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Abstract
The advantages of modular robot systems stem
from their ability to change between different con-
figurations, enabling them to adapt to complex and
dynamic real-world environments. Then, how to
perform the accurate and efficient change of the
modular robot system, i.e., the self-reconfiguration
problem, is essential. Existing reconfiguration al-
gorithms are based on discrete motion primitives
and are suitable for lattice-type modular robots.
The modules of freeform modular robots are con-
nected without alignment, and the motion space
is continuous. It renders existing reconfiguration
methods infeasible. In this paper, we design a par-
allel distributed self-reconfiguration algorithm for
freeform modular robots based on multi-agent re-
inforcement learning to realize the automatic de-
sign of conflict-free reconfiguration controllers in
continuous action spaces. To avoid conflicts, we
incorporate a collaborative mechanism into rein-
forcement learning. Furthermore, we design the
distributed termination criteria to achieve timely
termination in the presence of limited communi-
cation and local observability. When compared to
the baselines, simulations show that the proposed
method improves efficiency and congruence, and
module movement demonstrates altruism.

1 Introduction
Modular robots have advantages of low cost, robustness,
and diversity [Yim et al., 2000], compared to fixed-
structure robots. They demonstrate potential applications
in industrial manufacturing [Liu and Althoff, 2020], smart
home [Spröwitz et al., 2014], and other fields.

Modular robot system [Ahmadzadeh and Masehian, 2015]
can usually be classified as lattice type, chain type and truss
type according to connection mechanisms. These types of
modular robots need dock-to-dock alignment and intercon-
necting, connectors significantly affects task performance. In
practice, several reasons may result in the connector failure,
including accumulation of manufacturing variations, lower
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sensor accuracy, and offsets from external forces [Swissler
and Rubenstein, 2020]. Thus, the strong reliance on connec-
tors with specific locations is a common problem in the past.

Free and diverse connectivities among living organ-
isms [Gumbiner, 1996; Tennenbaum et al., 2016] inspires a
range of freeform module designs. Compared to lattice mod-
ular robots with a limited number of fixed connection posi-
tions, non-lattice freeform modular robots have continuous
freeform connectors that do not need to be aligned and can
be reconfigured more freely in a continuous configuration
space. Freeform designs increase the efficiency of reconfig-
uration and reduce connection errors [Swissler and Ruben-
stein, 2020]. These new freeform modular robots have shown
great potentials for solving realistic tasks. For instance, us-
ing freeform modular robots to construct dexterous robotic
arms can adapt to narrow environments with dynamic obsta-
cles [Zong et al., 2022]. Therefore, the work focuses on such
freeform modular robots.

Reconfiguration problem is a key and challenging issue for
modular robot applications [Seo et al., 2019]. Firstly, diverse
ways in which modules are combined lead to a huge con-
figuration space and the space size grows exponentially with
the number of modules. For a system containing N mod-
ules, where each module has c connectors and w connection
methods, the configuration space contains (c · w)N different
configurations. Secondly, since modules can move or dock
simultaneously, the branching factor of the tree describing
the configuration is O(mk) [Tucci et al., 2018], where m
is the number of possible movements and k is the number
of modules that can move. Finally, search for a global opti-
mal planning between any two configurations is NP-hard [Ye
et al., 2019] due to complex kinematic constraints created by
the dependencies among modules. To address reconfiguration
problem, existing methods usually adopts the configuration
space search and the control rule design [Seo et al., 2019].

For freeform modular robots, reconfiguration problem is
more challenging. This is because the connection methods
w and the possible movement methods k are infinite, i.e.,
both the configuration space and the movement space are con-
tinuous. As a result, during the reconfiguration process, the
motion constraints are too complex, thereby making existing
methods infeasible. Furthermore, discretizing the reconfigu-
ration problem of freeform modular robots, leads to the com-
binatorial explosion and dissipates the particular advantages
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offered by freeform designs.
In this paper, we propose a distributed reconfiguration al-

gorithm for freeform modular robots. The main challenge we
faced is that due to the kinematic constraints of the system,
the motion trajectories of each module will conflict during
the decentralised reconfiguration process, which deteriorates
the success rate and efficiency of reconfiguration.

