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Abstract
We consider the problem of risk-aware Markov De-
cision Processes (MDPs) for Safe AI. We introduce
a theoretical framework, Extended Markov Ratio
Decision Processes (EMRDP), that incorporates
risk into MDPs and embeds environment learning
into this framework. We propose an algorithm to
find the optimal policy for EMRDP with theoretical
guarantees. Under a certain monotonicity assump-
tion, this algorithm runs in strongly-polynomial
time both in the discounted and expected average
reward models. We validate our algorithm empir-
ically on a Grid World benchmark, evaluating its
solution quality, required number of steps, and nu-
merical stability. We find its solution quality to be
stable under data noising, while its required num-
ber of steps grows with added noise. We observe
its numerical stability compared to global methods.

1 Introduction
A Markov Decision Process (MDP) is a fundamental model
for sequential decision making. MDPs have been studied
extensively [Puterman, 1994], including efficient algorithms
for finding optimal policies and MDP extensions to allow for
more flexible objectives and constraints. One can incorporate
risk into the MDP framework to address issues of Safe AI.

[Meggendorfer, 2022] minimizes Conditional Value-at-
Risk (CVaR), where the algorithm overall runtime is expo-
nential. [Chow et al., 2015] minimize CVaR with approx-
imation, and their finite-time convergence error bound can-
not be made zero with that approximation. [Borkar and Jain,
2014] maximizes the expected return such that CVaR is below
a threshold. Their algorithm is inapplicable for infinite hori-
zon problems, which we consider in this paper. Moreover,
even for finite horizon problems, they require the separabil-
ity of the cost function as well as some additional function
approximations. We observe that these works lack efficient
algorithms, in particular, strongly-polynomial ones.1

Optimal policy algorithms were found in strongly-
polynomial time in the size of the MDP in the discounted cost

1A strongly-polynomial algorithm runs in time polynomial with
the problem size, independent of numerical input size.

model and, in some cases, in the expected average cost model.
Since MDP extensions are of particular interest in real-world
applications, a key question is whether strongly-polynomial
algorithms exist for those as well.

An important MDP extension is the Markov Ratio Deci-
sion Process (MRDP) [Derman, 1962], where one optimizes
for the (non-linear) ratio of two linear cost functions, e.g. re-
ward over risk. MRDP can be reduced to a linear program-
ming (LP) problem in the undiscounted [Derman, 1962] and
discounted [Aggarwal et al., 1977] cost cases. Since LP can
be solved in polynomial time [Khachiyan, 1979], so does
MRDP. A strongly-polynomial algorithm for MRDP, how-
ever, is an open problem for all cost models; a strongly-
polynomial algorithm is not known for general LPs [Schri-
jver, 1998], and the LP formulation of MRDP differs from
that of MDP [de Ghellinck, 1960; d’Epenoux, 1963].

1.1 Contribution
We generalize MRDPs to Extended Markov Ratio Decision
Processes (EMRDPs) whose objective r(π)/dω(π) for policy
π consists of a linear cost function r(π) in the numerator and
an ω-exponentiated linear cost function d(π) in the denom-
inator, where ω ∈ [0, 1]. EMRDPs reduce to MDPs when
ω = 0 and to MRDPs when ω = 1. We establish a strongly-
polynomial algorithm for optimal policy in these general set-
tings, under a certain monotonicity assumption (that applies,
for instance, to applications in financial markets). We pro-
vide a data-driven variant of our algorithm that incorporates
off-policy evaluation, utilizing available historical data rather
than knowledge of an exact environment model. Its solution
quality is found to be stable under data noising, while its re-
quired number of steps grows with added noise. We analyze
its numerical stability compared to global methods.

1.2 Related Work
Designing strongly-polynomial time MDP algorithms with
respect to its environment parameters (the number n of states,
the number k of actions, and the discount factor β) has been
a topic of interest for decades. For discounted cost MDPs
with a fixed discount factor (a critical assumption), [Ye, 2005]
showed that the interior point method is strongly polyno-
mial, and [Ye, 2011] showed that the Simplex algorithm
with Dantzig’s pivoting rule is strongly polynomial. [Hansen
et al., 2013] showed that the strategy iteration algorithm
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is strongly polynomial for two-player turn-based stochastic
games, which includes MDPs, with constant discount factor
β, improving Ye’s result byO(n) for MDPs. [Scherrer, 2016]
improved and generalized an upper bound on the complexity
of policy iteration, improving Hansen’s bound for MDPs by
O(log(n)). For negative results, [Feinberg and Huang, 2014]
showed that value iteration is not strongly polynomial for dis-
counted cost MDPs, [Friedmann, 2009] showed that policy
iteration is not strongly polynomial for total and expected av-
erage reward models, and [Hollanders et al., 2012] showed
that policy iteration is not strongly polynomial for discounted
cost MDPs when the discount factor is not fixed.

