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Abstract

Finding diverse solutions to optimization problems
has been of practical interest for several decades,
and recently enjoyed increasing attention in research.
While submodular optimization has been rigorously
studied in many fields, its diverse solutions ex-
tension has not. In this study, we consider the
most basic variants of submodular optimization, and
propose two simple greedy algorithms, which are
known to be effective at maximizing monotone sub-
modular functions. These are equipped with param-
eters that control the trade-off between objective and
diversity. Our theoretical contribution shows their
approximation guarantees in both objective value
and diversity, as functions of their respective param-
eters. Our experimental investigation with maxi-
mum vertex coverage instances demonstrates their
empirical differences in terms of objective-diversity
trade-offs.

1 Introduction
Optimization research has seen rising interest in diverse solu-
tions problems, where multiple maximally distinct solutions
of high quality are sought instead of a single solution [In-
gmar et al., 2020; Baste et al., 2022; Hanaka et al., 2021;
Fomin et al., 2021; Fomin et al., 2020; Hanaka et al., 2022b;
Hanaka et al., 2022a]. This class of problem is motivated
by practical issues largely overlooked in traditional optimiza-
tion. Having diverse solutions gives resilient backups in re-
sponse to changes in the problems rendering the current so-
lution undesirable. It also gives the users the flexibility to
correct for gaps between the problem models and real-world
settings, typically caused by estimation errors, or aspects of
the problem that cannot be formulated precisely [Schittekat
and Sörensen, 2009]. Furthermore, diverse solution sets con-
tain rich information about the problem instance by virtue of
being diverse, which helps augment decision making capa-
bilities. While there are methods to enumerate high quality
solutions, having too many overwhelms the decision mak-
ers [Glover et al., 2000], and a small, diverse subset can be
more useful. It is also known that k-best enumeration tends
to yield highly similar solutions, motivating the use of diver-

sification mechanisms [Wang et al., 2013; Yuan et al., 2015;
Hao et al., 2020].

The diverse solutions problem have been studied as an ex-
tension to many important and difficult problems. Some
examples of fundamental problems include constraint sat-
isfaction and optimization problems [Hebrard et al., 2005;
Petit and Trapp, 2015; Ruffini et al., 2019], SAT and an-
swer set problem [Nadel, 2011; Eiter et al., 2009], and
mixed integer programming paradigms [Glover et al., 2000;
Danna et al., 2007; Trapp and Konrad, 2015]. More recently,
the first provably fixed-parameter tractable algorithms have
been proposed for diverse solutions to a number of graph-
based vertex problems [Baste et al., 2022], as motivated by the
complexity of finding multiple high performing solutions. This
inspired subsequent research on other combinatorial structures
such as trees, paths [Hanaka et al., 2021; Hanaka et al., 2022b],
matching [Fomin et al., 2020], independent sets [Fomin et
al., 2021], and linear orders [Arrighi et al., 2021]. Further-
more, general frameworks have been proposed for diverse
solutions to any combinatorial problem [Ingmar et al., 2020;
Hanaka et al., 2022a]. To address the need to obtain both
quality and diversity, multicriteria optimization has been con-
sidered, leading to interesting results [Gao et al., 2022]. These
are mostly applied to problems with linear objective functions
and specific matroid intersection constraints.

In this work, we are interested in diverse solutions problem
in the domain of submodular optimization, which has been en-
joying widespread interests. It captures the diminishing returns
property that arises in many real-world problems in machine
learning, signal processing [Tohidi et al., 2020], sensor place-
ment [Krause and Guestrin, 2005], data summarization [Lin
and Bilmes, 2011; Mirzasoleiman et al., 2013], influence max-
imization [Kempe et al., 2015], to name a few. Moreover, its
hardness (as it generalizes many fundamental NP-hard combi-
natorial problems) and well-structuredness (which facilitates
meaningful results [Vondrák, 2013]) mean the problem class
also sees much attention from theoretical perspectives, lead-
ing to interesting insights [Nemhauser et al., 1978; Fisher et
al., 1978; Calinescu et al., 2011; Krause and Golovin, 2014;
Chekuri et al., 2014]. It is important to distinguish between
the diverse solutions extension to submodular optimization
and results diversification [Zheng et al., 2017], the latter of
which considers diversity as a measure of a solution (i.e. a
selection of results) and optimizes it along with a submodular
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utility function.

