
Efficient Object Search in Game Maps

Jinchun Du , Bojie Shen , Shizhe Zhao , Muhammad Aamir Cheema , Adel Nadjaran Toosi
Faculty of Information Technology, Monash University, Melbourne, Australia
{jinchun.du, bojie.shen, shizhe.zhao, aamir.cheema, adel.n.toosi}@monash.edu

Abstract
Video games feature a dynamic environment where
locations of objects (e.g., characters, equipment,
weapons, vehicles etc.) frequently change within
the game world. Although searching for relevant
nearby objects in such a dynamic setting is a fun-
damental operation, this problem has received lit-
tle research attention. In this paper, we propose a
simple lightweight index, called Grid Tree, to store
objects and their associated textual data. Our in-
dex can be efficiently updated with the underly-
ing updates such as object movements, and sup-
ports a variety of object search queries, including
k nearest neighbors (returning the k closest ob-
jects), keyword k nearest neighbors (returning the
k closest objects that satisfy query keywords), and
several other variants. Our extensive experimen-
tal study, conducted on standard game maps bench-
marks and real-world keywords, demonstrates that
our approach has up to 2 orders of magnitude faster
update times for moving objects compared to state-
of-the-art approaches such as navigation mesh and
IR-tree. At the same time, query performance of
our approach is similar to or better than that of IR-
tree and up to two orders of magnitude faster than
the other competitor.

1 Introduction
Video games offer a virtual environment in which players in-
teract with a variety of objects such as game characters, units,
vehicles, equipment, weapons and other types of items. These
objects can be moving, changing, appearing or disappearing,
creating a dynamic and ever-evolving game world. This dy-
namic nature of games poses a unique challenge for efficient
object search – searching for relevant nearby objects – in the
game world. Object search is a crucial operation in video
games, enabling players to navigate the game world, inter-
act with objects, and complete tasks. It is also used by game
engines in various contexts, including game AI, physics sim-
ulation, scripting, inventory management, quest tracking, and
object tracking. For instance, the game AI employs object
search to locate nearby enemies, allies, weapons, and other
objects relevant to their locations and actions.

While finding shortest path/distance between two points in
a game map, which is represented as a Euclidean plane con-
taining polygonal obstacles, has been very well studied [Yap
et al., 2011; Shen et al., 2020; Nash et al., 2007], object
search has received little research attention despite its practi-
cal significance. There exists some works [Zhao et al., 2018b]
on finding k closest objects in game maps, called k near-
est neighbors (kNN), but most of the existing techniques are
not designed for the dynamic game environments. Searching
for relevant nearby objects in dynamic game environments is
challenging as it requires efficiently handling real-time ob-
ject updates while maintaining fast query performance. Ad-
ditionally, in many practical applications, it is important to
find nearby objects that match a specific textual description,
e.g., finding the nearest “healing unit”. In such scenarios,
simply identifying the closest objects without considering
whether they match the required textual description is insuf-
ficient. While our focus in this paper is on game maps, there
are many applications of the problem we study in this pa-
per beyond game maps such as in indoor location-based ser-
vices [Cheema, 2018], home assistant technologies [Luria et
al., 2016; Umair et al., 2021], automated warehouses [Custo-
dio and Machado, 2020], asset tracking [Krishnan and Men-
doza Santos, 2021] etc.

To the best of our knowledge, we are the first to study such
textual object search in dynamic game environments. Specif-
ically, we study keyword kNN queries that find the k closest
objects that satisfy the query keywords. The state-of-the-art
algorithms for traditional kNN queries are: Incremental Eu-
clidean Restriction(IER)-Polyanya [Zhao et al., 2018a]; and
Interval Heuristic (IH) [Zhao et al., 2018b]. Although both
IER-Polyanya and IH can be extended to answer keyword
kNN queries (see Section 3.2), they either suffer from poor
query performance or inefficient update handling. Specifi-
cally, IER-Polyanya utilises R-tree for efficient object search
but suffers from poor update handling because R-tree is not
well-suited for dynamic environments. In contrast, IH em-
ploys navigation mesh which can be efficiently updated but
suffers from poor query performance especially when the re-
sult objects are not close to the query.