There do exist strongly-polynomial algorithms for sub-
classes of MDPs. [Zadorojniy et al., 2009] established a
strongly-polynomial algorithm for controlled queues in the
discounted and expected average cost models (cf. the negative
results for general MDPs with expected average cost). Other
examples for undiscounted cost MDPs include the reduction
from total / average cost models to the discounted cost model,
assuming some structure of the MDP [Feinberg and Huang,
2018], and an algorithm by [Ye, 2011] whose transition prob-
ability matrix exhibits special characteristics.

Organization. We review MDPs in §2 and introduce EM-
RDP in §3. We develop an optimal policy algorithm for EM-
RDP in §4 and show that it becomes strongly polynomial un-
der a monotonicity assumption in §5. We provide a variant
of the algorithm that embeds learning in §6 and provide its
empirical results on the Grid World benchmark in §7.

2 Background
A Markov Decision Process (MDP) is a tuple 〈S,A, P, r〉 that
consists of a finite set of states S , a finite set of actions A, a
transition probability matrix P of size n×nk, where n = |S|
and k = |A|, and an immediate reward vector r ∈ Rnk.
Let St be the random variable representing the state of the
process at time t and At be the random variable represent-
ing the action at t. The time horizon is infinite. We define
P = [P (a1), · · · , P (ak)] to be a concatenation of k square
matrices, P (a) for a ∈ A, of size n × n, where the entries
of P (a) represent P (a)s′,s = P(St+1 = s′|St = s,At = a),
∀s, s′ ∈ S for an arbitrary t. Let r(s, a) be the immediate
reward for taking action a at state s. Throughout this paper,
we consider stationary policies π : S → ∆A: for each state
s, π(s, a) := π(s)(a) denotes the probability of taking action
a at state s.

We consider two reward models: discounted and expected
average. We use the occupation measure to represent these
reward models in a unified manner. Specifically, for a pol-
icy π, let ρπ(s, a) = (1 − β)

∑∞
t=0 β

t Pπ(St = s,At = a)
be the occupation measure for the discounted reward model
with a discount factor β ∈ (0, 1), and let ρπ(s, a) =
limT→∞

1
T

∑
t<T Pπ(St = s,At = a) for the expected av-

erage reward model. Then, the expected reward is given as

r(π) := Eπ[r(S,A)] = r>ρπ,

where Eπ denotes the expectation with respect to the corre-
sponding occupation measure induced by π.

Constrained MDPs (CMDPs) [Altman, 1999] incorporate
constraints. A CMDP is a tuple 〈S,A, P, r, d〉, where d ∈
Rnk is an immediate risk vector; d(s, a) represents the im-
mediate risk for taking action a at state s. Analogously to re-
ward, we consider two risk models (discounted and expected
average risk models), with expected risk given by

d(π) := Eπ[d(S,A)] = d>ρπ.

The objective of the CMDP is to maximize the expected
reward under the constraint that the expected risk is at a target
value α, which gives rise to the parameterized LP

LP(α) : max {r(π) | Qρπ = µ, d(π) = α, ρπ ≥ 0} . (1)

The matrix Q and vector µ are defined according to the
model of choice. For the discounted reward/risk model,
Q = Q̃(β) = [I−β P (a1), · · · , I−β P (ak)], where I is the
n × n identity matrix, and µ ∈ Rn is the initial state distri-
bution multiplied by (1 − β).2 Notice, that the first equality
constraint in (1) ensures that ρπ (which induces policy π) is a
valid occupation measure. For the average reward/risk model,
Q is the (n + 1) × nk matrix defined by appending an ad-
ditional row of ones to Q̃(1), and µ = en+1 ∈ Rn+1 is the
standard basis vector with a single 1 at the last entry. We re-
fer to the α-parameterized CMDP in (1) as CMDP(α). The
variable of LP(α) is ρπ , which yields its corresponding pol-
icy π via a standard procedure. We thus write maxπ when the
maximization is over ρπ .