To address this problem, we let modules learn to avoid
conflicts through training. Since it is difficult to synchro-
nise global configuration information in real time in modu-
lar robot systems [Tucci et al., 2018], we can only use local
configuration information for coordination between modules.
In this case, the method of maximising joint rewards is not
suitable [McKee et al., 2020]. Modules also generate self-
interested behaviour. For this mixed-motive problem, while
several methods have been proposed in [Barbosa et al., 2020;
Hughes et al., 2018; Wang et al., 2018; Stastny et al., 2021],
most of them are only applicable to discrete action space
problems, like matrix gaming or video games. Inspired by
the altruism scale, we design a personalized coordination
mechanism in proximal policy optimization to avoid conflicts
caused by the continuous movement and docking of mod-
ules. We introduce personalized altruism factors for all mod-
ules to accommodate the dynamically changing dependencies
among modules and find the optimal altruism of each module
through meta-reinforcement learning [Günther et al., 2020;
Tang et al., 2021].

Simulations show that by avoiding conflict, our method has
better reconfiguration efficiency and average congruence, and
module movements show altruism. Furthermore, our method
is robust and generalizes well, satisfying the robust and scal-
able design principles of modular robot systems.

2 Related Works
2.1 Freeform Modular Robots
In freeform modular robot system, modules can move inde-
pendently and have freeform attachment mechanisms to form
amorphous configurations.

Two-dimensional freeform modular robots have been used
as tools to study cellular movement patterns and the nervous
system. Randomly oscillating particle robots [Li et al., 2019]
form amorphous systems resembling cell clusters through a
loosely coupled connection mechanism. MarXbots [Mathews
et al., 2017] enables connection in almost any direction by
means of three-finger connector and passive connection ring,
on the basis of which a mergeable neural system is realized.

Recently, several three-dimensional freeform modular
robots have been proposed [Swissler and Rubenstein, 2020;
Tu et al., 2022]. Among them, FreeBOT [Liang et al., 2020]
and SnailBot [Zhao and Lam, 2022] all form a free connec-
tion between modules via a ferromagnetic spherical shell and
an active connection system containing permanent magnets.

Freeform modular robots do not require precise align-
ment with specified connectors during reconfiguration pro-
cess, thus can form a variety of configurations for diverse
real-world tasks.

However, the reconfiguration problem of this type of mod-
ular robot is non-trivial, due to the larger configuration space

and more conflicts among modules. To the best of our knowl-
edge, there is no existing reconfiguration algorithm for this
new type of modular robot. And our framework is applicable
to many different types of module designs and motion primi-
tives.

2.2 Reconfiguration Methods
Existing reconfiguration methods can be divided into search-
based and control-based. Due to the complexity of recon-
figuration problem, search-based methods [Ahmadzadeh and
Masehian, 2015; Seo et al., 2019] take a long time to find re-
configuration paths, especially for modular robots with lim-
ited computing resources.

More research attempts to design control rules for modu-
lar robots that do not require global information. Bionic [Bie
et al., 2018] or manual design rules [Moussa et al., 2021;
Kawano, 2020], calculation of gradients based on various
virtual forces [Hourany et al., 2021; Stoy, 2006], and set-
tings with the help of scaffolding [Thalamy et al., 2019;
Thalamy et al., 2020] have attempted to solve reconfigura-
tion problems. Different from previous work, we address
reconfiguration problem for the first time using multi-agent
reinforcement learning(MARL). The motivation is that previ-
ous algorithms based on lattice type designs are not suitable
for freeform designs with continuous configuration space and
action space.

Similar to past methods, conflicts occur during distributed
movements due to kinematic constraints. As shown in Fig-
ure 1, conflicts involved in past work mainly include colli-
sion (different modules are expected to occupy same posi-
tion), disintegration (due to improper movement of key mod-
ules), and closure (motion trajectory is hindered by formed
structure). Proper conflict resolution is necessary in many
tasks [Ahmadzadeh and Masehian, 2015].

Figure 1: Diagram of conflicts. (a) Collision, (b) Disintegration, (c)
Closure. Green arrows indicate motion planning of blue modules.

Conflicts may cause failure of reconfiguration. For exam-
ple, closure will cause deadlock in reconfiguration process,
and disintegration means failure. Moreover, conflicts can
cause reduction in reconfiguration efficiency. In the existing
work, the handling of conflicts means restriction on the move-
ment of some modules [Hourany et al., 2021]. For example,
[Tucci et al., 2018] avoid blockages by manually setting de-
tection points.