Given the limitations of IER-Polyanya and IH, there is a
need to design an effective index that can be efficiently up-
dated in highly dynamic environments such as game maps
and, at the same time, allows efficient query processing. To

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5567

this end, we present a simple lightweight index, called Grid
Tree, which cannot only efficiently handle object updates but
also allows efficiently processing keyword kNN queries and
several variants. We evaluate our approach using widely used
game benchmarks [Sturtevant, 2012] and realistic keyword
datasets for these games. We compare our approach with
IER-Polyanya, IH, and IER-EHL (a faster version of IER-
Polyanya), and show that our approach achieves the best of
both worlds. Specifically, it can handle object updates by
up to 2 orders of magnitude faster than IER-Polyanya and
IER-EHL, and its update cost is comparable to IH (specifi-
cally, faster for object movements and slower for object in-
sertions/deletions). At the same time, its query performance
is comparable to IER-EHL, several times faster than IER-
Polyanya, and up to two orders of magnitude faster than IH.
We also discuss how our approach can efficiently answer sev-
eral other variants of textual object search queries.

2 Preliminaries
We consider a Euclidean plane containing a set of obstacles,
each represented as a polygon. Two points in the plane are
visible to each other (i.e., co-visible) iff there exists a straight
line connecting them that does not pass through any obsta-
cle. A path P between two points x and y is an ordered set
of points ⟨p1,p2, · · · , pn⟩ where p1 = x, pn = y and every
successive pair of points pi and pi+1 (i < n) is co-visible.
The length of a path P is the cumulative Euclidean distance
between the successive pairs of points, denoted as |P|, i.e.,
|P| =

∑n−1
i=1 Edist(pi, pi+1) where Edist(pi, pi+1) is the

Euclidean distance between pi and pi+1. A path P is a short-
est path, denoted as sp(x, y), if there is no other path between
x and y shorter than P . We use d(x, y) to denote the length
of the shortest path, i.e., d(x, y) = |sp(x, y)|.

We consider a set of objects O in the traversable (i.e.,
non-obstacle) area of the Euclidean plane. Each object
oi ∈ O is represented as a tuple (oi.ρ, oi.τ) where oi.ρ
is a two-dimensional point representing location of oi in
the Euclidean plane and oi.τ is its textual description rep-
resented as a set of keywords. Similar to many existing
works in dynamic environments [Mouratidis et al., 2005;
Hidayat et al., 2022], we consider a timestamp model where
the time domain is discretised into a set of timestamps T . The
set of objects O may change between two consecutive times-
tamps if new objects are added to O or some existing objects
are deleted. We use Ot to denote the set of objects at a times-
tamp t ∈ T . Similarly, location and/or textual description
of an object oi may change and we use oti = (oti.ρ, o

t
i.τ) to

represent an object oti ∈ Ot at a timestamp t ∈ T .
A query q is also a tuple (q.ρ, q.τ) representing its loca-

tion and query keywords. There are many variants of textual
object search but, in this work, our main focus is on boolean
kNN query [Chen et al., 2013] which is one of the most pop-
ular keyword queries.

Definition 1. boolean kNN Query: Given a query q =
(q.ρ, q.τ) issued at timestamp t and the set of objects Ot, find
up to k objects closest from the query location q.ρ among
the objects that contain all query keywords q.τ . Formally,
the result set of the query R contains up to k objects from

Ot such that ∀oti ∈ R: q.τ ⊆ oti.τ and ∄otj ∈ Ot \ R:
d(q.ρ, otj .ρ) < d(q.ρ, oti.ρ) ∧ q.τ ⊆ otj .τ .

Example 1. Figure 1 shows a game map where black poly-
gons represent obstacles (i.e., non-traversable area). The
maps contains six objects o1 to o6 along with their associated
textual description, e.g., o1.τ = {w, x}. Consider a boolean
1NN query q shown on the map with q.τ = {x, y}. The ob-
jects o2, o3 and o6 are the candidate objects (shown in green
filled circles) as each of these contains both of the query key-
words x and y. However, o2 is the closest object among these
from q considering the obstacle-avoiding distance. Thus, the
result for query q is o2.

In Section 4.4, we discuss how our approach can be used
to answer several variants of this query. Also, note that a
traditional kNN query is a special case of boolean keyword
kNN query when there is no query keyword, i.e., q.τ = ∅.