3 Extended Markov Ratio Decision Process
We define the Extended Markov Ratio Decision Process (EM-
RDP) using the same five-tuple 〈S,A, P, r, d〉 as the CMDP.
Unlike the CMDP, however, the EMRDP does not include
constraints. Its objective is to maximize the ratio of the ex-
pected reward to the expected risk to the power of some
ω ∈ [0, 1]. The problem of finding the optimal policy for
the EMRDP can thus be formulated as:

max
π

{
r(π)

dω(π)
| Qρπ = µ, ρπ ≥ 0

}
(2)

An EMRDP reduces to a MDP [Puterman, 1994] when ω = 0
and to a MRDP [Derman, 1962; Aggarwal et al., 1977] when
ω = 1. It thus interpolates between MDP and MRDP. We will
focus on ω ∈ (0, 1] for the rest of this paper, since it is there
that the question of strong polynomiality is still unresolved.

4 A General Algorithm for EMRDP
In this section we present a general algorithm for EMRDP.
Though we cannot prove that the running time of this algo-
rithm will be polynomial in general, we provide sufficient
conditions to make it run in strongly-polynomial time.

4.1 Algorithm Description
We solve (1) by finding the set of optimal deterministic poli-
cies for all feasible α and then prove it is sufficient to consider
just this set of policies to solve (2).

2Multiplying by (1− β) guarantees that a feasible ρ is an occu-
pation measure.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5476



Algorithm 1 A General Algorithm for EMRDP Problem (2).

1: Initialize: π ← argminπ {d(π) | Qρπ = µ, ρπ ≥ 0}
2: T ← {(π, r(π), d(π))}
3: while ∃(s, a) s.t. d(πs,a) > d(π) do
4: πs,a ← argmaxπs,a {∇s,a(π) | d(πs,a) > d(π)}
5: Add (πs,a, r(πs,a), d(πs,a)) into T
6: π ← πs,a

7: end while
8: return argmaxπ {r(π)/dω(π) | (π, r(π), d(π)) ∈ T}

Consider a deterministic policy π. Let πs,a be the deter-
ministic policy that follows π, except at state s where action
a is taken instead of π(s). Denote the change in expected
reward over the change in expected risk by

∇s,a(π) ≡ r(πs,a)− r(π)

d(πs,a)− d(π)
=
r>ρπ

s,a − r>ρπ

d>ρπs,a − d>ρπ
. (3)

In Line 1 of Algorithm 1, we initialize π with a feasible
policy that minimizes d(π) by solving the MDP

π = argmin
π
{d(π) | Qρπ = µ, ρπ ≥ 0} . (4)

The constraints in (4) ensure the feasibility of π. In Line 2,
this minimal policy, together with its corresponding reward
and risk, is added to a set T . At each while-loop iteration,
the algorithm considers policies πs,a with d(πs,a) > d(π).
In Line 4, πs,a is chosen such that ∇s,a(π) is maximal. In
Line 5, πs,a (with its corresponding reward and risk) is added
to T . In Line 6, the policy π is updated with πs,a for the
next iteration of the while loop. In Line 8, the policy that
corresponds to the maximal ratio is returned.

4.2 Correctness
We prove that Algorithm 1 finds the optimal policy for prob-
lem (2) under the standard assumptions in the literature. Let
G(V,E) be the policy graph, where V is the set of determin-
istic policies and E is the set of the pairs of neighbouring de-
terministic policies (i.e., policies that disagree in exactly one
state). A policy π is strictly 1-randomized if it is determinis-
tic in all but one state s and the set {a : π(s, a) > 0} contains
exactly two actions. Let Γα be the set of deterministic and
strictly 1-randomized policies for CMDP(α). Let Γ∗α ⊆ Γα
be the set of optimal policies in Γα, and let Γ∗ ≡ ∪αΓ∗α.