We focus on avoiding negative effects of conflicts during
the parallel reconfiguration of freeform modular robots. In
continuous reconfiguration of freeform modular robots, con-
flicts are even more severe and conflict avoidance methods
designed for discrete spaces are not applicable. Learning to
avoid conflict is promising in MARL framework.
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3 Problem Formulation
3.1 Freeform Modular Robot Abstraction
We model the main components of freeform modular robots
as follows: Each module is regarded as a standard spheri-
cal shape, containing an active connector, passive connec-
tors, and necessary sensing devices, driven by motion mo-
tors. Entire spherical shell can be used as a passive con-
nector, and the active connector in module decides how to
connect with passive connectors of touched modules. The
motion motor of the module has continuous motion capa-
bility in two-dimensional space. The module can move on
the surface of connected module but such movements are re-
stricted to 2D only. Modules can communicate with each
other within a range. As shown in Figure 2, these modules
can be interconnected and combined into different geometric
or topological configurations. Geometrically different config-
urations represent the distinct positional relationships among
modules. Topologically different configurations represents
the distinct connection relationships among modules. Dif-
ferent configurations are often derived from optimal configu-
ration designs[Liu and Althoff, 2020; Whitman et al., 2020;
Hu et al., 2022].

Figure 2: Different configurations formed by four modules.
(a)Anatomy of freeform modular robots. (b)A configuration geo-
metrically different from (a). (c)A topologically different configura-
tion from (a).

3.2 Reconfiguration Problem
The reconfiguration problem of freeform modular robots
studied in this paper is devoted to finding the optimal mod-
ule motion sequence between two configurations so that the
reconfiguration process can be completed as soon as possi-
ble. Consider a modular robot system {Mi} consisting of
n modules, given a pair of initial and target configurations,
from the configuration space X . The goal of reconfiguration
algorithm is to find an action sequence {ui,t} in allowed ac-
tion space U so that the action sequence can convert xstart

into xtarget, with the shortest time T . Any given configura-
tion x is uniquely determined by position information Pi of
each module and topological connection information δi,j of
all modules, which is the extension of incidence matrix [Chen
and Burdick, 1998] and assembly incidence matrix [Chen and
Yang, 1998] on freeform modular robot. During reconfig-
uration process, U contains actions that make motor torque
and velocity vector of each module satisfy corresponding mo-
tion constraints. Due to exponential configuration space and
tightly-coupled kinematic constraints, obtaining the optimal
module action sequence is challenging.

3.3 Markov Decision Process
To solve reconfiguration problem, we adopt the method of
MARL. We consider two general design principles for mod-

ular robots: (1) Each module has limited sensing capabili-
ties and communicates with a limited range of modules, (2)
Modules can move in parallel and distributed to complete
reconfiguration quickly. To comply with above principles,
we take the reconfiguration problem of modular robots as a
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP). Each module Mi does not have direct access
to environment state st but can obtain local observation oi,t
through its observation model Zi. At time step t, each mod-
ule selects action ui,t based on its observation oi,t, and policy
πi to form a joint action ut. The environment transits to st+1

with the probability P (st+1|st,ut). All modules have the
same form of goal, i.e., to maximize respective discounted
cumulative reward E[

∑T
t′=t γ(t

′ − t)Ri,t], usually defined as
value function Vi(st). We approximate the value function Vi,t

with a neural network to cope with high-dimensional config-
uration space and action space of freeform modular robots.

4 Approach
4.1 Reward Function Design
For reconfiguration problem, we design a reward function as,

Ri,t = cp ×Rtop
i,t + cq ×Rgeo

i,t − ct (1)

which is used by all modules. The first term is topological re-
ward, the second term is geometric reward, and the third term
is a tiny temporal reward, balanced by the hyperparameter cp
and cq . The reward encourages modules to approach target
configuration in both geometric and topological directions.

The topological reward is designed based on local topo-
logical information of configuration. For each module Mi,
its connection relationship with other n − 1 modules can be
represented by δi,j , where j belongs to I \ {i}. To encourage
modules to make their local topological connections approach
their local topological relationships in target configuration,
the topological reward is designed as follows:

Rtop
i,t =

∑
j(∥δ

t−1
i,j − δGi,j∥ − ∥δti,j − δGi,j∥)∑

j ∥δ0i,j − δGi,j∥
(2)

where ∥δt−1
i,j − δGi,j∥ and ∥δti,j − δGi,j∥ refer to the distance be-

tween local topology of Mi and target topology at time steps
t− 1 and t, respectively. This differential form avoids reward
sparsity. The denominator is only related to the topology of
local connection of module Mi in initial configuration and
target configuration, which normalizes the reward, and avoids
repeated adjustments to hyperparameters.