Our Contributions We investigate the problem of finding a
given number of diverse solutions to maximizing a monotone
submodular function over a matroid, with a lower bound on
solutions’ objective values. Matroids are a type of indepen-
dence system that can be used to model constraints in many
important problems, and have been studied in in submodu-
lar optimization literature [Conforti and Cornuéjols, 1984;
Lee et al., 2010; Calinescu et al., 2011; Kashaev and Santi-
ago, 2023; Chekuri et al., 2014], even recently appeared in
diverse solutions research [Fomin et al., 2021]. Among them,
uniform matroids which characterize cardinality constraints,
and their extension, partition matroids, are often considered
in budgeted optimization (e.g. [Lin and Bilmes, 2010]). We
consider the distance-sum measure of diversity, which is often
chosen for diverse solutions problems [Hanaka et al., 2021;
Baste et al., 2022; Hanaka et al., 2022b; Hanaka et al., 2022a;
Gao et al., 2022]. Its sole reliance on the ground set elements’
representation in the solution set implies generalizability to
other diversity measures such as entropy. Our contributions
are as follows:

• We propose two simple greedy algorithms which are suitable
to deal with the objective requirement, as greedy algorithms
are known to perform well on monotone submodular maxi-
mization [Nemhauser et al., 1978; Fisher et al., 1978]. The
novelty lies in the additional parameters, which adjust the
trade-off between guarantees on objective values and diver-
sity. We position our algorithms as simpler, zeroth-order (in
terms of objective and independence oracles) alternatives to
general frameworks for diverse solutions in recent literature,
which have not been analyzed in submodular optimization
context.

• We provide analyses of these algorithms in terms of their
objective-diversity guarantees trade-offs. Our results are
formulated as functions of their respective parameters, thus
giving a general guidance on parameter selection. We also
give sharpened bounds for cases with uniform matroids,
as motivated by the prevalence of cardinality constraints.
From these results, we point out settings that guarantee
constant approximation ratios in objective, diversity, or both.
Our tightness constructions also indicate certain features of
matroids that make them pathological to these algorithms.

• We carry out an experimental investigation with maximum
vertex coverage instances subjected to uniform and parti-
tion matroid constraints, to observe the algorithms’ empir-
ical performances in exhaustive parameter settings. The
results indicate that while both algorithms produce nearly
optimal solutions with reasonable diversity in many parame-
ter settings, the simpler of the two actually provides better
objective-diversity trade-offs across all problem settings.
Additionally, these establish an empirical baseline for the
diverse solutions problem considered in this work.

2 Preliminaries
In this section, we present the problem and relevant definitions,
and give some observations that are helpful in our analyses.

2.1 Problem and Definitions
A multiset is a collection that can contain duplicates (e.g.
{1, 1, 2}). For a set A, we denote the collection of multisets
of elements in A with A∗, and Ar ⊆ A∗ contains r-size1

multisets for some integer r. The problem we investigate is
as follows: given integer r ≥ 2, α ∈ [0, 1], a (f, S, d, r, α)-
instance asks for a multiset2 of solutions in

argmax
P∈Sr

{
d(P ) : ∀x ∈ P, f(x) ≥ αmax

y∈S
f(y)

}
. (1)

where the objective function, f : 2V → R is non-negative3

and non-decreasing submodular, S = I for some matroid
M = (V, I), and d is a diversity measuring function de-
fined over (2V )∗. We do not consider non-increasing f due
to trivial instances where achieving any positive diversity4

necessitates degrading solutions beyond the feasibility limit.
As per standard practice, we use “monotone” to mean “non-
decreasing” in this paper. We call a multiset P feasible to the
(f, S, d, r, α)-instance if P ∈ Sr and every solution in P is a
α-approximation of f over S, which is a solution x ∈ S such
that f(x) ≥ αmaxy∈S f(y). We also briefly give relevant
definitions and assumptions.

Definition 1 Function f : 2V → R is monotone if f(x) ≤
f(y) for all x ⊆ y ⊆ V .

Definition 2 Function f : 2V → R is submodular if ∀x, y ⊆
V, f(x) + f(y) ≥ f(x ∪ y) + f(x ∩ y) or equivalently ∀x ⊆
y ⊆ V, v ∈ V \ y, f(x ∪ {v})− f(x) ≥ f(y ∪ {v})− f(y).

For problem (1), we assume w.l.o.g. that f(∅) = 0, since a
multiset feasible to a (f, S, d, r, α)-instance is also feasible to
the (f+f ′, S, d, r, α)-instance for some constant non-negative
function f ′. We assume for our problem that f is given as a
value oracle.

For matroid theory concepts, we adopt terminologies from
the well-known text book [Oxley, 2011] on the subject.

Definition 3 A tuple M = (V, I ⊆ 2V ) is a matroid if
a) ∅ ∈ I, b) ∀x ⊆ y ⊆ V, y ∈ I =⇒ x ∈ I,
c) ∀x, y ∈ I, |x| < |y| =⇒ ∃e ∈ y \ x, x ∪ {e} ∈ I.
The set V is the ground set, and I is the independence collec-
tion. A base of M is a maximal set in I.

Definition 4 Given a matroid M = (V, I),
• the rank function of M , rM : 2V → N, is defined as
rM (x) = max{|y| : y ∈ 2x ∩ I}, and the rank of M is
rM = rM (V ),

• the closure function of M , clM : 2V → 2V , is defined as
clM (x) = {v ∈ V : rM (x ∪ {v}) = rM (x)},

• a loop of M is a v ∈ V such that {v} /∈ I.
1In this work, we use “r-size” to mean “containing r elements”.
2Satisfying self-avoiding constraint requires algorithmic treatment

beyond this work’s scope.
3The non-negativity assumption is widely used in literature to

ensure proper contexts for multiplicative approximation guarantees,
which this work includes. This also applies to diversity w.l.o.g.

