
Complex Contagion Influence Maximization: A Reinforcement Learning Approach
Haipeng Chen1 , Bryan Wilder2 , Wei Qiu3 , Bo An3 , Eric Rice4 , Milind Tambe5

1William & Mary
2Carnegie Mellon University

3Nanyang Technological University
4University of Southern California

5Harvard University
hchen23@wm.edu, bwilder@andrew.cmu.edu, qiuw0008@e.ntu.edu.sg,

boan@ntu.edu.sg, ericr@usc.edu, milind_tambe@harvard.edu

Abstract
In influence maximization (IM), the goal is to find a
set of seed nodes in a social network that maximizes
the influence spread. While most IM problems focus
on classical influence cascades (e.g., Independent
Cascade and Linear Threshold) which assume indi-
vidual influence cascade probability is independent
of the number of neighbors, recent studies by soci-
ologists show that many influence cascades follow
a pattern called complex contagion (CC), where in-
fluence cascade probability is much higher when
more neighbors are influenced. Nonetheless, there
are very limited studies for complex contagion in-
fluence maximization (CCIM) problems. This is
partly because CC is non-submodular, the solution
of which has been an open challenge. In this study,
we propose the first reinforcement learning (RL)
approach to CCIM. We find that a key obstacle in
applying existing RL approaches to CCIM is the
reward sparseness issue, which comes from two dis-
tinct sources. We then design a new RL algorithm
that uses the CCIM problem structure to address
the issue. Empirical results show that our approach
achieves the state-of-the-art performance on 9 real-
world networks.

1 Introduction
Influence maximization (IM) is the problem of selecting a sub-
set of seed nodes in a social network to maximize the resulting
cascade of influence. Such network-based interventions have
been applied in many socially important domains such as HIV
prevention [Wilder et al., 2021], development [Banerjee et al.,
2013], or nutrition campaigns [Kim et al., 2015]. Influence
cascades are most commonly modeled using the independent
cascade (IC) and linear threshold (LT) models [Kempe et al.,
2003]. The key assumption of these models is that influence
spreads independently across edges of the network, which
may be appropriate for “simple" cascades such as epidemics.
However, recent work in sociology shows that collective social
behaviors often spread very differently: an individual’s behav-
ior is affected by its neighbors as a whole, and “individual

Figure 1: Different trends of influence cascade probability (y-axis)
given number of activated neighbors (x-axis), in simple (submodular)
vs complex (non-submodular) contagions.

adoption was much more likely when participants received
social reinforcement from multiple neighbors in the social net-
work” [Centola, 2010]. This is explained using the “complex
contagion” model [Centola and Macy, 2007], where the adop-
tion probability has a non-concave jump when enough neigh-
bors are activated. Figure 1 shows a comparison of simple vs
complex cascade probability to a target node w.r.t. numbers
of activated neighbors. There is a noticeable surge at x = 3
for complex contagion. Complex contagion has found to be
especially important in socially important domains such as the
spread of preventative health behaviors [Kuhlman et al., 2011;
Centola, 2010] and agricultural innovations in development
[Beaman et al., 2021], due to the need to maintain behaviors
which are intensive, risky, or dependent on social reinforce-
ment. Designing better interventions in these domains will
require algorithms to seed complex cascades.

Despite evidence that many influence cascades display com-
plex dynamics [Backstrom et al., 2006; Romero et al., 2011;
Ugander et al., 2012], there are very limited studies on CCIM.
Mainstream IM algorithms rely crucially on a property of
simple contagions called submodularity, which intuitively re-
flects diminishing returns to the selection of additional seeds
(the green curve in Figure 1). Under submodularity, a sim-
ple greedy algorithm is highly effective [Kempe et al., 2003].
However, the CC models’ surge of cascade probability in
adoption probability violates submodularity. This greatly com-
plicates optimization by introducing complementarities: the
marginal gain to selecting any single seed will often be small
since its value is only revealed in combination with a spe-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5531

cific set of other seeds. Formally, this means that CCIM is
NP-hard to approximate even under simplified network mod-
els [Schoenebeck and Tao, 2019]. To our knowledge, the only
practical algorithm for CCIM thus far is the Dynamic Pro-
gramming for Influence Maximization (DPIM) approach of
[Angell and Schoenebeck, 2017]. However, DPIM heavily
relies on the assumption that the network has a hierarchical
structure and its effectiveness may be limited when a good
hierarchical decomposition cannot be found.

CCIM is essentially a stochastic combinatorial optimiza-
tion problem (COP) with a non-submodular objective func-
tion. Inspired by recent works that use RL to address
COPs [Bello et al., 2016; Khalil et al., 2017; Kool et al., 2018;
Kwon et al., 2020], especially (submodular) influence maxi-
mization [Manchanda et al., 2020; Chen et al., 2021], we take
a step further and ask the research question: Can we use RL
to address complex contagion influence maximization?

The underlying idea of RL-based approaches to COPs is to
decompose the original seed set selection into a sequence of
seeds, and it does so greedily based on the marginal “score”
of each node. The scores are estimated using deep function
approximators. Despite the initial success of applying RL
for IM, we found that directly applying these methods to
the CCIM problems often yields suboptimal performance. A
major challenge is that the reward signal in CCIM is much
more sparse than simple contagion IM. We identify two dis-
tinct causes of reward sparseness. First, the effective solution
space (i.e., solutions with non-negligible influence) is much
smaller. This is because CC requires a harsher condition
for influence to spread. Second, the marginal contribution
of each node (action) in CCIM is more sparse than regular
IM, because the reward becomes non-negligible only after
multiple seeds are selected. This yields small or zero reward
at the first few time steps even with the credit assignment
mechanism used in previous works [Manchanda et al., 2020;
Chen et al., 2021]. We refer to the two causes of reward sparse-
ness as effective solution sparseness and credit sparseness.

To address the two issues, we propose a new RL-based so-
lution approach called Reinforcement Learning for Influence
Maximization with Complex Contagion (RL4CCIM), with
several innovative components to existing approaches [Man-
chanda et al., 2020; Chen et al., 2021]. For effective solu-
tion sparseness, we design a solution filtering step that yields
more effective policy exploration. We also use an adapted
return-based prioritized experience replay (PER) [Schaul et
al., 2016] component that increases the chances of sampling
training transitions with higher rewards. For credit sparseness,
we propose a new reward-shaping component which, at the
end of each training episode, assigns an additional reward
to nodes by looking at their marginal contribution w.r.t. the
global action sequence.

