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Abstract
Interpretability of reinforcement learning policies
is essential for many real-world tasks but learn-
ing such interpretable policies is a hard problem.
Particularly, rule-based policies such as decision
trees and rules lists are difficult to optimize due
to their non-differentiability. While existing tech-
niques can learn verifiable decision tree policies,
there is no guarantee that the learners generate
a policy that performs optimally. In this work,
we study the optimization of size-limited decision
trees for Markov Decision Processes (MPDs) and
propose OMDTs: Optimal MDP Decision Trees.
Given a user-defined size limit and MDP formula-
tion, OMDT directly maximizes the expected dis-
counted return for the decision tree using Mixed-
Integer Linear Programming. By training opti-
mal tree policies for different MDPs we empiri-
cally study the optimality gap for existing imitation
learning techniques and find that they perform sub-
optimally. We show that this is due to an inher-
ent shortcoming of imitation learning, namely that
complex policies cannot be represented using size-
limited trees. In such cases, it is better to directly
optimize the tree for expected return. While there
is generally a trade-off between the performance
and interpretability of machine learning models, we
find that on small MDPs, depth 3 OMDTs often
perform close to optimally.

1 Introduction
Advances in reinforcement learning using function approxi-
mation have allowed us to train powerful agents for complex
problems such as the games of Go and Atari [Schrittwieser et
al., 2020]. Policies learned using function approximation of-
ten use neural networks, making them impossible for humans
to understand. Therefore reinforcement learning is severely
limited for applications with high-stakes decisions where the
user has to trust the learned policy.

Recent work has focused on explaining opaque models
such as neural networks by attributing prediction importance
to the input features [Ribeiro et al., 2016; Lundberg and Lee,
2017]. However, these explanation methods cannot capture

the full complexity of their models, which can mislead users
when attempting to understand the predictions [Rudin, 2019].
Concurrently, there has been much work on interpretable ma-
chine learning in which the model learned is limited in com-
plexity to the extent that humans can understand the complete
model. Particularly decision trees have received much atten-
tion as they are simple models that are capable of modeling
non-linear behavior [Lipton, 2018].

Decision trees are difficult to optimize as they are non-
differentiable and discontinuous. Previous works have used
different strategies to overcome the hardness of optimiz-
ing trees: using assumptions or relaxations to make the
trees differentiable [Gupta et al., 2015; Silva et al., 2020;
Likmeta et al., 2020], reformulating the MDP into a meta-
MDP that exclusively models decision tree policies [Topin et
al., 2021] or extracting trees from a complex teacher [Bastani
et al., 2018]. While these methods are increasingly success-
ful in training performant trees they do not offer guarantees
on this performance.

Our work takes a first step at bridging the gap between
the fields of optimal decision trees and reinforcement learn-
ing. Existing formulations for optimal decision trees assume
a fixed training set with independent samples. This cannot
be used in a dynamic setting where actions taken in one state
influence the best actions in others. Instead, we formulate the
problem of solving a Markov Decision Process (MDP) using
a policy represented by a size-limited decision tree (see Fig-
ure 1) in a single MILP. We link the predictions of the deci-
sion tree policy to the state-action frequencies in the dual lin-
ear program for solving MDPs. The dual allows us to reason
over policies explicitly, which results in a more efficient for-
mulation. Our formulation for Optimal MDP Decision Trees,
OMDTs, optimizes a decision tree policy for a given MDP
and a tree size limit. OMDT produces increasingly perfor-
mant policies as runtime progresses and eventually proves the
optimality of its policy under the size constraint.

Existing methods for training size-limited decision trees in
reinforcement learning such as VIPER [Bastani et al., 2018]
make use of imitation learning, where a student tries to learn
from a powerful teacher policy. We compare the performance
of OMDT and VIPER on a variety of MDPs. Interestingly,
we show that, when training interpretable size-limited trees,
imitation learning performs significantly worse as capacity
of the learned decision tree is wasted on parts of the state
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space that are never reached by the policy. Moreover, VIPER
cannot prove optimality even if it identifies the optimal so-
lution. Regarding the performance-interpretability trade-off,
we show that decision trees of 7 decision nodes are enough
to perform close to unrestricted optimal policies in 8 out of
13 environments. Such trees are orders of magnitude smaller
than size-unrestricted trees created by methods that replicate
the unrestricted policy such as dtcontrol [Ashok et al., 2020].