As in [Zadorojniy et al., 2009], we assume uniqueness,
which in practice can be achieved by perturbation [Megiddo
and Chandrasekaran, 1989; Zadorojniy et al., 2009]:
Assumption 1 (Uniqueness). For every α, CMDP(α) sat-
isfies the following property: if π∗ is deterministic and
optimal for CMDP(α), any other deterministic or strictly
1-randomized policy is not optimal for LP(α), meaning that
r(π) < r(π∗), ∀π ∈ {π′ | π′ ∈ Γα, π

′ 6= π∗}.
Another standard assumption is irreducibility (also follow-

ing [Zadorojniy et al., 2009]). We say that a CMDP is irre-
ducible if every deterministic policy of the CMDP induces an
irreducible Markov chain. In practice, this can be achieved by
connecting an arbitrary state, normally the initial one, with all
others under all actions with “small” transition probabilities
by bi-directional arcs.

(π0) (πq) (π1) (π2) (π3)

(π0)

( ̄π)
( ̄̄π)
(πq)

(π1)

(π2)

(π3)

Figure 1: Piecewise Linear Relation

Assumption 2 (Irreducibility). CMDP(α) is irreducible.

The next Proposition which requires just Assumption 2
shows that considering only deterministic and 1-randomized
policies is sufficient for finding the optimal policy.
Proposition 1 (Theorem 5.1 [Zadorojniy et al., 2009]). If
LP(α) is feasible, then there exists an optimal policy π∗ of
LP(α) that is deterministic or strictly 1-randomized.

The intuition behind following two Propositions is a s fol-
lowing, we start from the vertex corresponding to a determin-
istic minimal-risk policy. Then, we gradually increase risk
level, switching to the strictly 1-randomized policy. By con-
tinuing to increase the risk value further, we reach the next
reward-optimal deterministic policy. This procedure is re-
peated until the stopping condition is satisfied.

The following propositions hold under Assumptions 1-2.
Proposition 2 (Lemma 5.4 [Zadorojniy et al., 2009]). The
set Γ∗ forms a path in the policy graph G.

Proposition 3 (Theorem 6.1 [Zadorojniy et al., 2009]). Let
πi be the (i + 1)-st policy added to T by Algorithm 1 for
i = 0, 1, . . .. Then, for any index i, there is an edge in G
between πi and πi+1, and the set of all the policies on those
edges, including their endpoints, equals Γ∗.

Without loss of generality, let π0 and π1 be any two neigh-
bouring deterministic policies on Γ∗, and πq be a strictly
1-randomized policy on the edge between π0 and π1 (i.e.,
πq = (1− q)π0 + q π1, where q ∈ (0, 1)). Then the expected
reward and the expected risk have a linear relation:
Proposition 4 (Proposition 5.5 [Zadorojniy et al., 2009]). If
d(π0) 6= d(π1), then r(πq) is linear in d(πq) over the range
q ∈ [0, 1].

Figure 1 illustrates the relation between r and d. Policies
π0, π1, π2 and π3 are deterministic and optimal, and policy
πq is strictly 1-randomized and optimal. Policies π̄ and ¯̄π
are suboptimal and satisfy d(π1) = d(π̄) = d(¯̄π) = α for
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Figure 2: Piecewise Quasiconvex Relation

an α ∈ R+. In general, there are multiple policies π with
d(π) = α, and these policies can have different values of
r(π). However, if we consider just the r(π∗) corresponding
to the optimal policy π∗ for each α, we get a piecewise linear
function from d(π∗) to r(π∗) due to Proposition 4. Formally,

Corollary 1. Let Γdet be the set of deterministic policies
returned by Algorithm 1 and Γrnd be the set of strictly 1-
randomized policies on the edges between the neighboring
policies in Γdet. Then Γdet ∪ Γrnd = Γ∗, and the relation
d(π)→ r(π) for π ∈ Γ∗ forms a piecewise linear function.

Proof. Proposition 3 implies Γdet∪Γrnd = Γ∗. Proposition 2
and Proposition 4 imply that the relation in the corollary is a
piecewise linear function.

We further assume that any policy yields positive expected
reward and positive expected risk. More formally,

Assumption 3. (Positiveness) For any policy π, we have
d(π), r(π) ∈ R+.

The following Lemma holds under Assumption 3:

Lemma 1. The relation d(π) → r(π)
dω(π) for π ∈ Γ∗ is a con-

tinuous function, and r(π∗)
dω(π∗) ≥

r(π)
dω(π) for any π∗ ∈ Γ∗ and

any π such that d(π) = d(π∗).