Our main contributions are: 1) We propose the first learning-
based approach to CCIM. Our work is also one of the first few
that study CCIM and non-submodular IM. 2) We identify key
challenges in applying existing RL approaches to the CCIM
problem, and propose a novel RL algorithm to address them. 3)
We conduct extensive empirical evaluations. Results on 9 real-
world networks and various settings show that our approach
achieves state-of-the-art performance. The effectiveness of

our proposed components is shown via ablation study.

2 Related Work
Complex contagion influence maximization. [Domingos
and Richardson, 2001] are the first to study the IM problem
from an algorithmic perspective. [Kempe et al., 2003] for-
mulate it as a discrete optimization problem on the networks,
along with a greedy solution which has an approximation ratio
of 1 − 1/e. The greedy algorithm is improved by various
follow-up studies [Leskovec et al., 2007b; Borgs et al., 2014;
Tang et al., 2015] which accelerate the algorithms with per-
formance guarantees. These studies focus on cascade models
such as IC and LT, which are essentially submodular. [Back-
strom et al., 2006] show that influence diffusion models often
appear to be “S-shaped” (see e.g. Figure 1), i.e., the prob-
ability of influence propagation has slow growth for small
numbers of friends, rapid growth for a moderate numbers of
friends, and a rapid flattening of the curve beyond a certain
point. The phenomenon is further studied in the epical work
[Centola and Macy, 2007] where the complex contagion model
is introduced to model such collective social behavior, where
the cascade probability is higher when multiple neighbors are
activated. The model is validated by evidence from various
succeeding studies [Leskovec et al., 2007a; Centola, 2010;
Romero et al., 2011].1

Despite the broad existence of complex contagion, there
have been extremely limited studies on the influence maximiza-
tion problem from an algorithmic perspective. [Ghasemiesfeh
et al., 2013; Gao et al., 2016] provide an analytical study
of the complex contagion model given certain assumptions
of the underlying network models. They do not consider
the seed selection problem. [Schoenebeck and Tao, 2017;
Schoenebeck and Tao, 2019] point out that the CCIM is non-
submodular, and prove that it is NP-hard to approximate even
under simplified network models. To our knowledge, [Angell
and Schoenebeck, 2017] provide the only practical method
that address the non-submodular IM problems via dynamic
programming. However, their approach highly relies on the
assumption that the networks are hierarchically structured,
and therefore its performance heavily depends on the hierar-
chical decomposition component of the original network. A
more recent study [Schoenebeck et al., 2020] prove theoreti-
cally the best seeding strategy on the stochastic hierarchical
blockmodel, with other strong assumptions on the density of
the network. Their seeding strategy has not been empirically
evaluated. In contrast to the analytical approaches in existing
works, we present the first learning based approach to CCIM.
RL for COPs. The key idea of RL based methods to
COPs is to decompose the original combinatorial action
into a sequence of individual actions, and then learn poli-
cies that greedily select nodes based on the “scores” esti-
mated by deep function approximators [Bello et al., 2016;
Graves et al., 2016]. Later approaches integrate RL with more
sophisticated representation learning methods such as graph
neural networks [Khalil et al., 2017], recurrent neural net-
works [Nazari et al., 2018], or attention mechanisms [Kool

1The other variants of complex contagion [Ugander et al., 2012;
Banerjee et al., 2013] are out of scope of this paper.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5532

et al., 2018; Deudon et al., 2018] to better approximate the
value/policy functions for COPs. The learning procedures
are further augmented by additional beam search [Joshi et
al., 2019], Monte Carlo tree search [Fu et al., 2021], dy-
namic programming [Kool et al., 2021], active search [Hot-
tung et al., 2021], or multiple rollouts during inference [Kwon
et al., 2020]. These techniques are then applied in vari-
ous domains including scheduling in clusters [Mao et al.,
2019], transportation [Qiu et al., 2019], job shop schedul-
ing [Zhang et al., 2020], vehicle routing [Kool et al., 2021],
network planning [Zhu et al., 2021] and epidemics con-
trol [Ou et al., 2021]. We refer to [Bengio et al., 2021;
Mazyavkina et al., 2021] for a detailed survey.

RL for IM. Early attempts of RL for IM problems [Lin et
al., 2015; Ali et al., 2018] focus on learning which high-level
greedy algorithm to use, instead of the specific seeding strategy.
[Kamarthi et al., 2020] apply RL to explore the structure
of an unknown network in influence maximization, instead
of the seeding strategy. [Li et al., 2019; Tian et al., 2020;
Manchanda et al., 2020; Chen et al., 2021] extend the method
in [Khalil et al., 2017] to address the IM problem, where to
address the credit assignment problem, the reward of a new
node is defined as its marginal contribution. [Manchanda et al.,
2020] focus on solving IM problem instances with very large
networks. [Chen et al., 2021] use RL to address IM problem
where the willingness of a node to be a seed is uncertain. To the
best of our knowledge, none of them consider CCIM, which
is much more challenging compared to classic IM because of
non-submodularity and the resulting reward sparseness issues.

3 Complex Contagion Influence Maximization
We consider a social network as a graph G = (V,E), where
V and E are the nodes and edges, respectively. Each node is
either activated or inactivated, which means the node is influ-
enced or not. We assume all nodes are initially inactivated un-
less chosen as the seed node. Nodes which are linked by edges
have a probability p of influencing each other. For each node
v, its neighbors are represented as N (v). In simple contagions
such as the Independent Cascade (IC) model [Goldenberg et
al., 2001] and the Linear Threshold (LT) model [Granovet-
ter, 1978], the probability p is assumed to be a constant that
is independent of the number of its neighbors2. In complex
contagion, the assumption is relaxed, and p is represented as
a dependent variable of the number of activated neighbors
k. Without loss of generality, we consider the most classi-
cal K-complex contagion model [Centola and Macy, 2007;
Centola, 2010; Ghasemiesfeh et al., 2013], where

p(k) =

{
p0, if k ≥ K

p1, if k < K
(1)

where 0 ≤ p1 ≪ p0 ≤ 1. p1 (p0) can be interpreted as a
very small (large) influence probability when there is a small
(large) number of activated neighbors. K ≥ 1 is an integer

2By LT, we refer to the canonical version where the activation
threshold is uniformly distributed in [0,1], which is submodular. In
LT models, p can be seen as the weight that an activated neighbor
adds to the target node.

threshold value. K is interpreted as the threshold to make
a qualitative change to p(k). Given a set S ⊆ V of seed
nodes, the influence of the complex contagion is represented
as σ(G,S). The complex contagion influence maximization
problem is to select the optimal set of seeds S∗ such that the
influence is maximized:

S∗ = argmax
S⊆V

σ(G,S) (2)

given |S| = T , i.e., the number of seeds is equal to budget T .
Definition 1. A set function f : 2V → R is submodular if for
any S ⊂ S′ ⊂ V and any v ∈ V \ S′, it holds that

f(S ∪ {v})− f(S) ≥ f(S′ ∪ {v})− f(S′)

Theorem 1. The influence function σ(G,S) defined based
on the cascade probability function in Equation.(1) is non-
submodular.
See proof in Appendix A. Because Independent Cascade (IC)
IM is NP-hard [Kempe et al., 2003], we have
Theorem 2. The K-complex contagion influence maximiza-
tion problem is NP-hard.