2 Background
2.1 Decision Trees
Decision trees [Breiman et al., 1984; Quinlan, 1986] are sim-
ple models that execute a series of comparisons between a
feature value and a threshold in the nodes to arrive at a leaf
node that contains the prediction value. Due to their sim-
ple descriptions, size-limited decision trees are easy to under-
stand for humans [Molnar, 2020]. Particularly, size-limited
decision trees admit simulatability [Lipton, 2018]: humans
can use the model to make predictions by hand in reasonable
time and decomposability: humans can understand each in-
dividual aspect of the model. The method proposed in this
paper, OMDT, also offers algorithmic transparency: we can
trust the learning algorithm to produce models that fulfill cer-
tain qualities such as global optimality. Therefore decision
trees are an attractive model class when interpretable policies
are required.

2.2 Markov Decision Processes
Markov Decision Processes (MDPs) [Bellman, 1957] are the
processes underlying reinforcement learning problems. An
MDP models a decision-making process in a stochastic envi-
ronment where the agent has some control over the state tran-
sitions. An MDP can be described by a tuple ⟨S,A, P,R⟩,
where S contains all states, A the set of actions an agent can
take, Ps,s′,a the probabilities of transitioning from state s to
state s′ when taking action a, and Rs,s′,a the reward the agent
receives when going from state s to state s′ under action a.
When solving an MDP, we want to find a policy π : S → A
such that, when executing its actions, the expected sum of
rewards (the return) is maximized. In this work we define
policies (w.l.o.g.) as a mapping from states and actions to
an indicator for whether or not action a is taken in state s:
π : S ×A → {0, 1}.

Figure 1: Depth 2 OMDT on the stochastic Frozenlake 4x4 envi-
ronment. OMDT proves that no better depth 2 decision tree policy
exists (discounted return 0.37 with γ = 0.99).

Value Iteration
When solving MDPs we generally discount future rewards in
each step by a user-defined value of 0 < γ < 1 to ensure
that the optimal policy will generate a finite return. The most
common approach for optimally solving MDPs is by using
one of many dynamic programming variants. In this work,
we focus on value iteration. Value iteration finds a value Vs

for each state s that holds the expected discounted return for
taking optimal greedy actions starting from that state. These
values can be found by iteratively updating Vs until the Bell-
man equation [Bellman, 1957]

Vs =
∑
s′

Ps,s′,aRs,s′,a +
∑
s′

γPs,s′,aVs′

is approximately satisfied. We will refer to this optimal so-
lution found with value iteration as the unrestricted optimal
solution as the computed policy can be arbitrarily complex.

3 Related Work
3.1 Learning Decision Tree Policies
Decision trees have appeared at various parts of the reinforce-
ment learning pipeline [Glanois et al., 2021] for example in
modeling the Q-value function or in modeling the policy. In
this work, we are interested in modeling the policy with a de-
cision tree as this gives us an interpretable model that we can
directly use at test time.

Decision trees make predictions using hard comparisons
between a single feature value and a threshold. The learned
models can be discontinuous and non-differentiable, which
makes optimization with gradients challenging. One line of
research focuses on overcoming the non-differentiability of
decision trees to allow for the use of gradient-based optimiza-
tion methods. Gupta et al. [2015] train decision trees that
contain linear models in their leaves that can be optimized
with gradients but this results in models that are hard to inter-
pret. Silva et al. [2020] first relax the constraints that decision
nodes select one feature, that leaves predict one value, and
that thresholds are hard step functions. Such relaxed trees are
differentiable and can be trained with policy gradient meth-
ods. By discretizing the relaxed tree they end up with an in-
terpretable model that approximates the relaxed model. How-
ever, the relaxed tree can get stuck in local minima and the
discretized tree offers no performance guarantees. Likmeta
et al. [2020] consider decision tree policies for autonomous
driving tasks. To make the decision tree parameters easily
optimizable, they fix the tree structure along with the fea-
tures used in the decision nodes. By learning a differentiable
hyper-policy over decision tree policies they are then able to
approximately optimize the models with gradient descent.

