-e-a-r/file/f-e-a-r-
v1-08-sdk, June 2006. Accessed on May 12th, 2023.

[Ocampo, 2007] Jason Ocampo. F.E.A.R. review.
https://www.gamespot.com/reviews/fear-review/1900-
6169771/, April 2007. Accessed on May 12th, 2023.

[Orkin, 2003] Jeff Orkin. Applying goal-oriented action
planning to games. In Steve Rabin, editor, AI Game Pro-
gramming Wisdom 2, volume 2, chapter 3.4, pages 217–
227. Charles River Media, 2003.

[Orkin, 2005] Jeff Orkin. Agent architecture considerations
for real-time planning in games. In Proceedings of the 1st

AIIDE, pages 105–110, 2005.
[Prévost et al., 2022] Guillaume Prévost, Stéphane Cardon,

Éric Jacopin, Tristan Cazenave, and Christophe Guettier.
Planning for millions of NPCs in real-time. In 2022 IEEE
Symposium Series on Computational Intelligence (SSCI),
pages 330–336. IEEE, 2022.

[Ubisoft, 2017] Ubisoft. Assassin’s Creed: Origins.
https://store.ubi.com/fr/assassin-s-creed-origins-all-
games, Octobre 2017. Accessed on May 12th, 2023.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5436

	Introduction
	Background
	SAS-PU Planning Problems
	The Classes of Problems SAS-PUCk
	Topological Planning
	Pre-processing
	How TopoPlan Works

	Experiments
	Conclusion