The proof can be done by showing that a special instance
of K-complex contagion is an arbitrary instance of the IC
model. Consider a special instance of K-complex contagion
when K = 1. In this instance, the cascade probability p(k)
in Eq.(1) becomes a constant value that does not depend on
k: p(k) = p0. In other words, it is equivalent to an arbitrary
instance of the IC model.

Non-submodular models are fundamentally harder than sub-
modular ones because the algorithm needs to take exactly the
right combination of nodes before receiving any reward; the
individual actions may fail to generate any influence on their
own. For submodular models, there are no such “complemen-
tarities” between nodes and so greedy strategies are provably
optimal. An advantage of RL over other heuristics is that
during training it looks ahead multiple steps (guided by the
exploration policies, the n-step return, and the intermediate
rewards we propose) instead of being trapped in a bad local
optimum like greedy methods. Another strength of RL is that
it can learn policies to any given network structure without
redesigning the solution architecture.

Therefore, inspired by recent works that combine RL
and graph representation techniques to address COPs on
graphs [Khalil et al., 2017; Deudon et al., 2018; Bengio et al.,
2021] and influence maximization in particular [Manchanda
et al., 2020; Chen et al., 2021], we design a new RL algorithm
to address the CCIM problem, called Reinforcement Learning
for Complex Contagion Influence Maximization (RL4CCIM).

4 MDP Formulation & RL Preliminary
4.1 MDP Formulation of CCIM
In order to fit the complex contagion influence maximiza-
tion problem into the RL framework, we first formulate this
problem as a discrete time MDP. In this MDP, the time steps
t = 1 . . . T correspond to the sequence of seed node selec-
tions. That is, each time step t means selecting one seed
node, and the time horizon of the MDP is the total budget T .

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5533

The state captures the current status of a node selection time
step t, i.e., which nodes have already been selected before t.
We use a binary indicator vector Xt ∈ {0, 1}|V | to represent
the state, where an element Xt,v = 1 means the node v is
selected (activated), and 0 otherwise. It is easy to see that∑|V |

v=1 Xt,v = t− 1, i.e., the total number of selected nodes at
time t is equal to t−1. Here Xt can be seen as the vector-form
equivalence of the set-form notation St (i.e., the set of nodes
selected as seeds at time t).

Given state Xt at time t, the action at is to select the next
node. We use a one-hot vector at ∈ {0, 1}|V | to represent the
action, where the non-zero element at,v = 1 means node v
is the selected node at the current time step. The transition
function is represented as

Xt+1 = Xt + at (3)

It is worth noting that the transition function in this setting is
deterministic. The terminal state XT is the state at the final
time step T , and it suffices that

∑|V |
v=1 XT,v = T . Following

the ideas in [Manchanda et al., 2020; Chen et al., 2021], the
one-step reward is defined as the marginal contribution of a
new seed node selected at time t, i.e.,

r(Xt, at) = σ(G,Xt+1)− σ(G,Xt) (4)

where σ(G,Xt) is equivalent to the set-form notation
σ(G,St), with St being the set of seeds selected at t.

4.2 RL Preliminaries
RL is a learning paradigm where agents learn to take actions
in an environment to achieve a certain goal. In this paper, the
environment is the MDP that we formulated previously. At
each time step t of the MDP, the agent takes an action based on
its policy π(at|Xt), where Xt and at are respectively the state
and action of the MDP. The selected action then interacts with
the environment and the environment returns a reward signal
rt(Xt, at) which reflects how good the action/policy is, as
well as the next state Xt+1. Q-learning [Watkins and Dayan,
1992] is a value-based RL variant that represents the value
of a state action pair (Xt, at) with the Q-function Q(Xt, at).
The Q-function is usually updated using the Bellman equation:
Q(Xt, at) = rt(Xt, at) + γmaxat+1 Q(Xt+1, at+1), where
γ is the discount factor. During training, actions are usually
taken by balancing the exploitation which takes the action with
the highest Q-value, and exploration which takes a random
action (usually with a decaying probability ε). DQN [Mnih et
al., 2013] improves Q-learning’s function approximator with
parameterized deep neural networks Qθ(Xt, at), together with
adoption of other techniques including the ideas of experience
replay [Lin, 1992], which stores the training trajectories in a
replay buffer and then updates the neural networks parameters
θ using mini-batches of data. In this paper, we use the double-
DQN framework [Van Hasselt et al., 2016] as our base RL
method which trains an additional target network to mitigate
the overestimation issue in vanilla DQN.

5 RL4CCIM
We first use a motivating example that illustrates the reward
sparseness issues. We then introduce the key methodology.

8

1

2

37

6

5

4

Figure 2: An example network.

5.1 A Motivating Example
Recent studies [Khalil et al., 2017; Kwon et al., 2020] inte-
grate RL with deep function approximators to address com-
binatorial optimization over graphs, including influence max-
imization [Manchanda et al., 2020; Chen et al., 2021]. We
build RL4CCIM on this line of works. Despite the initial
success of these methods in generic COPs and IM problems,
we found that the non-submodularity of the CC models and
the resulting reward sparseness creates a major hurdle that
prevents us from directly applying these existing methods.

More specifically, the reward sparseness arises from two
causes: the effective solution sparseness and credit sparseness.
To take a closer look at the two issues, we refer to the example
network in Figure 2 with a standalone illustration. Set p0 = 1,
p1 = 0, K = 3 in Eq.(1), and the budget as T = 4. There
are in total C4

8 = 70 feasible solutions. (i) Effective solution
sparseness. For simple contagion (i.e., K = 1) where p(k) =
p0 = 1, because it is a fully connected network, any solution
is an effective solution. Whereas for the complex contagion
(K = 3), only nodes 2 and 6 have at least 3 neighbors, and
therefore can be activated when there are enough activated
neighbors. Many solutions (e.g., {5, 6, 7, 8} or {1, 2, 3, 4})
are ineffective which cannot activate any other node. Using
exhaustive search, we can get that there are 17 out of C4

8 = 70
combinations of 4 seeds that are effective solutions, taking up
only 24.3%. (ii) Credit sparseness. We consider a sequence
of seed nodes: {1, 2, 3, 5}. It is an effective solution which
can activate node 6. However, because of the way the reward
is defined (see Eq.(4)), the reward of the first three steps are
all 1’s (i.e., only the seed node itself is activated), and only
the last time step has a reward of 2. This leads to very slow
training since the first time steps yield the same reward of 1.