4Assuming the diversity measure returns 0 on duplicate-only
multisets.
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To give examples, a K-rank uniform matroid over V admits
the independence collection I = {x ⊂ V : |x| ≤ K} which
we denote with UV,K . A partition matroid admits the indepen-
dence collection I = {x ⊂ V : ∀i = 1, . . . , k, |x∩Bi| ≤ di}
for some partitioning {Bi}ki=1 of V and their correspond-
ing thresholds {di}ki=1. In graph theory, a graphic matroid
M = (E, I) defined over a undirected graph G = (V,E) is
such that I contains all edge sets x where G′ = (V, x) has no
cycle. A base of a graphic matroid is a spanning forest in the
underlying graph, which itself is an object of much interest.
Dual to the graphic matroid, the bond matroid M∗ = (E, I∗)
is such that I∗ contains all edge sets x where G∗ = (V,E \x)
has the same number of connected components as G.

For the problem (1), we assume that M is loop-free and
|V | ≥ 1, implying rM > 0. It is known that rank functions are
monotone submodular, and closure functions are monotone,
i.e. x ⊆ y =⇒ clM (x) ⊆ clM (y) [Oxley, 2011]. We
also assume that for a matroid, we are given an independence
oracle answering whether a set is independent.

Finally, we consider the distance-sum diversity function,
which is the usual choice in literature on diverse solutions
problems [Hanaka et al., 2021; Baste et al., 2022; Hanaka
et al., 2022b; Hanaka et al., 2022a; Gao et al., 2022]. The
function is defined over multisets of solutions as ss(P ) =∑

x,y∈P |x∆y| where ∆ is the symmetric difference between
two sets, and its size is the Hamming distance. To be precise,
each pairwise distance is counted once in an evaluation of ss.

Under this setting, the problem (1) is equivalent to the
dispersion problem over the ground set that is the collec-
tion of all α-approximations of f over I. The dispersion
problem is known to be NP-hard in the ground set’s size,
even with known ground sets and metric distance func-
tions [Wang and Kuo, 1988; Erkut, 1990; Ravi et al., 1994;
Chandra and Halldórsson, 1996]; for our problem, the collec-
tion is neither known nor necessarily small. On the other hand,
[Hanaka et al., 2022a] showed that this problem admits a poly-
time max{1− 2/r, 1/2}-approximation scheme, predicated
on a poly-time top-r enumeration scheme over this collection
maximizing ss. We are not aware of such a scheme for α-
approximations to submodular maximization over a matroid,
and we recognize this as an interesting problem in its own right.
That said, it is likely that algorithms resulted from this line of
ideas will have significantly larger asymptotic run-times than
those of the algorithms we present in this work.

2.2 Some Useful Properties
First, we observe that the value of ss is related to the oc-
currences of each elements of V in the multiset. Let P be
a r-size multiset of subsets of V , and for i = 1, . . . , |V |,
ni(P ) = |{x ∈ P : i ∈ x}|, we have

ss(P ) =
∑
i∈V

ni(P )[r − ni(P )]. (2)

This means the function can be decomposed into disjoint
subsets of V : given a partitioning {Vi}ki=1 of V , we have
ss(P ) =

∑k
i=1 ss({x ∩ Vi : x ∈ P}). This property can

significantly simplify analyses.
We would also like to bound the maximum achievable di-

versity in various settings. While without the constraint on

the values of f , this bound can be computed (over a matroid)
exactly and efficiently, e.g. by using the method in [Hanaka et
al., 2021], estimating it with a formula can be useful. To this
end, we define a function g : N3 → N with

g(a, b, c) = aq(c− q) +m(c− 2q − 1),

where h = min{b, a/2}, and m ∈ [0, a), q are integers such
that ⌈c/2⌉⌈h⌉ + ⌊c/2⌋⌊h⌋ = qa +m. This function returns
the maximum ss values of a c-size multisets of at most b-
size subsets of a a-size ground set (Theorem 1). Also, we
let g(0, ·, ·) = g(·, 0, ·) = g(·, ·, 1) = 0. For convenience, let
δ : N2 → N be defined with δ(a, b) = a− 2b− 1, we have

∀x ∈ P, e ∈ V \ x,ss(P \ {x} ∪ {x ∪ {e}})− ss(P )

=|P | − 2ne(P )− 1 = δ(|P |, ne(P )).

This expression exposes the connection between g and the pro-
cess of adding elements into solutions in P , which is relevant
to the algorithms we consider in this work. That is, we can
rewrite g using δ: g(a, b, c) = a

∑q−1
i=0 δ(c, i)+mδ(c, q); this

simplifies the proof of its monotonicity (see Appendix). Here,
we include an inequality which gives an intuitive bound of a
result in Section 3.