Proof. Corollary 1 implies that the relation in the lemma is a
continuous function under Assumption 3. Also, for any π∗ ∈
Γ∗ and any π such that d(π) = d(π∗), we have r(π∗) ≥ r(π)

and hence r(π∗)
dω(π∗) ≥

r(π)
dω(π) for ω ∈ (0, 1].

Algorithm 1 considers only deterministic optimal policies,
ignoring strictly 1-randomized policies that are optimal for
some α. We will now show that such strictly 1-randomized
policies can indeed by ignored.

Lemma 2. Let 0 < αmin < αmax < ∞ and f(α) = c α+b
αω

for α ∈ [αmin, αmax], where ω ∈ (0, 1] and c, b are constants
such that c α+ b > 0 for any α ∈ [αmin, αmax]. Then f(α) is
quasiconvex (i.e., its maximum is attained either at α = αmin

or α = αmax).

The following theorem shows that we can solve the EM-
RDP problem with Algorithm 1:

Theorem 1. Under Assumptions (1-3), Algorithm 1 returns
the π that maximizes r(π)/dω(π) over all policies π.

Proof. Let f∗ : d(π) → r(π)
dω(π) for π ∈ Γ∗ be the function

as defined in Lemma 1. Then, following Lemmas 1-2, f∗
is a piecewise quasiconvex function as depicted in Figure 2
(α = d(π)). Hence, f∗ has no local maximas, corresponding
to strictly 1-randomized policies, meaning that Algorithm 1
finds a set of deterministic policies such that one of them must
be globally optimal. Thus, by choosing the π with maximal
ratio r(π)/dω(π), Algorithm 1 returns the globally optimal
policy for the EMRDP problem.

5 A Strongly Polynomial Algorithm
We now show that Algorithm 1 can run in strongly polyno-
mial time with an additional assumption that often holds in
applications to financial markets. In financial applications,
“larger” actions, such as investing a larger amount, are fun-
damentally riskier than “smaller” ones. We may thus assume
that the risk increases monotonically with the amount of in-
vestment, when actions determine the amount of investment.

Assumption 4 (Monotonicity). There is a linear order
(a1, . . . , ak) on A such that

d(πs,a1) < . . . < d(πs,ak), ∀π, s. (5)

5.1 Algorithm Description
Algorithm 2 shows the version of our algorithm that runs in
strongly-polynomial time when monotonicity holds. Algo-
rithm 2 is identical to Algorithm 1 except in Line 1, where
we initialize π with the policy that takes the smallest action
a1, defined in Assumption 4, at every state.

5.2 Correctness and Running Time
When Assumption 4 holds, this initial policy minimizes the
risk. Algorithm 2 thus finds the deterministic policy π that

Algorithm 2 A Strongly Polynomial Algorithm for EMRDP
Problem (2) when Monotonicity Assumption Holds.

1: Initialize: π ← (a1, . . . , a1)
2: T ← {(π, r(π), d(π))}
3: while ∃(s, a) s.t. d(πs,a) > d(π) do
4: πs,a ← argmax

πs,a
{∇s,a(π) | d(πs,a) > d(π)}

5: Add (πs,a, r(πs,a), d(πs,a)) into T
6: π ← πs,a

7: end while
8: return argmax

π
{r(π)/dω(π) | (π, r(π), d(π)) ∈ T}
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minimizes r(π) without solving the MDP in (4), and this
solves the issue of strong polynomiality in the case of the
expected reward model. In this sense, Algorithm 2 is identi-
cal to Algorithm 1 and finds the optimal solution for EMRDP.
What remains to show is the running time of Algorithm 2.
Lemma 3. Algorithm 2 runs inO(n4 k2) time when Assump-
tion 4 is satisfied.

Proof. By Assumption 4, the while loop of Algorithm 2 is
repeated only O(nk) times, since the action must increase in
Line 4. In Line 4, there are at most nk candidates of the next
policy, and the evaluation of each candidate is dominated by
the inversion (i.e., inverse of the basis matrix of size n×n) of
the matrix which differs from the current vertex matrix by one
column. By the Sherman-Morrison formula [Meyer, 2000],
such matrix inversion can be done inO(n2) time, which com-
pletes the proof of the lemma.