Utilizing the connection relationship can only promote
topological similarity of configurations. To make configu-
ration consistent in shape with target configuration, further
geometric information needs to be introduced. Here, we use
position information to design the geometric reward function:

Rgeo
i,t = ∥Pi,t − Pi,t−1∥ cosφ (3)

where the first term is displacement vector of module and φ
is the angle between two vectors with Pi,t−1 as the starting
point and Pi,t, and PG

i (the position vector of Mi in target
configuration) as the endpoints respectively. Therefore, the
geometric reward measures the effective distance that module
moves in correct direction to target position per time step.
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4.2 Altruism Proximal Policy Optimization
We process the continuous action space of freeform modu-
lar robots based on the Proximal Policy Optimization (PPO)
algorithm. If we try to maximize the discounted cumulative
rewards of each module according to PPO [Schulman et al.,
2017] , the objective function should be

LCLIP (θi) = Êi,t[min(kÂi,t, clip(k, 1− ε, 1 + ε)Âi,t)] (4)

where, k =
πi,θ(v

t
i |st)

πi,θold
(vt

i |st)
and Ai,t = Ri,t+γVi(st+1)−Vi(st)

represent importance sampling factor and advantage function
respectively.

This independent learning makes it difficult to perform col-
laboration because each module only regards other modules
as part of environment. In the process of reconfiguration, each
module moves towards its target quickly and selfishly, which
causes the conflicts described above.

In addition, maximizing the reward sum of all modules is
not a good solution as well. Even if it solves the credit assign
problem, the network has difficulty in fitting dynamic interac-
tion among modules in large-scale reconfiguration. Modules
may learn unreasonable behaviors to maximize the overall re-
ward that make the reconfiguration fail [McKee et al., 2020].
More importantly, modules with limited perception ability are
difficult to obtain overall reward synchronously in practical
modular robot system [Ahmadzadeh and Masehian, 2015].

In this paper, we solve the reconfiguration of freeform
modular robots from the perspective of hybrid motives, which
make each module learn to coordinate and avoid conflicts.

Our approach is inspired by the altruism scale [Sawyer,
1966]. Evolutionary altruistic tendencies enable species to
avoid social dilemmas through coordination [Bowles, 2006;
De Dreu et al., 2010]. For example, people avoid trampling
and crowding by showing comity, although requires sacrifice
of detours or slowing down. Therefore, we hope to introduce
altruism mechanism in MARL to achieve cooperation among
modules, and to avoid conflicts, thereby completing reconfig-
uration successfully and efficiently.

First, we measure the benefits of others. Neighbours of
modules and their relationships are dynamically changing
during the reconfiguration process. Borrowing from a sim-
ilar mean-field idea that averages the actions of neighboring
agents [Yang et al., 2018], however, from the perspective of
measuring the average reward of others [Nisbett and Kunda,
1985; Peng et al., 2021], we define the mean-field reward of
each module

RMF
i,t =

∑
j∈Ni,t

Rj,t

|Ni,t|
(5)

Where Ni,t = {j : ∥P t
i − P t

j ∥ ≤ d} is a changing set
containing the indices of other modules within a radius d
of Mi. In this way, the mean-field reward represents av-
erage reward of neighboring modules that change dynami-
cally around module Mi. Module Mi only needs to con-
sider the impact on this single reward and does not need
to separately consider the impact of each specific module,
which reduces interaction cost and guarantees scalability. We
can calculate the mean field advantage function AMF

i,t =

RMF
i,t +γV MF

i (st+1)−V MF
i (st), where the mean field value

function V MF
i (st) = E[

∑T
t′=t γ(t

′ − t)RMF
i,t ] is approxi-

mated by another neural network.
Then, we introduce the sociological mechanism of the al-

truism scale [Sawyer, 1966] to measure each module’s ten-
dency to benefit others, and form the altruism reward

RAS
i,t = Ri,t + αiR

MF
i,t (6)

where αi is an altruism factor in the interval (−1, 1) that mea-
sures each module’s attitude that benefits others. The mean-
ing of marginal value of αi in sociological experiments is
described as follows: people with αi = −1 tend to max-
imize the difference between their own and others’ bene-
fits i.e., the competitive personalities. People with αi = 0
don’t care about others’ benefits i.e., the selfish personali-
ties. And people with αi = 1 maximize the mutual bene-
fit of themselves and others i.e., the completely cooperative
personalities. Note that altruism factors are more suitable
for reconfiguration, which is a non-zero-sum game, than the
ring metric of social value orientation [McKee et al., 2020;
Peng et al., 2021] introduced by previous work in non-strict
zero-sum game problems.