Lemma 1 Given integers a, b, c ≥ 1 and k ≥ 0,
g(⌈ka/b⌉, k, c) ≥ kg(a, b, c)/y.

To establish an upper bound on diversity, we use the fol-
lowing straightforward observation from the fact that uniform
matroid constraints are the least restrictive.

Observation 1 Given a set V , function f over 2V , matroids
M = (V, I) and M ′ = (V, I ′) where M is uniform and
rM ≥ rM ′ , then the optimal value for the (f, I ′, d, r, 0)-
instance cannot exceed that for the (f, I, d, r, 0)-instance with
any r ≥ 1, and real function d over (2V )∗.

With this, we can use uniform matroids to formulate a
simple upper bound, which is also tight for some non-uniform
matroids and, surprisingly, any value of the threshold ratio α.

Theorem 1 The optimal value for a (f, I, ss, r, α)-instance
for some matroid M = (V, I), function f over 2V , integer
r ≥ 1, and α ∈ [0, 1] is at most g(|V |, rM , r). Moreover, this
bound is tight for any |V | ≥ 1, r ≥ 1, α ∈ [0, 1], and matroid
rank rM ∈ [1, |V |], even if the matroid is non-uniform.

In augment-type algorithms like greedy, how the feasible se-
lection pool for a partial solution (i.e. set of elements that
can be added without violating constraints) changes over
the course of the algorithm influences the guaranteed qual-
ity of the final output. This insight was made evident in
seminal works on greedy algorithms [Fisher et al., 1978;
Nemhauser et al., 1978], and is replicated in subsequent works
on submodular optimization under more complex constraints.
This is especially important in diverse solutions, as high diver-
sity can be seen as additional restrictions on the selection pool.
In the context of matroid constraint, this pool is determined by
the partial solution’s closure, thus we include an observation
connecting closures to the upper bound on diversity.

Lemma 2 Let M = (V, I) be a matroid (may contain loops),
and x ∈ I, then for all y ∈ I, |y ∩ clM (x)| ≤ |x|. By
extension, |y ∩ z| ≤ rM (z) for all z ⊆ V .
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Lemma 2 lets us sharpen the upper bound on ss values for
highly non-uniform matroids.

Lemma 3 Given a matroid M = (V, I) (may contain loops)
and integer r ≥ 1, then for any P ∈ Ir,

ss(P ) ≤ min
x∈I
{g(|V | − |clM (x)|, rM − ⌊nx⌋, r)

+ g(|clM (x)|, ⌈nx⌉, r)},

where nx = min{rM |clM (x)|/|V |, |x|}. There exists a ma-
troid where equality holds.

3 Greedy Algorithms for Diverse Solutions
We describe two different greedy algorithms to obtain an ap-
proximation to the problem (1), by incrementally building
solutions. They are greedy in the sense that they select, in
each step, the “best” choice out of a selection pool. Here,
choice refers to a solution-element pair where the element
is added into the solution. The differences between the two
algorithms lie in how this pool is defined, and the selection
criteria. In both algorithms, the pool is controlled by a param-
eter, which determines a trade-off between objective values
and diversity.

In the following, we claim several worst-case bounds, i.e.
for all settings I (each including a problem instance and an
algorithm parameter value) in a universe clear from the context,
p(I) ≥ q(I) for some quantities p and q of the setting (e.g.
optimal value, worst-case diversity, etc.) A bound is tight if
there is a setting I ′ where p(I ′) = q(I ′). It is nearly tight if
instead we have p(I ′) = q(I ′)+ ϵ for an arbitrary small ϵ > 0
independent from other factors.

3.1 Diversifying Greedy With Common Elements
The first approach, outlined in Algorithm 1, is a deterministic
version of a heuristic for a special case of problem (1), pro-
posed in [Neumann et al., 2021]. The idea is to first have all
solutions share common elements selected by the classical
greedy algorithm, so as to efficiently obtain some objective
value guarantee. Then, in the second phase (starting from line
5), each solution is finalized with added elements that maxi-
mize ss, which are precisely those least represented. To be
specific, in each iteration, the algorithm looks at all solution-
element pairs which maintain independence, and selects a
pair based on criteria, the first of which maximizes diversity
(line 7). This approach is simple and efficient, but prevents
the common elements from contributing to diversity. Here,
we formulate the algorithm to take the number of common
elements as an input (b), which cannot exceed the rank of the
matroid constraint.