The results in [Even and Zadorojniy, 2012] suggest that
Line 1-7 of Algorithm 2 is equivalent to the Simplex algo-
rithm with the Gass-Saaty shadow-vertex pivoting rule, where
Line 4 of Algorithm 2 is the pivoting rule of the next vertex.
This suggests that the running time of Algorithm 2 is actually
O(n3 k2) by the following proposition:
Proposition 5 (Proposition 4 from [Even and Zadorojniy,
2012]). The running time of the Simplex algorithm with the
Gass-Saaty shadow-vertex pivoting rule is O(n3 k2) for find-
ing an optimal policy of a controlled random walk.

Notice that there are minor adjustments with respect to the
Simplex algorithm related to the ratio maximization in Line 8
of Algorithm 2.

6 Embedded Learning
We can validate the practical relevance of our algorithmic ap-
proach empirically, introducing a variant of Algorithm 1 with
embedded learning.

Consider a dataset D derived from some ground-truth en-
vironment, whose columns include state and action features
as well as reward and risk outcomes; its rows constitute a se-
quential log of historical instances of state, action, reward,
and risk values. When state or action features are continuous,
they can be binned (i.e., discretized), while the immediate re-
ward r and risk d associated with each bin can be averaged.
Binning can thus gives rise to an empirical CMDP formula-
tion of D with finite state and action spaces and correspond-
ing immediate reward and risk vectors. Transition probability
matrices can be estimated from D by counting the number of
occurrences of neighboring (binned) rows.

Compared to the discretized ground-truth environment, not
all discretized states or actions will necessarily be present in
D. Thus, we derive empirical S and A from D. In addition,
the empirical state-action space S ×A may not be present in
D in its entirety. We denote its subset (S × A)D to include
all pairs (s, a) ∈ S ×A present in the binned D.
Empirical algorithm. Algorithm 3 embeds learning within
our EMRDP framework. It relies on two essential compo-
nents to supplement Algorithm 1: (i) a state-dependant order-
ing of action-associated risk (Line 1) and (ii) a data-driven

Algorithm 3 Empirical Algorithm for EMRDP Problem (2).

1: Initialize: π ← (argmin
a

(s1, a), . . . , argmin
a

(sn, a))

2: T ← {(π, rest(π), dest(π))}
3: while ∃(s, a) ∈ (S ×A)D s.t. dest(πs,a) > dest(π) do
4: π∗ ← argmax

πs,a

{
∇est
s,a(π) | dest(πs,a) > dest(π)

}
5: Add (π∗, rest(π∗), dest(π∗)) to T
6: π ← π∗

7: end while
8: return argmax

(π,rest(π),dest(π))∈T

{
rest(π)/ (dest(π))

ω}

estimate of expected reward and risk (e.g., Line 4). Address-
ing (i), we define (s, a′) < (s, a′′) for a fixed s ∈ S and
a pair (s, a′), (s, a′′) ∈ (S × A)D iff d(s, a′) < d(s, a′′).3
In Line 1, we initialize with the policy that takes the mini-
mal action at si over all a s.t. (si, a) ∈ (S × A)D. This
choice is not guaranteed to be the global minimal-risk policy.
However, we will see that it is sufficient in practise. Address-
ing (ii), we use an offline policy evaluation (OPE) algorithm
[Voloshin et al., 2021] that relies on D to output estimates of
expected reward rest(π) and risk dest(π) for a policy π sup-
ported in (S × A)D. In Lines 3 and 4, we utilize OPE to
produce estimates rest(π) and dest(π) and derive ∇est(π) as
in (3). In our experiments, we use Q-Evaluation as our OPE
[Kostrikov and Nachum, 2020], which is the standard fitted
Q-Evaluation without functional approximation.

7 Experiments
We compared Algorithm 3 empirically to the theoretically op-
timal policy on the benchmark Grid World problem.4 We
examined its performance in terms of solution quality, num-
ber of steps, and numerical stability. We found Algorithm
3 solution quality to be stable under data noising, while its
required number of steps grows with added noise. We also
observed its numerical stability compared to a global opti-
mization method.

7.1 Environment

Solving the benchmark Grid World problem requires finding
the optimal policy for traversing an h × w grid from an ini-
tial to a terminal cell in a minimal number of moves in the
presence of obstacles and action-associated risk. We fixed
the initial cell to be the top left cell.