The vector α is the set of αi, representing the distribution
of altruistic tendencies across the population. And the altru-
ism factor αi is an personalised attribute of each module Mi.
Heterogeneity and diversity can improve performance [Mc-
Kee et al., 2020]. Here we verify the rationality of introduc-
ing altruism factors through two preliminary experiments.

Figure 3: Priori experiments. (a)Schelling diagram of reconfigura-
tion problem. (b)Reconfiguration performance varies with altruism.
The shaded region shows the standard error of the mean.

We train PPO by way of CTDE(centralized training and de-
centralized execution) [Lowe et al., 2017] to maximize RAS :

LAS
αi

(θi) = Êi,t[min(kÂAS
i,t , clip(k, 1− ε, 1 + ε)ÂAS

i,t ] (7)

where altruism advantage function AAS
i,t = Ai,t + αiA

MF
i,t .

By fixing the value of αi to 1, we force the agent to learn
cooperative behaviors. By fixing the value of αi to −1, we
force the agent to learn betrayal behaviors. In this way, two
policy sets are formed. Draw a Schelling diagram as Figure 3,
where the horizontal axis represents the number of other mod-
ules that take cooperative behaviors, and the vertical axis rep-
resents the average payoff of module Mi. From the Figure 3,
it can be seen that for modules, adopting a betrayal strategy
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can only improve short-term benefits, and adopting appro-
priate cooperative behaviors can improve overall long-term
benefits. Therefore, the reconfiguration problem of modu-
lar robots is essentially a social dilemma problem [Schelling,
1973; Hughes et al., 2018]. Furthermore, different from the
sequential social dilemma problem previously posed in dis-
crete video games, the reconfiguration problem for modular
robots is a continuous action space problem.

Similarly, we set up an equally spaced set of α fixed to
all modules. Test results (as shown in Figure 3) indicate that
there is an optimal αi that achieves the best performance.

But it is impractical to set each αi manually. Therefore,
referring to the meta reinforcement learning [Günther et al.,
2020; Peng et al., 2021; Tang et al., 2021], we take Equa-
tion 8 as the optimization goal, and perform another layer of
training to optimize an appropriate personalised αi for each
module. A suitable set of personalised α can lead to the best
overall reconfiguration performance.

LG
i (θi|θ1, θ2 · · · ) = E[

∑
t

∑
j Rj,t

N
] (8)

In this way, the model will perform gradient descent on the
episode scale according to Equation 9 to optimize the altruism
factor of each module, and perform gradient descent on the
time step scale to maximize RAS simultaneously.

∇αiL
G
i (θ

new
i ) = ∇θnew

i
LG
i (θ

new
i )∇αiθ

new
i

= E[∇θnew
i

min(kAG, clip(k, 1− ϵ, 1 + ϵ)AG)]

· [∇θold
i

log πθold
i

(ui|s)]AAS
αi,t

(9)

where old and new parameters of policies (θoldi and θnewi )
are obtained by optimizing before and after in Equation 7,
respectively. The gradient of optimization target LG

i (θ
new
i )

is rewritten with respect to the altruism factor αi through
the chain rule and the Taylor series derivation. In this way,
personalised altruism factors of modules can be optimized in
training.

4.3 Observation and Action Space
The observation of module includes proprioceptive and envi-
ronmental perception, i.e., the position vector Pi, the velocity
vector vi, the altruism factor αi and active-passive connec-
tion relationship δi,I\{i}. Module can also sense the position
Pj and velocity vj of other modules j within the radius d.
Although all modules share the same parameters of policy
network when decentralized execution, each module act dif-
ferently on its own unique observations.

We directly incorporate the connection/disconnection of
active connectors into action space, which can be represented
by a tuple < σ1, σ2, δlink >. The linking action of each mod-
ule is represented by δlink. The torques of two motion motors
are σ1 and σ2 to drive module to move in any direction on the
plane. In addition, the maximum movement speed vmax of
modules is artificially limited.