With Iterative Bounding MDPs, Topin et al. [2021] refor-
mulate the underlying MDP into one where the agent implic-
itly learns a decision tree policy. The method can be thought
of as a tree agent learning to take actions that gather informa-
tion and a leaf agent learning to take actions that work well
given the gathered information of the tree agent. By reformu-
lating the MDP, its decision tree policy can be optimized us-
ing differentiable function approximators and gradient-based
optimizers.
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In a separate line of work, the goal is to represent a specific,
usually optimal, policy as a decision tree that is unbounded
in size. These techniques have been developed for policies
with a single goal state [Brázdil et al., 2015] and as a tool for
general controllers [Ashok et al., 2020]: dtcontrol.

Imitation Learning (VIPER)
Instead of directly optimizing a decision tree, one can also
try to extract a decision tree policy from a more com-
plex teacher policy using imitation learning. These imi-
tation learning algorithms turn reinforcement learning into
a supervised learning problem for which we have success-
ful decision tree learning algorithms [Breiman et al., 1984;
Quinlan, 1986]. DAGGER [Ross et al., 2011] (dataset aggre-
gation) is an algorithm that iteratively collects traces from the
environment using its current policy and trains a supervised
model on the union of the current and previous traces. Since
DAGGER only uses information on the predicted action of
the teacher policy, it ignores extra information on Q-values
that modern Q-learning algorithms provide. VIPER [Bastani
et al., 2018] focuses on learning decision trees and improves
on DAGGER by including Q-value information into the su-
pervised learning objective. While VIPER generates signif-
icantly smaller decision trees than DAGGER, we will show
that these trees are not yet optimal with respect to the trade-
off in size and performance.

3.2 Optimal Decision Trees
The standard algorithms for training decision trees in su-
pervised learning are greedy heuristics and can learn trees
that perform arbitrarily poorly [Kearns, 1996]. Therefore
in recent years there has been increasing interest in the de-
sign of algorithms that train decision trees to perform op-
timally. Early works formulated training decision trees for
classification and regression and used methods such as dy-
namic programming to find optimal decision trees [Nijssen
and Fromont, 2007]. Mixed-Integer Linear Programming
based formulations [Bertsimas and Dunn, 2017; Verwer and
Zhang, 2017] have since become popular. These methods are
flexible and have been extended to optimize performance un-
der fairness constraints [Aghaei et al., 2019] or directly op-
timize adversarial robustness [Vos and Verwer, 2022]. Gen-
erally, the size of the tree is limited to provide regulariza-
tion and aid interpretability, then the solver is tasked with
finding a decision tree that maximizes training performance
given the size limits. The field has since worked on in-
creasingly efficient optimization techniques using a variety of
methods such as MILP [Verwer and Zhang, 2019], dynamic
programming [Demirović et al., 2020; Lin et al., 2020], con-
straint programming [Verhaeghe et al., 2020], branch-and-
bound search [Aglin et al., 2020; Aglin et al., 2021] and
Boolean (maximum) satisfiability [Narodytska et al., 2018;
Hu et al., 2020; Schidler and Szeider, 2021].

4 OMDT: Optimal MDP Decision Trees
As a first step in bridging the gap between optimal decision
trees for supervised and reinforcement learning, we intro-
duce OMDTs: Optimal MDP Decision Trees. OMDT is a
Mixed-Integer Linear Programming formulation that encodes

Figure 2: Overview of OMDT’s formulation. We maximize the dis-
counted return in an MDP under the constraint that the policy is
represented by a size-limited decision tree.

the problem of identifying a decision tree policy that achieves
maximum discounted return given a user-defined MDP and
tree size limit. Our formulation can be solved using one of
many available solvers, in this work we use the state-of-the-
art solver Gurobi1.