3 Related Work
3.1 Pathfinding in Game Maps
Pathfinding in game maps, finding shortest path between two
locations, has been extensively studied, e.g., see [Demyen
and Buro, 2006; Oh and Leong, 2017; Uras and Koenig,
2015; Shen et al., 2022] and references therein. Next, we
briefly discuss two state-of-the-art algorithms most relevant
to this work.

Polyanya [Cui et al., 2017] is an efficient online pathfind-
ing algorithm. The algorithm employs a navigation
mesh [Kallmann and Kapadia, 2014] which divides the
traversable area into a set of convex polygons. Polyanya in-
stantiates a search similar to A* algorithm and treats polygon
edges of the navigation mesh as search nodes. It iteratively
expands the edges according to heuristic values considering
their distances from source and target. When the search ac-
cesses the polygon containing target, the target is also added
in the queue as a search node. The algorithm terminates when
the target is expanded.

Euclidean Hub Labeling (EHL) [Du et al., 2023] is the
state-of-the-art pathfinding algorithm. It employs hub label-
ing [Abraham et al., 2011] which is a highly efficient ap-
proach to compute shortest paths/distances in graphs. In the
preprocessing phase, EHL computes hub labels on the vis-
ibility graph containing the convex vertices of the map. A
uniform grid is superimposed on the map and, for each cell c
of the grid, hub labels of the vertices visible from c are copied
to the cell c. During query processing, the hub labels of the
cells containing source and target are combined to find the
common hub nodes and compute the shortest path/distance.

3.2 Object Search in Game Maps
Object search on geo-textual data has been very well-
studied [De Felipe et al., 2008; Cong et al., 2009; Chen et al.,
2013; Chen et al., 2020; Xu et al., 2022] due to its applica-
tions in map-based services. Unfortunately, these techniques
are not suitable for game maps which are highly dynamic and
are represented differently, as a Euclidean plane containing
polygonal obstacles. Next, we briefly discuss two best-known

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5568

algorithms for computing traditional kNN queries in game
maps and their extension for textual object search.
Interval Heuristic (IH) [Zhao et al., 2018b] is based on
Polyanya and replaces the heuristic of the A* search such
that the search incrementally explores the space like Dijkstra
search. When the search reaches a polygon that contains an
object, the object is also added to the queue. The algorithm
terminates when k objects are expanded. IH can be easily
extended to answer keyword kNN queries by pruning every
accessed object that does not satisfy query keywords. Since
IH employs Polyanya which exploits a navigation mesh, han-
dling object updates is quite efficient. Specifically, IH re-
quires maintaining the objects located in each polygon of the
navigation mesh. Thus, if an object changes its location, the
object is deleted from its previous polygon and added to its
new polygon. If the object remains in the same polygon, the
navigation mesh does not need any update.
IER-Polyanya [Zhao et al., 2018a] employs an R*-
tree [Beckmann et al., 1990] and incrementally retrieves near-
est objects to the query location according to their Euclidean
distances. For each retrieved object, it calls Polyanya to com-
pute its actual distance from the query. The algorithm termi-
nates when the Euclidean distance of the next retrieved object
is no smaller than the actual distances of kNNs. To handle
keyword queries, we use IR-tree [Li et al., 2010], a popular
extension of R*-tree to handle spatio-textual data. While R*-
tree and IR-tree allow efficient query processing, it is com-
putationally expensive to update them. For example, the lo-
cation update is handled by first updating the structure of IR-
tree in a way similar to how R-tree handles updates. Then,
the textual information associated with each node is updated
accordingly. Since the nodes of R*-tree and IR-tree may need
to be expanded or shrunk with the updates, they are not well-
suited for highly dynamic environments such as game maps.

The other two approaches in [Zhao et al., 2018a], Target
Heuristic (TH) and Fence Heuristic (FH), are not suitable for
highly dynamic environment and were outperformed by both
IER-Polyanya and IH in our initial experiments and, there-
fore, are not discussed/compared against in this paper.

4 Our Approach
First, we present the details of our index, called Grid Tree,
in Section 4.1. Then, in Section 4.2, we discuss how the
Grid Tree is updated with the changes in the underlying data.
Section 4.3 presents our query processing algorithm. Finally,
Section 4.4 discusses how the proposed approach can be eas-
ily extended to answer a variety of other queries.