5.2 RL4CCIM Architecture
The above two issues motivate the design of RL4CCIM. Fig-
ure 3 shows the overall architecture of RL4CCIM, where the
key novelties are i) a solution filtering mechanism that pro-
vides a warm-start of the learning procedure, ii) a customized
prioritized experience replay component that encourages train-
ing transitions with higher rewards, and iii) a reward shaping
component which mitigates the assignment sparseness issue.
Algorithm 1 presents the training algorithm of RL4CCIM,
which follows the flow of DQN, with the 3 new elements be-
ing described in: Lines 3-5 and 9 for solution filtering, Line
11 for PER, and Lines 13-16 for reward shaping.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5534

Unselected (𝑋𝑡,𝑣 	 = 0)

Selected (𝑋𝑡,𝑣 = 1)

Environment

Action 𝑎𝑡~𝜋

Effective candidates

Solution
filtering

State 𝑋𝑡

Update 𝑄𝜃
with TD-loss

Prioritized
sampling

replay buffer

Agent

Transition 𝑋𝑡, 𝑎𝑡, 𝑟′𝑡, 𝑋𝑡+1
with shaped reward 𝑟′𝑡

Figure 3: RL4CCIM architecture. It starts by solution filtering as a pre-processing step which filters out all effective candidates A. After that,
learning starts by going over multiple episodes where the agent and the environment iteratively interacts and generates training transitions. The
generated transitions with the shaped reward r′t are periodically stored in the replay buffer, and the prioritized sampling unit then samples
mini-batches of transitions to update Qθ , which is subsequently used to generate more actions and training transitions.

As a fourth improvement, instead of using S2V [Dai et
al., 2016] as the function approximator that works as the
graph representation learning unit in [Khalil et al., 2017]
and RL4IM [Chen et al., 2021], we use a more advanced
graph representation learning technique called graph attention
networks (GAT) [Veličković et al., 2018]. GAT is a neural
network architecture that operates on graph-structured data,
leveraging masked self-attentional layers [Vaswani et al.,
2017] to address the shortcomings of prior methods based
on graph convolutions or their approximations. We focus
on the elaboration of the first three improvements and refer
to the original paper [Veličković et al., 2018] for a detailed
description of GAT.

Algorithm 1: RL4CCIM training
1 Input: network G = (V,E), seed budget T , complex

contation paramters p0, p1,K
2 Initialize Qθ(·) and replay bufferM← ∅
3 Initialize A ← ∅
4 for v ∈ V do
5 if |N (v)| ≥ K then A ← A∪N (v);
6 for episode = 1 . . . E do
7 Reset environment, initialize state X1 ← 0
8 for t = 1 . . . T do
9 With probability 1− ε take action

at ← argmaxat∈ Qθ(Xt, at); with probability
ε ∗ ε′ take a random action at ∈ {0, 1}|A|; with
probability ε(1− ε′) take a random action
at ∈ {0, 1}|V |

10 Get new transition m← (Xt, at, rt, Xt+1), where
rt is calculated with Eq.(4).

11 Sample mini-batch data M ⊂M with Eq.(5)
12 Update Qθ with M using gradient descent
13 for t = 1 . . . T do
14 Calculate r′(Xt, at) with Eq.(7)
15 Get shaped transition m′ ← (Xt, at, r

′
t, Xt+1)

16 Update replay bufferM←M∪m′

17 return Qθ(·)

5.3 Solution Filtering
As introduced previously, a main challenge in applying exist-
ing RL for IM methods is the effective solution sparseness.

Definition 2 (Effective solution). Given G and σ(G,S), an
effective solution is a solution S where σ(G,S) > |S|.

For a network G = (V,E) and a budget of T , the size
of the feasible solution space is then CT

|V |, the complexity
of which is O

(
min(|V |T , |V ||V |−T)

)
. While the sequence

decomposition avoids enumerating the combinatorial action
space, the effective solutions are in fact very sparse in the
CCIM problem. This makes initial learning very slow as most
episodes have close to 0 rewards. For instance, only 24.2% of
nodes in the toy example in Figure 2 have non-zero rewards.
The percentage of effective solutions gets even lower when
the network sizes and the threshold K are larger.

To that end, our key observation is that certain nodes are
never part of an effective solution. For example, nodes 4 and
8 are never able to activate any other nodes. Thus, we may
remove them from the feasible solution space to increase the
chances that effective solutions are selected. In doing so, the
number of feasible solutions becomes C4

6 = 15, which is
15/70 = 21.4% of the original feasible solution space.

Inspired by this, we design a solution filtering mechanism,
as described in Lines 3-5 of Algorithm 1. We initialize an
empty node set A = ∅ which stores the set of filtered nodes
that could potentially be selected as seed nodes. We enumerate
through each node v ∈ V of a network, and check if the
number of its neighbors is no smaller than the threshold K. If
it is, then we update A as the union of A and all the neighbors
of v. In this case, if a node is not in any neighborhood which
can potentially activate another node, that node will not be
contained in the effective candidate set A. Because of this, it
is guaranteed that

Theorem 3. The effective candidate set A contains any effec-
tive solution S where σ(G,S) > |S|.

This means that the solution filtering step does not exclude
any potentially optimal solution. When exploring new actions,
instead of taking a random action from the entire action space

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5535

{0, 1}|V |, the action exploration in RL4CCIM is initially re-
stricted on {0, 1}|A| (Line 9). To ensure that the solution space
is sufficiently explored and un-biased in the final stage, we use
an annealing factor (similar to the original exploration prob-
ability ε) ε′ that gradually deceases from a large value (e.g.,
0.99) to a small value (e.g., 0). The probability of selecting
from the effective candidate set A is then ε ∗ ε′.

5.4 Reward-based Prioritized Experience Replay
The solution filtering mechanism does not guarantee that any
combination of solution in A is effective. E.g., in Figure 2,
if there is a node 9 which is only linked to node 3, then A =
{1, 2, 3, 4, 5, 6, 7, 9}. However, solution {1, 2, 6, 9} does not
activate any other node and thus is not an effective solution.

The solution filtering mechanism works at the generation
time of training trajectories. All the transitions generated
will be stored into the replay buffer and later used to sample
batches of training data. To further encourage sampling ef-
fective solutions, or more specifically, solutions with higher
rewards, we adopt the idea of Priotized Experience Replay
(PER) [Schaul et al., 2016]. Opposed to sampling transition
data uniformly in classical experience replay [Lin, 1992], PER
samples transition data with different priorities defined based
on a certain metric.