Intuitively the OMDT formulation consists of two parts:
a (dual) linear programming formulation for solving MDPs
and a set of constraints that limits the set of feasible policies
to decision trees. Figure 2 summarizes OMDT’s formulation
in natural language. All the notation used in OMDT is sum-
marized in Table 1.

4.1 Constraints

It is well known that MDPs can be solved using linear pro-
gramming, the standard linear program is [Puterman, 2014]:

min.
∑
s

p0(s)Vs

s.t. Vs −
∑
s′

γPs,s′,aVs′ ≥
∑
s′

Ps,s′,aRs,s′,a, ∀s, a

It is not easy to efficiently add constraints to this formula-
tion to enforce the policies to be size-limited decision trees
because it reasons abstractly over policies, i.e. by reasoning
over the policy’s state values. To create a formulation for de-

1https://www.gurobi.com/
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cision tree policies, we resort to the standard dual program:

max.
∑
s

∑
a

xs,a

∑
s′

Ps,s′,aRs,s′,a (1)

s.t.
∑
a

xs,a−
∑
s′

∑
a

γPs′,s,axs′,a = p0(s), ∀s (2)

This program uses a measure xs,a of how often the agent
takes action a in state s. This allows us to add efficient con-
straints that control the policy of the agent. Intuitively the
program maximizes the rewards

∑
s′ Ps,s′,aRs,s′,a weighted

by this xs,a. The constraints enforce that the frequency by
which a state is exited is equal to the frequency that the agent
is initialized in the state p0(s) or returns to it following the
discounted transition probabilities γPs,s′,a.

To enforce the policy to be a size-limited decision tree we
will later constrain the xs,a values to only be non-zero when
the agent is supposed to take action a in state s according to
a tree policy. We will first introduce the variables and con-
straints required to model the decision tree constraints.

Modeling Decision Nodes
Our decision tree formulation is roughly based on OCT [Bert-
simas and Dunn, 2017] and ROCT [Vos and Verwer, 2022],
MILP formulations for optimal (OCT) and robust (ROCT)
classification trees. In these formulations, the shape of the de-
cision tree is fixed. Like ROCT, we describe a decision node
m by binary threshold variables bm,j,k, indicating whether
the kth threshold of feature j is chosen.2 Unlike ROCT, we
only allow one of these variables to be true over all features
and possible thresholds:∑

j

∑
k

bm,j,k = 1, ∀m (3)

We follow paths through the tree to map observations to
leaves. In each node m we decide the direction ds,m that the
observation of state s takes (left=0 or right=1 of the threshold
k). ROCT uses two variables per state-node pair to model di-
rections ds,m to account for perturbations in the observations.
Since we are optimizing for an MDP without uncertainty in
the observations we only require one variable ds,m per state-
node pair.

We further improve over ROCT by determining ds,m us-
ing only one constraint per state-node pair instead of a sep-
arate constraint per state-node-feature triple. For this, we
pre-compute a function side(s, j, k) which indicates for each
feature-threshold pair (j, k) and every observation s the side
of k that s is on for feature j (left=0 or right=1), i.e. whether
Xsj > k holds. This formulation is not limited to the predi-
cates ‘≤’ or ‘>’ however and can be easily extended to other
predicates in the pre-computation of side(s, j, k). The follow-
ing then forces the direction ds,m to be equal to the direction
of the indicated threshold:

ds,m =
∑
j

∑
k

side(s, j, k) bm,j,k, ∀s,m (4)

2In practice, the possible values for threshold k depends on the
chosen feature j. We do not model this for convenience of notation.

The variables ds,m represent the direction of an observa-
tion’s path at a decision node. Together, the d variables allow
us to follow an observation’s path through the tree which we
use to identify the leaf that it reaches. Important in this for-
mulation, compared to existing binary encodings, is that it
requires no big-M constraints to describe these paths. This
makes the relaxation stronger and therefore the solver gives
much better bounds than using the big-M style formulations
from ROCT.