We observe that since the image of ss is polynomially
bounded in size, there are frequently many equivalent choices
in each iteration in the second phase, motivating the use of
tie-breaking rules, which are formulated as lexicographical
argmin at Line 7. Of note is the second rule, which prioritizes
solutions with the fewest remaining choices. The idea is to
minimize the shrinkage of the pool among under-represented
elements (the inclusion of which incurs large marginal gains
in diversity) with a simple heuristic. We show that this tie-
breaking rule helps guarantee a non-trivial lower bound of ss

Algorithm 1: Greedy with common elements
Input: f , S, b, r // Assuming b ≤ maxz∈S |z|
Output: P ∈ Sr

1 x← ∅, κ(·)← {u ∈ (V \ ·) : (· ∪ {u}) ∈ S};
2 while |x| < b and κ(x) ̸= ∅ do
3 v ← argmaxu∈κ(x) f(x ∪ {u}), x← x ∪ {v};
4 P ← {x}r; //P contains r duplicates of x
5 R← {(z, v) : z ∈ P, v ∈ κ(z), f(z ∪ {v}) ≥

f(z) ∧ nv(P ) < ⌈r/2⌉};
6 while R ̸= ∅ do // below argmin over vectors is done in

left-to-right lexicographical order
7 (y, v)← argmin(z,u)∈R(nu(P ), |κ(z)| , f(z), f(z)−

f(z ∪ {u}));
8 P ← P \ {y} ∪ {y ∪ {v}};
9 Update R as in Line 5;

value under a general matroid, whereas it makes no difference
under a uniform matroid. The other tie-breaking rules aim to
improve the minimum objective value whenever possible.

The time complexity of Algorithm 1 is O(b|V |+ r(rM −
b)(|V | − b)) in both value oracle model and independence
oracle model. The algorithm may not return r bases if rrM
is sufficiently large relative to |V |. Additionally, having all
solutions sharing elements can be undesirable in some appli-
cations. Note the condition nv(P ) < ⌈r/2⌉ at line 5 ensures
ss(P ) never decreases during the second phase.

Let A(f, S, b, r) be the collection of possible outputs from
Algorithm 1 when run with inputs f , S, b, r. We first show that
in uniform constraint case, the algorithm returns a constant
diversity for each input configuration.

Theorem 2 For any monotone submodular f over 2V , inte-
gers K ≥ 1, r ≥ 2, b ∈ [0,K), and let α = 1 − e−b/K ,
∀P ∈ A (f,UV,K , b, r), ss(P ) = g(|V | − b,K − b, r), thus
Algorithm 1 is g(|V | − b,K − b, r)/g(|V |,K, r)-approximate
for the (f,UV,K , ss, r, α)-instance. Moreover, this ratio bound
is tight for any |V | ≥ 1, r ≥ 2, K ∈ [1, |V |], and b ∈ [0,K).

Due to the monotonicity of g, the diversity guarantee in
Theorem 2 decreases with b. Specifically, Lemma 1 implies
this ratio bound is at least 1 − b/K, which is tight in many
cases. We also observe this linear relationship frequently
in our experimental results (Section 4). This also means by
setting b such that b/K is constant, the algorithm guarantees
simultaneously constant approximation ratios in both objective
values and diversity, independent of |V | and r. Additionally,
with α = 1 − e−b/K , we have 1 − b/K = 1 + ln(1 − α),
giving a direct objective-diversity trade-off curve (in terms of
ratios) within α ∈ [0, 1− 1/e].

For general matroids, we can infer the objective approxima-
tion guarantee from Algorithm 1 as a function of parameter b,
by using an important result in [Fisher et al., 1978].

Lemma 4 Algorithm 1 under a matroid M = (V, I) outputs[
1− (1− 1/rM )

min{b,k}
]
-approximations of f over I where

k = min
{
|z| : z ∈ 2V \ I

}
−1. Additionally, these solutions

are b/(2rM )-approximations.
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Algorithm 2: Greedy with representation limits
Input: f , S, r, l // Assuming l ∈ [1, r]
Output: P ∈ Sr

1 v∗ ← argmaxv∈S f({v}), P ← {{v∗}}r;
2 κ(·)← {u ∈ (V \ ·) : (· ∪ {u}) ∈ S ∧ nu(P ) < l};
3 R← {(z, v) : z ∈ P, v ∈ κ(z), f(z ∪ {v}) ≥ f(z)};
4 while R ̸= ∅ do // below argmin over vectors is done in

left-to-right lexicographical order
5 (y, v)← argmin

(z,u)∈R

(|z|, f(z)− f(z ∪ {u}), f(z), nu(P ));

6 P ← P \ {y} ∪ {y ∪ {v}};
7 Update R as in Line 3;

Theorem 3 For any monotone f over 2V , matroid M =
(V, I), and integers r ≥ 2, b ∈ [0, rM ), ∀P ∈
A (f,UV,K , b, r), ss(P ) ≥ g(rM − b − 1, rM − b − 1, r) +
g(m, 1, r), where m = |V \ clM (x)| − rM + b + 1 and x
is the solution obtained in the first phase of the algorithm.
Moreover, this bound is tight for any |V | ≥ 1, r ≥ 2, matroid
rank rM ∈ [1, |V |], b ∈ [0, s) and m ∈ [1, |V | − rM + b+1].

It is important to note that while the bound in Theorem
3 can be small for any positive choice of b if the closure of
the common elements set x is large, sufficiently large ones
(e.g. |clM (x)|/|x| > |V |/rM ) also lower the upper bound on
maximum diversity, according to Lemma 3.