In [Schaul et al., 2016], the selection metric is defined
as the temporal difference (TD) error δ = rt(Xt, at) +
γmaxat+1 Q(Xt+1, at+1) − Qθ(Xt, at). Let qi = |δi| + ϵ,
where ϵ > 0 is a very small value to prevent 0 in the denomi-
nator, the probability of sampling a trajectory i with TD error
δi is then Pi =

qαi∑
k qαk

, where α is a temperature parameter.
In RL4CCIM, because we aim to increase the chances of

sampling transitions with higher rewards, we propose two
other versions of priority values. One version is to directly
use reward3 ri(X, a) as the priority value: pi = ri(X, a) + ϵ.
Though this encourages transitions with higher rewards, it
has the risk of causing overestimation, where the biases of
rewards are exaggerated by the Bellman target [Van Hasselt
et al., 2016]. Indeed, we found that in practice, this version is
sometimes not stable. We therefore introduce a third variant
which takes the (weighted) sum of them qi = |δ|+βri(X, a)+
ϵ. The sampling probability is then:

Pi =
(|δ|i + βri(X, a) + ϵ)α∑
k(|δk|+ βrk(X, a) + ϵ)α

(5)

This form of priority balances the benefit of training with high
reward transitions and the risk of overestimating Q values.

5.5 Reward Shaping
As shown in Eq. (4), existing RL for IM methods define the
reward of a new seed node at as the marginal contribution
of that node w.r.t. its “preceding” seeds Xt =

∑t−1
τ=1 aτ .

This is reasonable when the influence function is submodular
– because the following nodes will make smaller marginal
contributions. This becomes insufficient when it comes to

3In practice, we use the “n-step” return [Watkins, 1989] instead
because it can look at more steps of reward in the future, but omit the
discussions here for ease of reading.

complex contagion, where the influence function is no-longer
submodular. As illustrated in Section 5.1, this incurs the credit
sparseness issue.

To mitigate this issue, our idea is to add a regularization
term to the reward, which accounts for its marginal contribu-
tion (which is much more likely to be non-zero) from a “global”
perspective. At first thought, the most desirable regularization
is the Shapley value [Shapley, 2016]. This, however, intro-
duces exponentially large number of calculations of marginal
contributions, which is computationally infeasible. As a sim-
plified alternative, we use the marginal contribution of action
at w.r.t. the sequence of nodes selected in the same episode:

rglobal(st, at) = σ(G, a1:T)− σ(G, a1:t−1; at+1:T) (6)

where a1:t :=
∑t

τ=1 aτ . a1:t−1 and at+1:T respectively rep-
resent preceding and proceeding seed nodes of at. The shaped
reward is then represented as:

r′(Xt, at) = r(Xt, at) + ω · rglobal(Xt, at) (7)

where ω is the weight. Note that this requires running an
entire simulation before assigning the immediate reward of
each action/seed (see Lines 13-16 of Algorithm 1).

6 Experiments
We first present evaluations of the performances of RL4CCIM
and baselines on various real-world networks and problem
settings. We then do an ablation study to evaluate the effec-
tiveness of the components that we introduce in Section 5. All
experiments are run on a Dell DSS 8440 Cauldron node, with a
virtual environment, 2 Intel Xeon Gold 6148 2.4G CPU cores,
5G RAM, 1 NVIDIA Tesla V100 32G GPU, EDR Infiniband.

We consider the following baselines: (i) Random+, which
selects seeds randomly from the effective candidate set A, (ii)
Greedy [Kempe et al., 2003], which is the prominent approach
for submodular IM, (iii) DPIM [Angell and Schoenebeck,
2017], which is a dynamic programming based method de-
signed for non-submodular IM including CCIM. To the best of
our knowledge, this method is the only published method for
non-submodular IM. Note that the code of DPIM is not pub-
licly available. Therefore we implemented our own version
of DPIM, where to build a hierarchical decomposition tree
of the original network, we use the Jaccard Similarity variant
(see Section 4.1.3 of [Angell and Schoenebeck, 2017]). Our
implementation of DPIM is in the supplementary material,
and we plan to open-source it at the time of publication. (iv)
RL4IM [Chen et al., 2021], which is the most recent work
that uses RL for submodular IM.The hyper-parameter val-
ues selected and ranges that are searched within for different
methods are described in Appendix B.

To have a sense of the optimality gap of the different meth-
ods (on small networks), we also implemented a Mixed Inte-
ger Programming (MIP) based optimization approach (shown
as the last row “OPT” of Table 1) using the Gurobi solver.
The detailed description of the formulation is in Appendix D.
While MIP finds the exact optimum, its runtime increases
rapidly with the network size. We set a 12 hour time limit,
which was exceeded starting at Network SPY (67 nodes). We
also found that in stochastic settings MIP was too expensive

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5536

Method \ Network CHANGE DC DOSIM MFP SPY Football Polbooks India Exhibition
Greedy 0.1509 0.3902 0.225 0.3194 0.4925 0.3217 0.4571 0.0396 0.0293
DPIM 0.283 0.4146 0.35 0.2917 0.477 0.3913 0.6762 0.3911 0.5537

Random+ 0.1632 0.3049 0.2175 0.1313 0.2955 0.0926 0.1486 0.0498 0.0293
RL4IM 0.283 0.4146 0.325 0.3194 0.4925 0.513 0.7429 0.3465 0.5439

RL4CCIM 0.283 0.4634 0.375 0.3472 0.5075 1.0 0.819 0.5347 0.5585
OPT 0.3019 0.4634 0.375 0.375 0.5522 N/A N/A N/A N/A

Table 1: Normalized influence of different methods on 9 real-world networks. Best results (except OPT) are highlighted.

to solve even for small networks. This shows that CCIM is
too difficult for existing generic optimization approaches.

We evaluate different methods on a set of 9 real-world
networks. These include 5 small social-networks that are
collected from homeless youth shelters in the city of Los
Angeles. They are denoted as CHANGE, DC, DOSIM, MFP,
SPY. We also evaluate on 4 publicly available and larger sized
real-world networks, including Football [Girvan and Newman,
2002], Polbooks [Rossi and Ahmed, 2015], India [Banerjee
et al., 2013], and Exhibition [Isella et al., 2011]. The detailed
description of the networks is presented in Appendix C. Note
that training time and scalability are not the focus of our work,
so all experiments are run on small-sized networks. Training
of all RL-based methods finishes within 2 hours.