Modeling Policy Actions
Decision leaves only have one set of binary decision vari-
ables: ct,a encoding whether or not leaf t predicts action a.
We want each leaf to select exactly one action:∑

a

ct,a = 1, ∀t (5)

As mentioned before we can follow an observation’s path
through the tree by using their ds,m path variables. One can
linearize an implication of a conjunction of binary variables
as follows:

x1 ∧ x2 ∧ ... ∧ xn =⇒ y

≡ x1 + x2 + ...+ xn − n+ 1 ≤ y

If an observation reaches leaf t and the leaf predicts action a
then we want to force the policy πs,a to take that action in the
associated state s. Using the aforementioned equivalence we
add the constraint:∑

m∈Al(t)

(1−ds,m) +
∑

m∈Ar(t)

ds,m

+ ct,a − |A(t)| ≤ πs,a, ∀s, a, t (6)

This constraint forces the agent to take the action indicated by
the leaf. To prevent the agent from taking other actions that
were not indicated we force it to only take a single action in
each state (giving a deterministic policy):∑

a

πs,a = 1, ∀s (7)

Now we have indicators πs,a that mark what action is taken
by the agent. To link this back to the MDP linear program-
ming formulation that we use to optimize the policy, we set
the xs,a variables. We need to set xs,a = 0 if πs,a = 0, else
xs,a should be unbounded. We encode this using a big-M
formulation:

xs,a ≤ Mπs,a, ∀s, a (8)
M should be chosen as small as possible, but larger or equal
to the largest value that xs,a can take. We use the fact that we
are optimizing the MDP using discount factor γ to compute
an upper bound on xs,a and set M = 1

1−γ , proof is given in
the appendix.

4.2 Complete Formulation
The runtime of MILP solvers grows worst-case exponentially
with respect to formulation size so it is important to limit the
scale of the formulation. The number of variables in our for-
mulation grows with O(|S||J ||TD|+|A||TL|+|S||A|) which
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Name Kind Description

bm,j,k bin. Tree uses feat. j and threshold k in node m
ct,a bin. Tree selects action a in leaf t
ds,m bin. Observation of s goes left / right in node m
πs,a bin. Policy takes action a in state s

xs,a cont. Frequency of action a taken in state s

Ps,s′,a const. Probability of transition s→s′ with action a
Rs,s′,a const. Reward for transition s→s′ with action a
p0(s) const. Probability of starting in state s
γ const. Discount factor
Xij const. Feature j’s value of observation i
side(s,j,k) const. Side state s is on for thresh. k and feat. j

a ∈ A set Set of actions in MDP
s ∈ S set Set of states in MDP
i=1..|S| set Observation and state indices
j ∈ J set Set of feature indices
k = 1..K set Indices of all possible feature thresholds
m ∈ TD set Set of decision nodes in the tree
t ∈ TL set Set of leaves in the tree
A(t) set Set of ancestors of leaf t
Al(t) set ... that have t in their left path
Ar(t) set ... that have t in their right path

Table 1: Summary of notation used in OMDT.

follows from their indices in Table 1. The number of con-
straints grows with the order O(|S||TD|+|S||A||TL|) as it is
dominated by the constraints that determine ds,m at each node
(Equation 4) and constraints that force πs,a according to the
tree (Equation 6). We summarize OMDT below:

max
∑
s

∑
a

xs,a

∑
s′

Ps,s′,aRs,s′,a (1)

s.t. ∑
a

xs,a −
∑
s′

∑
a

γPs′,s,axs′,a = p0(s), ∀s (2)∑
j

∑
k

bm,j,k = 1, ∀m (3)

ds,m =
∑
j

∑
k

side(s, j, k) bm,j,k, ∀s,m (4)

∑
a

ct,a = 1, ∀t (5)∑
m∈Al(t)

(1−ds,m)+
∑

m∈Ar(t)

ds,m+ct,a−|A(t)| ≤ πs,a, ∀s, a, t (6)

∑
a

πs,a = 1, ∀s (7)

xs,a ≤ Mπs,a, ∀s, a (8)