3.2 Simultaneous Greedy With Representation
Limits

The second approach, outlined in Algorithm 2, is inspired by
the SIMULTANEOUSGREEDYS algorithm proposed in [Feld-
man et al., 2020], which obtains a set of disjoint solutions,
in which the best one provides an approximation guarantee.
Since for our problem, all solutions need to be sufficiently
good, we make crucial changes to adapt the algorithm to the
task. Firstly, each element can appear in multiple solutions,
the maximum number of which is given as an input (l). This
simultaneously expands the selection pool for each solution
in each iteration, which helps with quality, and controls the
amount of representation in the output each element enjoys,
which guarantees some diversity. Secondly, a single element
(v∗) is allowed to be included in all solutions, so a non-trivial
quality guarantee is possible, as there are instances where ex-
cluding an element ensures that the solution is arbitrarily bad.
Finally, the selection criteria, especially the first one, enforce
building solutions evenly, so the worst one does not fall too
far behind. This allows us to derive a non-trivial lower bound
on the objective value of every solution in the output.

Compared to Algorithm 1, this algorithm does not maximize
diversity directly, but guarantees it indirectly by imposing ad-
ditional constraints. Since these constraints are on elements’
representation, it can be applied to the problem (1) with any
diversity measure that can be formulated by elements’ repre-
sentation, such as entropy [Neumann et al., 2021].

The time complexity of Algorithm 2 is O(rrM |V |) in both
value oracle model and independence oracle model. Like
Algorithm 1, it may not return r bases if rrM is sufficiently
large and l is sufficiently small. We remark that the inclusion

of the initial element v∗ in all solutions is meant to deal with
pathological instances; this might be avoided with a more
complex heuristic. With a view to simplicity, we choose not
to pursue this further in this work.

We observe that if l = r, Algorithm 2 must return solutions
obtainable by the classical greedy algorithm since if there is
a v ∈ V that cannot be added to a solution x due to the new
constraint, then v ∈ x. However, one can construct instances
where it is guaranteed to achieve ss value of 0, even when
restricted to uniform matroids and linear objective functions.
Therefore, we only consider cases where l < r. We show the
extent to which diversity is guaranteed, simply from limiting
elements’ representations.

Similarly, we use B(f, S, r, l) to denote the collection
of possible outputs from Algorithm 2 when run with in-
puts f , S, r, l. Given a matroid M = (V, I), for any
P ∈ B(f, I, r, l) and x ∈ P , let Pt be P at iteration t
(P0 = {{v∗}}r), tx,i be the iteration in which the i-th element
is added to x (counting v∗), x(i) be x right after that iteration,
Vi =

{
v ∈ V : nv(Ptx,i−1) ≥ l

}
, Wi = clM

(
x(i−1)

)
and

Ui = Vi ∪Wi \ x(i−1). Intuitively, Ui contains elements that
cannot be added to x at step i; inspecting this set gives the
following guarantee.
Lemma 5 For any Y ∈ (2V )∗, if for some a, q ≥ 0,∑

v∈Ui
nv(Y ) ≤ a(i − 1) for all i = 1, . . . , |x|

and
∑

v∈U|x|+1
nv(Y ) ≤ a(i − 1) + q, then

min
{
a+ q/|x|+ |Y |,

∑
y∈Y |y|

}
f(x) ≥

∑
y∈Y f(y).

We show the lower bound on the ss value as the algorithm
progresses.
Lemma 6 For all t ≥ 0, ss (Pt) ≥ ⌊t/l⌋l(r − l) + c(r − c)
where c ∈ [0, l) such that c ≡ t mod l.

With Lemma 5 and 6, the following objective-diversity
trade-off guarantees can be inferred.
Theorem 4 Given monotone submodular f over 2V , inte-
gers r ≥ 2, l ∈ [1, r) and K ∈ [1, |V |], then for all
P ∈ B (f,UV,K , r, l) and k ∈ [1, (r − 1)K/l],

min

{
r − 1

l
+ 1, k

}
min
x∈P

f(x) ≥ max
|y|≤k

f(y) and

ss(P ) ≥ l(r − l)⌊h/l⌋+ c(r − c),

where h = min{r(K − 1), l(|V | − 1)} and c ∈ [0, l) such
that c ≡ h mod l.5 Moreover, the former bound is nearly
tight when K ≥ r + l − 1, and the latter bound is tight for
any |V | ≥ 1, r ≥ 2, K ∈ [1, |V |], and l ∈ [1, r].

Theorem 5 Given monotone submodular f over 2V , matroid
M = (V, I), integers r ≥ 2 and l ∈ [1, r), then for all
P ∈ B (f, I, r, l)

min

{
r − 1

l
+ 2, rM

}
min
x∈P

f(x) ≥ max
y∈I

f(y) and

ss(P ) ≥ l(r − l)(rM − 1).

Moreover, the former bound is nearly tight, and the latter
bound is tight for any |V | ≥ 1, r ≥ 2, matroid rank rM ∈
[1, |V |], and l ∈ [1, r].