6.1 Comparing with Baselines
In the basic problem setting, we set propagation probabilities
p1 = 0, p0 = 1, so that the propagation is deterministic. This
setting is convenient for comparison as it rules out the factor
that arises from stochasticity of different runs. We will show
results later in a setting with stochastic propagation. The
threshold K values are set to 3 for small networks CHANGE-
SPY, 4 for medium networks (Football, Polbooks and India),
and 6 for the largest network Exhibition. The values are
set as such so that the influence spread is neither too sparse
(very few nodes are influenced) nor too dense (most nodes are
influenced) where comparisons become trivial. In this set of
experiments, we set the seed budget T = 8 for all the networks
except for the largest network Exhibition which is T = 12. In
deterministic settings, there is no randomness for Greedy and
DPIM. Randomness of Random+ and RL methods arises from
different running seeds. For Random+, we run 50 times each
and take the average. For RL methods, we run 15 times and
find the best model via a separate validation process (performs
every 20 training time steps), and report its performance.

We have these observations in Table 1. (i) RL4CCIM con-
sistently obtains the best results among all the methods
across all the 9 networks. It obtains the optimal or close-
to-optimal solutions on small networks. (ii) The Random+
method, though being far from optimal, seems to be suffi-
cient to serve as a warm-start for RL4CCIM. (iii) Surprisingly,
Greedy can be arbitrarily bad. For example, Greedy obtains
only an influence value of 0.0396 on the India network. Con-
sidering that there are 202 nodes in this network, this means
that Greedy does not find any effective solution. To better
understand this, we compare the seeds selected by Greedy and
RL4CCIM on the India network in Figure 6 of Appendix E.
(iv) RL4IM and DPIM are unstable. RL4IM achieves in-
fluence values close to RL4CCIM on some networks (e.g.,

CHANGE, SPY, and Exibition). However, on some other
networks, especially relatively large networks (Football, Pol-
books, and India), it is significantly beaten by RL4CCIM. Our
hypothesis is that the effective solution sparseness becomes
more severe when the entire solution space grows larger. The
same holds for DPIM, where it works well on networks such as
CHANGE and Exhibition, but is much worse than RL4CCIM
on some other networks (e.g., Football and India). A main
reason, in our understanding, is that DPIM highly relies on the
assumption that networks are hierarchically structured, and
therefore the performance of it highly depends on how the net-
work’s structure is aligned with the assumption. Unfortunately
in practice, it is hard to measure the hierarchy of networks.

6.2 Evaluation on Various Other Problem Settings
We are also interested to see how different methods work under
a variety of other problem settings, including: (a) Stochastic
propagation. We set the range of p1 as [0.2, 0.4, 0.6, 0.8, 1].
In the stochastic setting, we also run Greedy and DPIM for 20
times and report the average. (b) Seed budget T . We set the
range of T as [6, 8, 10, 12, 14]. (c) Activation threshold K.
We set its range as [2, 3, 4, 5, 6]. When evaluating changing T
in Football, we set K = 5 instead of 4 as k = 4 immediately
yields influence value of 1 for RL4CCIM (see for example
Figure 4f) and thus the comparison becomes trivial.

We evaluate the different settings on three networks, includ-
ing India, Football, and Polbooks. The results are shown in
Figure 4. We can notice that the trends on different networks
are consistent. For example, Figures 4(a)-(c) show the results
on the India network. We can see that: (i) In all of the settings,
RL4CCIM still consistently outperforms all the baselines.
This shows the robustness of RL4CCIM. (ii) It follows the in-
tuition that the influence value is higher when there is a higher
propagation probability p, a larger number of seeding budget
T , and a smaller threshold K. (iii) Interestingly, there is a
surge of influence value for Greedy when the seed budget T
increases from 12 to 14, and when the threshold K decreases
from 4 to 3. Our hypothesis is that when T becomes larger
(or K becomes smaller), the ratio of effective solutions be-
comes much larger, and therefore the estimation of marginal
influence w.r.t. a set of nodes for Greedy becomes much more
accurate. However, both of the situations essentially come at
the cost of a large seed budget.

6.3 Ablation Study
To evaluate the effectiveness of the different customized com-
ponents, we also conduct an ablation study on the India net-
work, using the basic problem setting. In each comparison,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5537

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1

(a) vary p (India)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 14

(b) vary T (India)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 3 4 5 6

(c) vary K (India)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(d) vary p (Football)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 14

(e) vary T (Football)

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7

(f) vary K (Football)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1

(g) vary p (Polbooks)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6 8 10 12 14

(h) vary T (Polbooks)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 4 5 6 7

(i) vary K (Polbooks)

Figure 4: Performance of different methods under various settings, on networks India, Football and Polbooks. The x-axis is the value of the
underlying parameter being evaluated, and the y-axis is the normalized influence.

0 0.1 0.2 0.3 0.4 0.5 0.6

RL4IM-CC

wo-SF

wo-PER

wo-RS

wo-GAT

wo-ALL (RL4IM)

Figure 5: Ablation study. The x-axis is the normalized influence.

we remove one of the 4 components, and get 4 versions of
RL4IMC-CC, namely 1) wo-SF (without solution filtering),
2) wo-PER (without prioritized experience replay), 3) wo-RS
(without reward shaping), 4) wo-GAT ((without GAT, using
S2V instead). Finally, we also show the version without any of
these components (wo-ALL), which reduces to RL4IM. The
comparison is shown in Figure 5. We can see that by remov-
ing each of the components, there is a substantial decrease in
the normalized influence value, respectively 10.2% (wo-SF),
4.6% (wo-PER), 9.3% (wo-RS), and 21.3% (wo-GAT). When
removing the 3 components altogether, there is a largest de-
crease of 35.2%. These results demonstrate the importance of
all the four additional components.

Limitation Though our method works well on the smaller
networks, scalability is a major limitation of the current ver-
sion. The main bottlenecks of scaling up are (roughly) two-

fold: (1) Simulation time of complex contagion. Simula-
tion time is the top bottleneck as RL needs sufficient training
episodes. For simple contagion models which are much better
studied, there have been efficient methods that can accelerate
the simulation (e.g., [Wang et al., 2012]). Complex contagion
on the contrary, has been less studied. Hence less effort has
been put on improving the simulation efficiency of complex
contagion, partly also due to the fact that complex contagion
is more challenging to simulate. (2) RL training. On the
other hand, gradient updates in Q-networks take more time
and memory as it requires larger scale matrix computation.
To overcome this issue, a solution is to do pre-processing of
the large networks. For example, we may scale them down
by pruning less important/informative nodes from the original
networks (e.g., the idea from [Manchanda et al., 2020]).