The action space is A = [Up,Down,Left,Right,None]
for this problem, where None refers to a ‘do nothing’ move.
Adding the None move allows us to incorporate the notion
of infinite horizon. We define transition probability matrices
P (a), a ∈ A so that there is a δ = 0.1 probability to end up
at a random state under each a ∈ A \ {None} move and a

3Since we are dealing with data-derived risk, we may assume
this ordering is strict.

4The code for our empirical evaluation is available on https://
github.com/IBM/IBM-Extended-Markov-Ratio-Decision-Process.
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Figure 3: A theoretically-optimal policy in a h × w = 5 × 5 grid.
The initial cell is marked blue, while the terminal cell is marked red.
The obstacle cells are crossed out.

δN = 0.5 probability under the a = None move.5 The non-
zero probability for random moves ensures irreducibility.

We fix the immediate cost associated with each cell to be
cost = 5.0 and the immediate negative reward to be −cost,
except at the terminal cell, where the cost is 0.0, and at ob-
stacle cells, where the cost is M = 2/(1− β),6 following
[Chow et al., 2015]. Thus, maximizing reward aims at find-
ing the policy that establishes the shortest (stochastic) path to
the terminal cell, while avoiding obstacles.

To the standard benchmark Grid World problem setup, in-
troduced thus far, we add the novel notion of risk. We define
risk as high for walking along the top or bottom boundaries of
the grid and medium for walking left into the left boundary or
right into the right boundary. Risk is otherwise set to a base-
line low value.7 Our goal is to minimize the ratio r(π)/d(π)
(where ω = 1), thereby increasing (negative) reward while
decreasing (negative) risk.

We add Gaussian randomization to the immediate reward
and risk vectors with ε = 0.01 standard deviation.8 We also
sample a pre-fixed number of obstacles. Thus, we effectively
generate a Grid World environment at random, with varying
immediate reward and risk vectors. Moreover, changing the
environment hyper-parameters – β, δ, δN , ε, the cost per cell,
the low, mid, and high risk values, and the number of ob-
stacles – means that we are, in fact, considering a family of
stochastic Grid World environments, rather than a single one
(in contrast to [Chow et al., 2015]).

7.2 Theoretically-Optimal Policy
We can compare Algorithm 3 empirically to the theoretical
optimum with its full Pareto frontier, calculated using the
theory of parametric LPs applied to (1) [Walkup and Wets,
1969]. Figure 3 shows a theoretically optimal policy for a
randomly generated Grid World environment. Policy optima
are sensitive to Grid World hyper-parameters. A small gap

5A higher δN ensures that datasets generated from randomly
chosen policies containing None moves are not sparse.

6We ran our experiments with discount factor β = 0.95.
7The risk hyper-parameters of our Grid World environment are

RHigh = −1.0, RMid = −5.0, and RLow = −10.0.
8See the discussion on numerical stability in Section 7.4.

between high and low risk parameter values, for example,
will affect risk expression non-trivially: when the expected
reward of a policy is high, its occupation measure is high at
or near the terminal cell and low on boundary cells further
away. Then, their effect on the expected risk is negligible.
Minute reward fluctuations may then tilt the scale towards
walking along the boundary, effectively ignoring risk. This
subtle effect is seen in Figure 3 at the bottom left side of the
boundary.

7.3 Solution Quality and Number of Steps

We tested Algorithm 3 on the Grid World problem as follows.
First, we calculated the theoretically-optimal policy for a ran-
domly generated h × w Grid World environment. Then, we
introduced random noise to the theoretically-optimal policy,
at the 10%, 30%, or 100% level. We then generated data from
the noised optimal policy, following it for 10 · |S|2|A|moves.
In our Grid World dataset, each row was associated with a
single state (grid cell), action (move), immediate reward, and
immediate risk. We learned the empirical Grid World envi-
ronment from the dataset (Section 6) and ran Algorithm 3.

We ran 150 tests overall on a 5 × 5 grid with 3 obstacles,
each time, randomly sampling the obstacles and the random-
ized immediate reward and risk vectors. A 5×5 grid allowed
us to witness the non-trivial effects of risk at a relatively low
computational cost. The bigger the grid, the lower the like-
lihood of hitting the boundary, hence, the lower the effect of
boundary risk. Thus, with a bigger grid, the problem is likely
to degenerate to an MDP. To witness the effect of risk in a big-
ger grid would have necessitated a more elaborate risk model.