4.4 Termination Criteria
The reconfiguration motion requires explicit termination cri-
teria so that modular robot system can continue task using tar-
get configuration. When training or testing in simulator, we

can directly judge whether the reconfiguration is completed
based on global information provided by simulator, and ter-
minate the reconfiguration process when specified time step
is reached. However, in real deployment of modular robots,
it is not suitable to directly specify the termination time step.
At the same time, the global information of configuration is
difficult to obtain, due to the limited communication and ob-
servation capabilities of modules.

The termination criteria is as follows. All modules run the
same termination criteria. Consider two modules A and B
in contact with each other. If the active connector of A is
connected to the spherical shell of B, then A is said to be a
child module of B and B is a parent module of A. Each mod-
ule judges whether its local connection relationship is consis-
tent with target configuration based on its local observations,
and transmits in-position signal Ω to parent module when it
matches and receives Ω of all child modules. In this way, Ω
will be distributed step by step from the leaf modules(without
child module) to the root module(without parent node). Then
root module pass termination signal Ω2 to child modules step
by step. Each module that receives Ω2 immediately termi-
nates its reconfiguration process. Only one active connector
per module means there is at most one loop per configura-
tion. If a root or leaf module is absent, virtual ones are gener-
ated among modules on the ring. This asynchronous termina-
tion criterion avoids the dependence on real-time updates of
global configuration information.

5 Simulation

Figure 4: Configurations: (a) rectangle, (b) Φ, (c) triangle, and (d)
arrow. They are paired as reconfiguration tasks.

5.1 Learning to Reconfigure
Referring to the setting of [Tucci et al., 2018], we construct
a series of desired two-dimensional configurations in unity-
ml [Juliani et al., 2018] (see Figure 4), as the basic environ-
ment for experiments. The geometric and topological features
of these configurations, including hole-containing structures
or bridging, are prone to conflict during reconfiguration and
are suitable for demonstrating algorithm performance.

We implement the above method based on the PPO of Rl-
lib [Liang et al., 2018] and share the same policy in all mod-
ules through the parameter sharing [Christianos et al., 2021],
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Figure 5: Visualisation of altruistic behaviour in the reconfiguration process. Top: Modules trained by APPO exhibit altruistic behaviors in
Rectangle2Triangle, Rectangle2Arrow and Rectangle2Φ, respectively. Bottom: Conflicts arise with modules trained by baselines in different
reconfiguration tasks.

Rectangle2Triangle Rectangle2Arrow Rectangle2Φ
MC AT CR MC AT CR MC AT CR

IPPO-1 68.1±5.6 7.2±0.7 42.8±3.7 73.9±2.1 10.2±1.3 38.2±1.1 62.4±7.1 15.8±1.8 67.1±3.4
IPPO-2 65.8±3.7 10.9±2.0 69.8±2.6 78.6±5.7 13.4±1.9 63.9±2.6 57.2±4.9 0 74.9±2.7
CoPO 85.3±5.7 5.8±1.8 18.7±1.9 90.2±3.1 6.5±0.6 14.9±4.9 82.3±3.5 7.1±1.6 27.3±5.0

MFPPO 77.9±4.4 5.8±1.5 32.7±1.4 85.3±5.8 8.9±1.5 23.1±4.7 60.5±1.5 0 59.5±5.5
APPO 92.1±2.3 5.7±0.9 11.6±0.8 92.3±1.6 5.2±1.7 10.8±0.5 90.8±6.9 5.4±1.4 19.4±0.6

Table 1: Comparison of main results

which guarantees the scalability of the method. Since each
module has separate local observations, modules take differ-
ent actions when test.

5.2 Settings
We compare multiple baselines that can handle continuous
motion control, including Independent Proximal Policy Op-
timization (IPPO), Mean Field Proximal Policy Optimiza-
tion (MFPPO) and Coordinated Policy Optimization (CoPO).
IPPO-1 maximizes the individual reward according to Equa-
tion 4, and similarly, IPPO-2 maximizes the mean-field re-
ward. MFPPO is implemented based on MFRL[Yang et al.,
2018]. The state of neighbor modules is encoded into the
value function. In this way, all neighbors of the module are
equivalent to an agent and can perceive the state of neighbors.
CoPO[Peng et al., 2021] implements the sociological mech-
anism of homogeneous social value orientation and the two-
layer optimization based on meta-gradient to simulate self-
driven particles systems such as traffic flow.