5The latter bound holds trivially at l = r.
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We remark that the tightness cases in the proof of Theorem
5 prevent Algorithm 2 from exercising the last tie-breaking
rule, which is the component that lets it improve diversity
beyond the lower bound. We suspect that this bound might be
overly pessimistic for instances where the image under f of
the feasible set is small.

The result suggests that for uniform constraints, setting
l = max{⌊r(rM − 1)/(|V | − 1)⌋, 1} leads to Algorithm 2
guaranteeing (1 − 1/|V |)(1 − O(1/rM )) approximation ra-
tio in diversity, whereas l = ⌊r/2⌋ guarantees (rM − 1)/|V |
approximation ratio for pathological matroid constraint. Addi-
tionally, if l/r is constant, then every output solution guaran-
tees a constant approximation ratio in objective value.

Above results only consider extreme values (e.g. optimal
f value). On the other hand, by comparing the algorithm’s
output against an arbitrary solution set, a more nuanced picture
emerges which suggests the algorithm can exploit a certain
feature in the global structure of f to lessen compromise on
diversity (i.e. by lowering parameter l) while maintaining
objective guarantees.

Theorem 6 Given monotone submodular f over 2V , integers
r ≥ 2, l ∈ [1, r), K ∈ [1, |V |] and Y ∈ (2V )∗ such that
m = maxv∈V nv(Y ), then for all P ∈ B (f,UV,K , r, l)

min

m(r − 1)h

l
+ |Y |,

∑
y∈Y

|y|

min
x∈P

f(x) ≥
∑
y∈Y

f(y),

where h = max
{
l
∑

y∈Y |y|/[Km(r − 1)], 1
}

. This bound

is nearly tight for all r ≥ 2, l ∈ [1, r), size of Y and m ∈
[1, |Y |].

Corollary 1 If there is Y ∈ (2V )k for some k ≥ 1
where maxv∈V nv(Y ) < l

∑
y∈Y |y|/[K(r − 1)] and∑

y∈Y f(y)/k ≥ αmax|y|≤K f(y), then Algorithm 2 under
K-rank uniform constraint returns α/2-approximations with
parameter l. If there is a set of k disjoint α-approximations,
then Algorithm 2 returns α/2-approximations at any l ∈
[(r − 1)/k, r).

Theorem 7 Given monotone submodular f over 2V , integers
r ≥ 2, l ∈ [1, r), matroid M = (V, I) and Y ∈ I∗ such that
m = maxv∈V nv(Y ), then for all P ∈ B (f, I, r, l)

min

m(r − 1)

l
+ 2|Y |,

∑
y∈Y

|y|

min
x∈P

f(x) ≥
∑
y∈Y

f(y).

This bound is nearly tight for all r ≥ 2, l ∈ [1, r), size of Y
and m ∈ [1, |Y |].

Corollary 2 Given a matroid M = (V, I), if there is Y ∈ Ik
for some k ≥ 1 where maxv∈V nv(Y ) ≤ lk/(r − 1) and∑

y∈Y f(y)/k ≥ αmaxy∈I f(y), then Algorithm 2 under
matroid constraint M returns α/3-approximations with pa-
rameter l. If there is a set of k disjoint α-approximations,
then Algorithm 2 returns α/3-approximations at any l ∈
[(r − 1)/k, r) and α/(2 + 1/k)-approximations at l = r − 1.

Going further, these bounds can be strictly improved when
the number of disjoint optimal solutions exceeds certain thresh-
olds. In particular, we show that in such cases, Algorithm 2
guarantees objective values identical to those from the clas-
sical greedy when maximizing monotone submodular func-
tions under the same constraints [Nemhauser et al., 1978;
Fisher et al., 1978]. For a function f and a solution set S
let D(f, S, α) be the largest number of disjoint non-empty
α-approximations of f over S, and for a solution x, let ix be
its size before it stops being improved by the algorithm.
Theorem 8 Given monotone submodular f over 2V , integers
r ≥ 2, l ∈ [1, r), and matroid M = (V, I), then for all P ∈
B (f, I, r, l), given x ∈ P where |x| > 1 and D(f, I, α) >
⌊η(r − 1)/l⌋ for some α, then

• f(x) ≥ α
[
1− (1− 1/|x|)|x|

]
maxy∈I f(y) if M is uni-

form and η = |x| − 1,
• f(x) ≥ αmaxy∈I f(y)/2 if M is non-uniform and η = ix.
If D(f, I, α) = ⌊η(r − 1)/l⌋, the bound does not necessarily
hold in either case.

We include a simple observation relating maximum diver-
sity and the number of disjoint approximations.
Observation 2 Let k = D(f, S, α) for some function f ,
solution set S ⊆ 2V , threshold α, then the maximum ss
value to a (f, S, r, α)-instance is at most g(h, s, r) where
h = min{r(s− 1) + k, |V |} and s = maxx∈S |x|.