5 Results
We present experiments comparing the performance of
OMDTs with VIPER and dtcontrol. Viper uses imitation
learning to extract a size-limited decision tree from a teacher

policy and dtcontrol learns an unrestricted tree that exactly
copies the teacher’s behavior. To provide a fair comparison
we have trained VIPER and dtcontrol with an unrestricted
optimal teacher by first solving the MDP with value iteration
and then extracting all Q values, both methods ran with de-
fault parameters. We also implemented and ran experiments
on interpretable Differentiable Decision Trees [Silva et al.,
2020] but excluded these models from our analysis as they
did not outperform a random policy. The full code for OMDT
and our experiments can be found on GitHub3. All of our ex-
periments ran on a Linux machine with 16 Intel Xeon CPU
cores and 72 GB of RAM total and used Gurobi 10.0.0 with
default parameters. Each method ran on a single CPU core.

5.1 Environments
For comparison we implemented 13 environments based on
well-known MDPs from the literature, the sizes of these
MDPs are given in Table 2. All MDPs were pre-processed
such that states that are unreachable from the initial states are
removed. We briefly describe the environments below but re-
fer to the appendix for complete descriptions.

In 3d navigation the agent controls a robot in a 5×5×5
world and attempts to reach from start to finish with each
voxel having a chance to make the robot disappear. black-
jack is a simplified version of the famous casino game where
we assume an infinite-sized deck and only the actions ‘skip’
or ‘hit’. frozenlake is a grid world where the agent attempts to
go from start to finish without falling into holes, actions are
stochastic so the agent will not always move in the intended
direction (e.g. the action ‘up’ will only not send the agent
‘down’). inventory management models a company that has
to decide how many items to order to maximize profit while
minimizing cost. system administrator refers to a computer
network where computers randomly crash and an administra-
tor has to decide which computer to reboot. A crashed com-
puter has an increased probability of crashing a neighboring
computer. tictactoe vs random is the well-known game of
tic-tac-toe when played against an opponent that makes ran-
dom moves. In tiger vs antelope the agent attempts to catch
an antelope that randomly jumps away from the tiger in a grid
world. traffic intersection describes a perpendicular intersec-
tion where traffic flows in at different rates and the operator
decides when to switch the traffic lights. xor is an MDP con-
structed with states randomly distributed on a plain, the agent
gets 1 reward for taking the action according to an XOR func-
tion and -1 for a mistake. The XOR problem is notoriously
difficult for greedy decision tree learning algorithms.

5.2 Performance-Interpretability Trade-off
It is often assumed that there is a trade-off in the performance
and interpretability of machine learning models [Gunning and
Aha, 2019], since interpretable models necessarily lack com-
plexity but this assumption is not always true [Rudin, 2019].
We aim to answer whether the performance-interpretability
trade-off occurs in a variety of MDPs by training size-limited
decision trees and comparing their performance to the opti-
mal solutions that were not restricted in complexity. We vi-

3https://github.com/tudelft-cda-lab/OMDT
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normalized return MILP runtime (s)

MDP |S| |A| VIPER OMDT
5 mins.

OMDT
2 hrs. vars. constrs. trees VIPER OMDT

optimal

3d navigation 125 6 1.00 ±.00 .81 ±.10 1.00 ±.00 2,528 7,890 1014 2,090 ±55 315 ±89
blackjack 533 2 1.00 ±.00 1.00 ±.00 1.00 ±.00 6,187 14,406 1014 2,248 ±27 408 ±85
frozenlake 4x4 16 4 .67 ±.00 .96 ±.00 .96 ±.00 328 735 1010 74 ±3 2 ±0
frozenlake 8x8 64 4 .83 ±.06 .95 ±.00 .95 ±.00 1,104 2,895 1013 178 ±5 98 ±30
frozenlake 12x12 144 4 .19 ±.09 .63 ±.03 .68 ±.04 2,360 6,495 1014 196 ±38 timeout
inv. management 101 100 1.00 ±.00 .37 ±.37 1.00 ±.00 22,414 91,824 1030 2,254 ±86 2,533 ±540
sysadmin 1 256 9 .88 ±.01 .85 ±.01 .92 ±.00 6,584 23,055 1014 2,265 ±37 timeout
sysadmin 2 256 9 .59 ±.00 .23 ±.06 .58 ±.01 6,584 23,055 1014 2,257 ±7 timeout
sysadmin tree 128 8 .57 ±.04 .48 ±.07 .70 ±.09 3,106 10,383 1013 2,136 ±72 timeout
tictactoe vs rand. 2,424 9 .80 ±.01 -.06 ±.00 .43 ±.18 61,239 218,175 1020 21 ±3 timeout
tiger vs antelope 626 5 -.10 ±.02 -.17 ±.19 .52 ±.03 10,850 33,819 1015 490 ±243 timeout
traffic intersec. 361 2 .98 ±.00 .99 ±.00 1.00 ±.00 4,127 9,762 1011 2,188 ±121 1,219 ±177
xor 200 2 .34 ±.06 1.00 ±.00 1.00 ±.00 5,016 5,415 1021 1,999 ±123 50 ±0