7 Conclusion
We propose the first learning-based approach to CCIM, with
multiple innovative components that exploit the structure of
the CCIM problem. Empirical results show that our approach
achieves new state-of-the-art performance in CCIM. Our work
opens up many potential future directions for learning-based
approach to CCIM. For example, it is interesting to explore:
(i) Can we design more efficient RL algorithms for larger
networks? (ii) Can the learned RL policies generalize to new
networks? (iii) What if the network structures or the complex
contagion model parameters are uncertain?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5538

Acknowledgments
This work was supported by the Army Research Office (MURI
W911NF1810208). Bo An is supported by the National Re-
search Foundation, Singapore under its Industry Alignment
Fund – Pre-positioning (IAF-PP) Funding Initiative. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore.

References
[Ali et al., 2018] Khurshed Ali, Chih-Yu Wang, and Yi-Shin Chen.

Boosting reinforcement learning in competitive influence maxi-
mization with transfer learning. In WI, pages 395–400, 2018.

[Angell and Schoenebeck, 2017] Rico Angell and Grant
Schoenebeck. Don’t be greedy: Leveraging community
structure to find high quality seed sets for influence maximization.
In WINE, pages 16–29. Springer, 2017.

[Backstrom et al., 2006] Lars Backstrom, Dan Huttenlocher, Jon
Kleinberg, and Xiangyang Lan. Group formation in large social
networks: Membership, growth, and evolution. In KDD, pages
44–54, 2006.

[Banerjee et al., 2013] Abhijit Banerjee, Arun G Chandrasekhar, Es-
ther Duflo, and Matthew O Jackson. The diffusion of microfinance.
Science, 341(6144), 2013.

[Beaman et al., 2021] Lori Beaman, Ariel BenYishay, Jeremy Ma-
gruder, and Ahmed Mushfiq Mobarak. Can network theory-based
targeting increase technology adoption? American Economic
Review, 111(6):1918–43, 2021.

[Bello et al., 2016] Irwan Bello, Hieu Pham, Quoc V Le, Mo-
hammad Norouzi, and Samy Bengio. Neural combinato-
rial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

[Bengio et al., 2021] Yoshua Bengio, Andrea Lodi, and Antoine
Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational
Research, 290(2):405–421, 2021.

[Borgs et al., 2014] Christian Borgs, Michael Brautbar, Jennifer
Chayes, and Brendan Lucier. Maximizing social influence in
nearly optimal time. In SODA, pages 946–957, 2014.

[Centola and Macy, 2007] Damon Centola and Michael Macy. Com-
plex contagions and the weakness of long ties. American Journal
of Sociology, 113(3):702–734, 2007.

[Centola, 2010] Damon Centola. The spread of behavior in an online
social network experiment. Science, 329(5996):1194–1197, 2010.

[Chen et al., 2021] Haipeng Chen, Wei Qiu, Han-Ching Ou, Bo An,
and Milind Tambe. Contingency-aware influence maximiza-
tion: A reinforcement learning approach. arXiv preprint
arXiv:2106.07039, 2021.

[Dai et al., 2016] Hanjun Dai, Bo Dai, and Le Song. Discriminative
embeddings of latent variable models for structured data. In ICML,
pages 2702–2711, 2016.

[Deudon et al., 2018] Michel Deudon, Pierre Cournut, Alexandre
Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau. Learning
heuristics for the tsp by policy gradient. In CPAIOR, 2018.

[Domingos and Richardson, 2001] Pedro Domingos and Matt
Richardson. Mining the network value of customers. In KDD,
pages 57–66, 2001.

[Fu et al., 2021] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha.
Generalize a small pre-trained model to arbitrarily large tsp in-
stances. In AAAI, volume 35, pages 7474–7482, 2021.

[Gao et al., 2016] Jie Gao, Golnaz Ghasemiesfeh, Grant
Schoenebeck, and Fang-Yi Yu. General threshold model
for social cascades: Analysis and simulations. In EC, pages
617–634, 2016.

[Ghasemiesfeh et al., 2013] Golnaz Ghasemiesfeh, Roozbeh
Ebrahimi, and Jie Gao. Complex contagion and the weakness of
long ties in social networks: revisited. In EC, 2013.

[Girvan and Newman, 2002] Michelle Girvan and Mark EJ New-
man. Community structure in social and biological networks.
PNAS, 99(12):7821–7826, 2002.

[Goldenberg et al., 2001] Jacob Goldenberg, Barak Libai, and Ei-
tan Muller. Talk of the network: A complex systems look at
the underlying process of word-of-mouth. Marketing Letters,
12(3):211–223, 2001.

[Granovetter, 1978] Mark Granovetter. Threshold models of collec-
tive behavior. American Journal of Sociology, 83(6):1420–1443,
1978.

[Graves et al., 2016] Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Ser-
gio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho,
John Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471–476,
2016.

[Hottung et al., 2021] André Hottung, Yeong-Dae Kwon, and Kevin
Tierney. Efficient active search for combinatorial optimization
problems. In ICLR, 2021.

[Isella et al., 2011] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F.
Pinton, and W. Van den Broeck. What’s in a crowd? analysis of
face-to-face behavioral networks. J. Theor. Biol., page 166, 2011.

[Joshi et al., 2019] Chaitanya K Joshi, Thomas Laurent, and Xavier
Bresson. An efficient graph convolutional network technique for
the travelling salesman problem. arXiv preprint arXiv:1906.01227,
2019.

[Kamarthi et al., 2020] Harshavardhan Kamarthi, Priyesh Vijayan,
Bryan Wilder, Balaraman Ravindran, and Milind Tambe. Influence
maximization in unknown social networks: Learning policies for
effective graph sampling. In AAMAS, pages 575–583, 2020.

[Kempe et al., 2003] David Kempe, Jon Kleinberg, and Éva Tardos.
Maximizing the spread of influence through a social network. In
KDD, pages 137–146, 2003.

[Khalil et al., 2017] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra
Dilkina, and Le Song. Learning combinatorial optimization algo-
rithms over graphs. In NeurIPS, pages 6348–6358, 2017.

[Kim et al., 2015] David A Kim, Alison R Hwong, Derek Stafford,
D Alex Hughes, A James O’Malley, James H Fowler, and
Nicholas A Christakis. Social network targeting to maximise
population behaviour change: a cluster randomised controlled
trial. The Lancet, 386(9989):145–153, 2015.

[Kool et al., 2018] Wouter Kool, Herke van Hoof, and Max Welling.
Attention,llearn to solve routing problems! In ICLR, 2018.

[Kool et al., 2021] Wouter Kool, Herke van Hoof, Joaquim Gromi-
cho, and Max Welling. Deep policy dynamic programming for
vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

[Kuhlman et al., 2011] Chris Kuhlman, V Kumar, Madhav Marathe,
S Ravi, D Rosenkrantz, Samarth Swarup, and Gaurav Tuli. A

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5539

bi-threshold model of complex contagion and its application to
the spread of smoking behavior. In Proceedings of the Workshop
on Social Network Mining and Analysis (SNA-KDD 2011), 2011.