4 Experimental Investigation
To observe how these algorithms perform on concrete in-
stances, we experiment with the maximum vertex coverage
problem: given a graph G = (V,E), find a set x ∈ I for some
matroid M = (V, I) that maximizes |x ∪ {v ∈ V : ∃u ∈
x, {u, v} ∈ E}|, which is monotone submodular. For the
benchmark instance, we use the complement of frb30-15-1,
frb30-15-2, frb35-17-1, frb40-19-1 from the standard bench-
mark suite BHOSLIB created using the Model RB [Xu and
Li, 2006], containing 450, 450, 595, 760 vertices respectively,
and 17827, 17874, 27856, 41314 edges respectively; these are
available at [Rossi and Ahmed, 2015].

We use four matroid constraints in the experiments, includ-
ing 2 uniform matroids and 2 partition matroids. As men-
tioned, partition matroids admit a independence collections of
the form I = {x ⊆ V : ∀i = 1, . . . , k, |x∩Vi| ≤ bi} for some
partitioning {Vi}ki=1 of V and integers {bi}ki=1. These are use-
ful in modeling group-based budget constraints [Cornuejols et
al., 1977; Nemhauser et al., 1978; Chekuri and Kumar, 2004;
Chekuri and Pál, 2005; Fleischer et al., 2006]. For uniform ma-
troids, we set the ranks to {10, 15}, and denote them with U10
and U15, respectively (the numbers represent the ranks). For
partition matroids, we group consecutive vertices sorted by de-
grees into 10 partitions, i.e. Vi contains from |V |(i−1)/10+1-
th to |V |i/10-th smallest degree vertices. This is to force the
solutions to include a limited number of high-degree vertices,
creating scenarios where the greedy algorithm would obtain
very different solutions from the ones it would return under
uniform constraints. In case 10 does not divide |V |, we set
|Vi| = ⌊|V |/10⌋ for i = 2, . . . , 10. For the first partition
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Figure 1: Minimum and mean objective values in the outputs of the
algorithms run with all parameter values in respective ranges: [0, rM ]
for Algorithm 1, [1, r] for Algorithm 2. Values are normalized against
respective known optima.

matroid (denoted P10), we set bi to 1 for all i, while for the
second (denoted P15), we assign 6 to b1 and 1 to the rest.

For each of the 16 instances, we run with r ∈ {20, 100},
Algorithm 1 with all parameter values b ∈ [0, rM ], and Al-
gorithm 2 with all parameter values l ∈ [1, r]. For both al-
gorithms, the last tie-breaking is done by selecting the first
choice (in increasing order of vertex labels). Therefore, there
is no randomization, so each algorithm is run once on each
instance with each parameter value.

To contextualize the results, we obtain a best known cover-
age for each instance using the built-in integer linear program-
ming solver in MATLAB. Furthermore, the upper bounds on
ss values are given by

∑
i g(|Vi|, bi, r) since ss can be decom-

posed by disjoint subsets (in case of uniform matroid, Vi ← V
and bi ← rM ). Note that this bound applies to all threshold
ratio α ∈ [0, 1], the actual optimal value might very well be
much smaller, especially for α close to 1. We choose not to
normalize our results against actual optimal values because
a) solving exactly the problem (1) is prohibitively costly, and
b) this is exacerbated by the large number of α values for each
of which an optimal value needs to be obtained (i.e. the num-
ber of distinct minimum objective values from the algorithms
on each instance).

The results are shown in Figure 1 and 2, which visualize,
for each graph-constraint-parameter combination, the mean
and minimum objective values in the output, and the ss value.
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Figure 2: Diversity as ss values of the outputs of the algorithms run
with all parameter values in respective ranges: [0, rM ] for Algorithm
1, [1, r] for Algorithm 2. Values are normalized against respective
known upper bounds.

We see that the objective values in the outputs are high (within
5% gap of the optimal) for r = 20, and predictably degrade
for r = 100 (about 30%), although the mean values stay
within 10% in most settings. Notably, Algorithm 2 produces
higher minimum objective values than Algorithm 1 does in
most settings, and smaller gaps between mean values and
minimum values. More importantly, Algorithm 2 achieves
significantly higher ss values in most settings, thus yielding
better objective-diversity trade-offs than Algorithm 1. This
indicates benefits of limiting common elements by controlling
their representation in the output, as they do not contribute to
diversity.

Interestingly, increasing the output size r only seems to
affect the objective values, as the relative diversity values
are virtually the same across all settings. We suspect that
this might change for more complex matroids. Incidentally,
the impacts of r on objective values from Algorithm 2 seem
minimal outside of edge cases (i.e. l = 1).

5 Conclusion

The diverse solutions problem is a challenging extension to op-
timization problems that is of practical and theoretical interests.
In this work, we considered the problem of finding diverse
solutions to maximizing monotone submodular functions over
a matroid. To address the difficulty in finding multiple high-
quality solutions, we exploited submodularity with two simple
greedy algorithms, equipped with objective-diversity trade-off
adjusting parameters. Theoretical guarantees by these algo-
rithms were given in both objective values and diversity, as
functions of their respective parameters. Our experimental
investigation with maximum vertex coverage instances demon-
strates strong empirical performances from these algorithms
despite their simplicity.
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