Evaluation metrics include mean congruence(MC), aver-
age reconfiguration time(AT) and conflict rate(CR) . MC is
the average of similarity of configuration obtained from re-
configuration method to target configuration, which repre-
sents the effectiveness of method. AT is the average time-
consuming of modules that have completed the reconfigura-
tion in test, which represents the efficiency of the method.

CR is the proportion of modules that cause conflicts to the to-
tal number of modules. For easy detection in Unity, conflict
detection are simplified into collision detection, loop forma-
tion detection and break detection. And modules that cause
conflicts multiple times are only counted once.

5.3 Results

Figure 6: Results of generalization experiments. (a)Train on Rect-
angle2Triangle and test on Rectangle2Arrow. (b)Train on Rectan-
gle2Triangle and test on Rectangle2Φ. The shaded region represents
the performance gap between target task and source task.

It can be seen from Table 1 that compared with the base-
lines, our method shows advantages in terms of effective-
ness and efficiency. In configuration pairs containing more
complex configurations, our method still obtains high perfor-
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Figure 7: Performance varies with quantity. (a)Rectangle configuration to triangle configuration. (b)Rectangle to arrow. (c)Rectangle to Φ.
The shaded region shows the standard error of the mean.

Figure 8: Mean congruence under different termination.

mance. Lower conflict rates guarantee reconfiguration perfor-
mance. The personalised altruism factors enhance the diver-
sity of modules and improve the efficiency of reconfiguration.

The absence of a cooperation mechanism in IPPO and MF-
PPO results in poor performance, primarily due to the in-
creased likelihood of conflicts during the reconfiguration of
complex configurations. The mean congruence of the CoPO
is closed to our method, but the performance of the reconfig-
uration time is weaker. In non-zero-sum games, collaborative
mechanisms based on non-strict zero-sum games do not fit the
nature of the problem. The unweighted self-reward reduces
the noise in the model training.

Figure 5 shows the reconfiguration process. The trained
modules show different degrees of altruistic tendencies, and
emerge various altruistic behaviors, such as fast passing,
queuing, avoidance, etc. In contrast, snapshots of similar
stages in the reconfiguration process of other methods show
conflicts of freeform modular robots and their impact. This
intuitively reveals our reconfiguration algorithm that by intro-
ducing the personalized altruism factor, facilitates diverse co-
ordination among modules and thus spontaneously achieves
conflict avoidance.

Figure 6 shows the performance of the trained model when
tested on different configuration pairs. Our model shows
good generalization ability on unseen configuration pairs, and
strategies trained based on altruism factors can better avoid

conflicts on different reconfiguration paths. This demon-
strates the advantages of applying MARL to reconfiguration
problem. The generalization of model can be further en-
hanced by the careful design of learning the commonalities
of the configurations. Modules can handle zero-shot tasks in
large-scale reconfiguration and even achieve adaptive recon-
figuration.

And Figure 7 shows the performance of the model when
the system has different numbers of modules. This variation
of the number of modules could be caused by module com-
munication or motor failure in a real environment, or adding
more modules to perform more complex tasks. Our method
exhibits robustness to the missing and adding of modules.
This is owing to the fact that the algorithm runs distributed
on autonomous modular robots.

Figure 8 shows the mean congruence to different termi-
nation time steps during test, where points represent the re-
sults obtained using the proposed termination criterion. The
distributed termination criterion that can effectively terminate
the reconfiguration process after reconfiguration is complete
without external assistance or global information. This is
important for realistic deployment of large-scale perception-
limited freeform modular robot systems.

6 Conclusion

In this paper, a MARL algorithm based on altruism factors
were designed to realize continuous reconfiguration control
of freeform modular robots. Our approach showed general
characteristics of modular robots with limited perception and
parallel reconfiguration, demonstrating the research prospects
for the automatic design of reconfigurable motion controllers.
In addition, the introduction of personalised altruism factors
and their optimisation are contributions to the automated so-
lution of social dilemma problems.

As the first attempt to solve continuous reconfiguration
problem of freeform modular robots and the first attempt to
solve reconfiguration problem using MARL methods, our ap-
proach and experiments are still limited to two-dimensional
reconfiguration. In the future, we will extend our algorithm
in three-dimensional space and deploy it on the new freeform
modular robot system that is under development.
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