[Kwon et al., 2020] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim,
Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy
optimization with multiple optima for reinforcement learning.
NeurIPS, 33:21188–21198, 2020.

[Leskovec et al., 2007a] Jure Leskovec, Lada A Adamic, and
Bernardo A Huberman. The dynamics of viral marketing. ACM
Transactions on the Web (TWEB), 1(1):5–es, 2007.

[Leskovec et al., 2007b] Jure Leskovec, Andreas Krause, Carlos
Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks. In KDD,
pages 420–429, 2007.

[Li et al., 2019] Hui Li, Mengting Xu, Sourav S Bhowmick, Chang-
sheng Sun, Zhongyuan Jiang, and Jiangtao Cui. Disco: Influence
maximization meets network embedding and deep learning. arXiv
preprint arXiv:1906.07378, 2019.

[Lin et al., 2015] Su-Chen Lin, Shou-De Lin, and Ming-Syan Chen.
A learning-based framework to handle multi-round multi-party
influence maximization on social networks. In KDD, pages 695–
704, 2015.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992.

[Manchanda et al., 2020] Sahil Manchanda, Akash Mittal, Anuj
Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh.
Gcomb: Learning budget-constrained combinatorial algorithms
over billion-sized graphs. NeurIPS, 33, 2020.

[Mao et al., 2019] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bo-
jja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. Learn-
ing scheduling algorithms for data processing clusters. In SIG-
COMM, pages 270–288, 2019.

[Mazyavkina et al., 2021] Nina Mazyavkina, Sergey Sviridov,
Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations
Research, page 105400, 2021.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[Nazari et al., 2018] Mohammadreza Nazari, Afshin Oroojlooy,
Martin Takáč, and Lawrence V Snyder. Reinforcement learn-
ing for solving the vehicle routing problem. In NeurIPS, pages
9861–9871, 2018.

[Ou et al., 2021] Han-Ching Ou, Haipeng Chen, Shahin Jabbari, and
Milind Tambe. Active screening for recurrent diseases: A rein-
forcement learning approach. In AAMAS, pages 992–1000, 2021.

[Qiu et al., 2019] Wei Qiu, Haipeng Chen, and Bo An. Dynamic
electronic toll collection via multi-agent deep reinforcement learn-
ing with edge-based graph convolutional networks. In IJCAI,
pages 4568–4574, 2019.

[Romero et al., 2011] Daniel M Romero, Brendan Meeder, and Jon
Kleinberg. Differences in the mechanics of information diffusion
across topics: Idioms, political hashtags, and complex contagion
on twitter. In WWW, pages 695–704, 2011.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K. Ahmed.
The network data repository with interactive graph analytics and
visualization. In AAAI, 2015.

[Schaul et al., 2016] Tom Schaul, John Quan, Ioannis Antonoglou,
and David Silver. Prioritized experience replay. In ICLR, 2016.

[Schoenebeck and Tao, 2017] Grant Schoenebeck and Biaoshuai
Tao. Beyond worst-case (in) approximability of nonsubmodu-
lar influence maximization. In WINE, pages 368–382. Springer,
2017.

[Schoenebeck and Tao, 2019] Grant Schoenebeck and Biaoshuai
Tao. Beyond worst-case (in) approximability of nonsubmodu-
lar influence maximization. ACM Transactions on Computation
Theory, 11(3):1–56, 2019.

[Schoenebeck et al., 2020] Grant Schoenebeck, Biaoshuai Tao, and
Fang-Yi Yu. Think globally, act locally: On the optimal seed-
ing for nonsubmodular influence maximization. arXiv preprint
arXiv:2003.10393, 2020.

[Shapley, 2016] Lloyd S Shapley. 17. A value for n-person games.
Princeton University Press, 2016.

[Tang et al., 2015] Youze Tang, Yanchen Shi, and Xiaokui Xiao. In-
fluence maximization in near-linear time: A martingale approach.
In SIGMOD, pages 1539–1554, 2015.

[Tian et al., 2020] Shan Tian, Songsong Mo, Liwei Wang, and Zhiy-
ong Peng. Deep reinforcement learning-based approach to tackle
topic-aware influence maximization. Data Science and Engineer-
ing, pages 1–11, 2020.

[Ugander et al., 2012] Johan Ugander, Lars Backstrom, Cameron
Marlow, and Jon Kleinberg. Structural diversity in social conta-
gion. PNAS, 109(16):5962–5966, 2012.

[Van Hasselt et al., 2016] Hado Van Hasselt, Arthur Guez, and
David Silver. Deep reinforcement learning with double q-learning.
In AAAI, volume 30, 2016.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull, Aran-
txa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In ICLR, 2018.

[Wang et al., 2012] Chi Wang, Wei Chen, and Yajun Wang. Scalable
influence maximization for independent cascade model in large-
scale social networks. Data Mining and Knowledge Discovery,
25:545–576, 2012.

[Watkins and Dayan, 1992] Christopher JCH Watkins and Peter
Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[Watkins, 1989] Christopher John Cornish Hellaby Watkins. Learn-
ing from delayed rewards. PhD thesis, University of Cambridge,
1989.

[Wilder et al., 2021] Bryan Wilder, Laura Onasch-Vera, Graham
Diguiseppi, Robin Petering, Chyna Hill, Amulya Yadav, Eric
Rice, and Milind Tambe. Clinical trial of an ai-augmented inter-
vention for hiv prevention in youth experiencing homelessness. In
AAAI, pages 14948–14956, 2021.

[Zhang et al., 2020] Cong Zhang, Wen Song, Zhiguang Cao, Jie
Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch for job
shop scheduling via deep reinforcement learning. NeurIPS, 33,
2020.

[Zhu et al., 2021] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,
Yuandong Tian, Ying Zhang, and Xin Jin. Network planning
with deep reinforcement learning. In SIGCOMM, pages 258–271,
2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5540

	Introduction
	Related Work
	Complex Contagion Influence Maximization
	MDP Formulation & RL Preliminary
	MDP Formulation of CCIM
	RL Preliminaries

	RL4CCIM
	A Motivating Example
	RL4CCIM Architecture
	Solution Filtering
	Reward-based Prioritized Experience Replay
	Reward Shaping

	Experiments
	Comparing with Baselines
	Evaluation on Various Other Problem Settings
	Ablation Study

	Conclusion
	Proof of Theorem 1
	Hyperparameter values and ranges
	Description of the networks
	Mixed integer programming formulation
	Compare selected seeds of Greedy and RL4CCIM