Table 2: Comparison of depth 3 trees trained with VIPER and OMDT on 13 MDPs, experiments were repeated 3 times, means and standard
errors are given. All runs were limited to 2 hours. OMDT solves some MDPs in 5 minutes but significantly improves when given 2 hours
of runtime. While 2 hours are enough for OMDT to achieve greater or equal scores to VIPER in most MDPs, OMDT needs more time to
outperform VIPER on the large tictactoe MDP. OMDT was able to identify the optimal size-limited tree and prove its optimality on 7 MDPs.

sualize the normalized return of depth 3 OMDTs and unre-
stricted dtcontrol trees in Figure 3. Returns were normalized
such that 0 corresponds to a random policy and 1 to an opti-
mal one. Since small deterministic decision tree policies are
limited in the number of distinct actions an optimal tree can
perform worse than a random policy. Experiments were re-
peated 3 times and runs were limited to 2 hours. We consider
an OMDT optimal when the relative gap between its objective
and bound is proven to be less than 0.01%.

While it is debatable what the precise size limits are for de-
cision trees to be interpretable [Lipton, 2018] we use trees of
depth 3 which implies that a tree has at most 8 leaves. Note
that this also limits the number of distinct actions in the pol-
icy to 8. We find that in all environments, OMDTs of depth
3 improve on the performance of random policies, and in 8
out of 13 environments the policy gets close to optimal. De-
cision trees trained with dtcontrol always achieve the optimal
normalized return of 1 since they exactly mimic the optimal
policy. However, dtcontrol produces large trees that are not
interpretable to humans. When run on 3d navigation for ex-
ample, dtcontrol produces a tree of 68 decision nodes which
is very complex for humans to understand. OMDT produces
a tree of 7 decision nodes which performs equally well.

Overall, our results demonstrate that for small environ-
ments there is no performance-interpretability trade-off: sim-
ple policies represented by size-limited trees perform approx-
imately as well as the unrestricted optimal policy.

5.3 Direct Optimization versus Imitation Learning
The above conclusion holds when the policy is learned to op-
timality under the constraint that it has to be a small tree, e.g.,
using OMDT. Techniques such as VIPER enforce the size
constraint but aim to imitate the unrestricted optimal policy.
We now show that this comes at a cost when the unrestricted
policy is too complex to be represented using a small tree.
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Figure 3: (top) Normalized return and bounds for OMDT trees of
depth 3, optimal policies score 1 while uniform random policies
score 0. (bottom) Log of tree sizes for OMDT (maximum depth
3) and dtcontrol. Dtcontrol always produces an optimal policy but
the trees are orders of magnitude larger than OMDT.

VIPER trains trees by imitating high Q values of the op-
timal policies while OMDT directly maximizes expected re-
turn. In Table 2 we list the normalized return (0 for random
policies, 1 for optimal policies) for VIPER and OMDT with
respectively 5 minutes and 2 hours of runtime. After 5 min-
utes OMDT improves performance over random policies but
often needs more time to improve over VIPER. After 2 hours
OMDT’s policies win on 11 out of 13 environments. For
instances with large state space such as tictactoe vs random
OMDT needs more than 2 hours to improve over VIPER.
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(b) OMDT (depth 3): 66% success
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(c) VIPER (depth 3): 11% success

Figure 4: Paths taken on 10,000 Frozenlake 12x12 runs. The agent starts at (0, 0) and attempts to reach the goal tile ‘G’ while avoiding holes.
Actions are indicated by arrows and are somewhat stochastic, i.e. an action of ‘up’ will send the agent ‘left’, ‘up’, or ‘right’ (but never down)
with equal probability. VIPER fails to produce a good policy because it spends capacity of its tree mimicking parts of the complex teacher
policy that its simple student policy will never reach. OMDT achieves a greater success rate by directly optimizing a simple policy.