Figures 4a–4b show the distribution of Algorithm 3 opti-
mal ratio over the theoretical optimal ratio across our three
noise levels. We provide the mean confidence interval for
p = 0.05. As can be seen, Algorithm 3 solution quality is
stable w.r.t. data noising. Algorithm 3 optimal ratio, on aver-
age, is 2.64±0.30 (10% noise), 2.64±0.36 (30% noise), and
2.63± 0.42 (100% noise) times the theoretical optimal ratio.

Figures 5a–5b show the distribution across the same three
noise levels of the number of steps required by Algorithm 3
over the number of steps to the optimum along the theoretical
Pareto frontier. The number of steps required by Algorithm
3, on average, is 1.38± 0.26 (10% noise), 1.77± 0.19 (30%
noise), and 2.37±0.25 (100% noise) times the number of step
to the theoretical optimum. The average number of steps to
the optimum along the theoretical Pareto frontier was 14.96±
0.56 (p = 0.05) over our 150 Grid World environments.

We can thus confirm empirically that Algorithm 3 requires
more optimization steps as noise grows, though solution qual-
ity remains stable. We observe that noise does not weaken
learning as a whole. However, the initial, empirically-
minimal policy, from which Algorithm 3 starts, gets further
away from the ground-truth risk-minimizing policy as noise
grows. As a result, Algorithm 3 requires more steps com-
pared to the number of steps to the theoretical optimum along
the theoretical Pareto frontier, which starts at the ground-truth
risk-minimizing policy.
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(a) 10% noise, mean 2.64± 0.30. (b) 30% noise, mean 2.64± 0.36. (c) 100% noise, mean 2.63± 0.42.

Figure 4: Empirical distribution of Algorithm 3 optimal ratio over the theoretical optimal ratio across three noise levels.

(a) 10% noise, mean 1.38± 0.26. (b) 30% noise, mean 1.77± 0.19. (c) 100% noise, mean 2.37± 0.25.

Figure 5: Empirical distributions of the number of steps required by Algorithm 3 over the number of step to the optimum along the theoretical
Pareto frontier across three noise levels.

7.4 Numerical Stability

Strongly-polynomial algorithms are often considered more
numerically stable [Gill and Murray, 1973; Olver and Végh,
2020; Borgwardt, 2020]. The issue of numerical stability
comes up in our Grid World example. Prior to randomizing
the immediate risk and reward vectors, its optimization land-
scape has multiple global optima, since, risk-wise and in the
absence of obstacles, moving Right then Down from a (non-
boundary) cell is equivalent to moving Down then Right.

When we add randomization to immediate reward and risk,
we introduce a unique global optimum with probability 1.
Numerically, however, we may still have multiple global op-
tima due to machine precision. Several numerical issues
come up in calculating the theoretically-optimal policy. Since
we are solving multiple LPs, solutions may not exist or may
not give rise to bona fide occupation measures (up to suf-
ficient precision). Our implementation of the theoretically-
optimal policy algorithm had a fail rate of 4.7% ± 0.4%
(p = 0.05), calculated for n = 25 tests, sampling 100 non-
degenerate Grid World environments for each.

The issue of numerical stability is inherent to any global

search for the optimal policy. A gradient ascent-type algo-
rithm, such as Algorithm 3, that “follows its nose” to some
critical point does not encounter such numerical issues.
Parallel computing. From a computational standpoint, es-
timations of expected reward and risk at the next-best-policy
step (Line 4) are mutually independent. We can thus par-
allelize Algorithm 3 easily. We used the cloud distribution
framework Ray to scale up Algorithm 3 [Moritz et al., 2018].
We ran our experiments on an OpenShift cluster with 16
CPUs x 64 RAM x 3 workers.

8 Summary
We introduced a novel parameterized control process, EM-
RDP, that incorporates both MDP and RMDP. We introduced
Algorithm 1 that finds its optimal policy under Assump-
tions (1)–(3). Its variant, Algorithm 2, does so in strongly-
polynomial time under the additional Assumption (4), both
for the discounted and expected average reward models. We
demonstrated policy optimization with embedded learning in
Algorithm 3, using the Grid World problem as a benchmark.
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