Shortcomings of Imitation Learning
Overall, given sufficient runtime, OMDT produces better
policies than VIPER. This cannot be easily solved by giv-
ing VIPER more runtime but is an inherent problem of imita-
tion learning. To illustrate this, we investigate the results on
the frozenlake MDPs as Table 2 demonstrates that imitation
learning can perform far from optimal in these environments.

In theory, imitation learning performs optimally in the
limit [Ross et al., 2011] but this result requires the student
policy to be as expressive as the teacher policy. This is not
the case for size-limited decision trees. When VIPER learns
a policy for frozenlake 12x12 it tries to imitate a complex pol-
icy using a small tree that cannot represent all teacher policy
actions. This results in VIPER spending capacity of its deci-
sion tree on parts of the state space that will never be reached
under its student policy. In Figure 4 we visualize the paths
that the agents took on 10,000 runs and indicate the policies
with arrows. VIPER creates leaves that control action in the
right section of the grid world (indicated in red). The optimal
teacher policy often visits this section but the simple student
does not. By directly optimizing a decision tree policy using
OMDT, the policy spends its capacity on parts of the state
space that it actually reaches. As a result, VIPER cannot pre-
vent actions that send its agent into holes on the left part of the
grid world (indicated in red). OMDT actively avoids these.

5.4 Runtime
Runtime for solving Mixed-Integer Linear Programming for-
mulations scales worst-case exponentially which makes it im-
portant to understand how solvers operate on complex formu-
lations such as OMDT. We solved OMDTs for a depth of 3
for a maximum of 2 hours and display the results in Table
2. The table compares the runtimes of VIPER and solving
OMDT to optimality. If the solver does not prove optimal-
ity within 2 hours we denote it as ‘timeout’. We also denote
the number of possible decision tree policies computed as:

|TB |possible splits×|TL||A|. It provides an estimate of how many
decision tree policies are possible and shows that enumerat-
ing trees with brute force is intractable.

OMDT solves a simple environment such as Frozenlake
4x4 (16 states, 4 actions) to optimality within 2 seconds
but runtime grows for larger environments such as inventory
management (101 states, 100 actions) which took on aver-
age 2533 seconds. VIPER needs roughly 2250 seconds of
runtime for every MDP and runs significantly faster on some
MDPs. This is because VIPER spends much time evaluating
policies on the environment and some environments quickly
reach terminal states which results in short episodes. While
OMDT was able to prove optimality on only 7 out of 13 en-
vironments within 2 hours, OMDT finds good policies before
this time on 12 out of 13 environments.

6 Conclusion
We propose OMDT, a Mixed-Integer Linear Programming
formulation for training optimal size-limited decision trees
for Markov Decision Processes. Our results show that for
simple environments such as blackjack, we do not have to
trade off interpretability for performance: OMDTs of depth
3 achieve near-optimal performance. On Frozenlake 12x12,
OMDT outperforms VIPER by more than 100%.

OMDT sets a foundation for extending supervised optimal
decision tree learning techniques to the reinforcement learn-
ing setting. Still, OMDT requires a full specification of the
Markov Decision Process. Imitation learning techniques such
as VIPER can instead also learn from a simulation environ-
ment. Therefore, future work should focus on closing the
gap between the theoretical bound supplied by OMDT and
the practical performance achieved by algorithms that require
only simulation access to optimize interpretable decision tree
policies in reinforcement learning. Additionally, future work
can incorporate factored MDPs into OMDT’s formulation to
scale up to larger state spaces.
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