4.1 Grid Tree
Motivation
Traditional indexes such as R-tree [Guttman, 1984], R*-
tree [Beckmann et al., 1990], kd-tree [Ooi, 1987], and
Quad-tree [Smith and Chang, 1994] as well as their exten-
sions [Chen et al., 2013] to index textual information, allow
efficient query processing for a variety of queries. However, a
major limitation of these indexes is that they are not suitable
for dynamic environments such as game maps where object
updates are frequent. Therefore, we need an index that can

q

{x,y}

{x,y,z}

{w,x}

{x,y,z}

{y,z}

{w,z}

{w,x,y}

R

N
4

N
3

N
2

N
1

0 1 2 3

1

2

3

0

o1
o
2

o
3

o
4

o
5

o
6

Figure 1: Boolean keyword kNN query: o2 is the 1NN.

be efficiently updated in the dynamic environment and allows
efficient query processing. Next, we present the details of
a simple, easy-to-implement and effective index, called Grid
Tree, that can be efficiently updated and allows efficient query
processing.

Structure of Grid Tree
Root node of the Grid Tree is a minimum bounding rectangle
(MBR) of the whole map. Each node is recursively divided
into four equal sized children until the size of each child node
is smaller than a threshold (to be discussed in experiments).
Consider a Grid Tree of height h where the root node is at
level 0 and the leaf nodes are at level h. There are 2i × 2i

equal-sized nodes at level i of the Grid Tree. The leaf nodes
constitute a uniform grid containing 2h×2h equal-sized cells.
Hereafter, we use the terms leaf nodes and cells interchange-
ably to refer to the level h nodes.

For each leaf node n, we store an object list containing the
IDs of the objects that are located inside n. Additionally, for
every node n in the Grid Tree, we store a keyword list. Here-
after, when we say “objects inside a node n”, we refer to all
the objects that are in the subtree rooted at the node n. The
keyword list of the node n contains all unique keywords of
the objects inside n along with the frequency of each key-
word, e.g., if a keyword κ appears in 5 objects inside n, its
frequency is 5. We implement the keyword list as a hash map
so that frequency of any keyword can be obtained/updated ef-
ficiently. Note that object lists are stored only for leaf nodes
whereas keyword lists are stored for all nodes of the tree.
Example 2. Figures 1 and 2 show a Grid Tree of height 2.
The root node R of the Grid Tree is the MBR covering the
whole space. The root node has four equal-sized children N1

to N4 shown in solid red lines. Each of these nodes is further
subdivided into four children. The leaf nodes at level 2 repre-
sent a 4× 4 grid (see cells shown in blue lines). In Figure 1,
we refer to each leaf node as Ci,j where i and j correspond to
its position along x-axis and y-axis, respectively (see the blue
numbers outside the map), e.g., q is located in the cell/leaf
node C0,0 and o4 is located in the leaf node C0,2. Figure 2
shows the structure of Grid Tree as well as the object lists
and keyword lists for some of the nodes. Since the leaf node

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5569

R

𝑁! 𝑁" 𝑁# 𝑁$

𝐶%,% 𝐶%,! 𝐶!,% 𝐶!,! ……. …….

Cell Objects

𝐶1,1 𝑜!, 𝑜"
𝐶0,1 𝑜#
𝐶0,2 𝑜$
𝐶#,# 𝑜*, 𝑜+

Object Lists
Node Keywords

R w: 3, x: 4, y: 4, z: 4

𝑁1 w: 1, x: 3, y: 2, z: 2

𝐶1,1 w: 1, x: 2, y: 1, z: 1

𝐶%,! x: 1, y: 1, z: 1

Keyword Lists of some nodes

…….

Figure 2: Grid Tree: Children of N2 to N4 are not shown. Object
Lists and Keyword Lists of some of the nodes are shown.

C1,1 contains o1 and o2, its object list consists of o1 and o2.
Keyword list of C1,1 contains all keywords present in o1 and
o2 along with their frequencies, e.g., each of w, y and z ap-
pears in only one object whereas x appears in both o1 and
o2. The keyword list of N1 represents the keywords and their
frequencies for all objects in N1 (i.e., o1, o2 and o3). The
keyword list of the root represents keywords and frequencies
of all six objects. For simplicity, Figure 2 shows object lists
and keyword lists only for some cells and nodes of the tree.

4.2 Updating Grid Tree
Now, we explain how the Grid Tree is updated at a times-
tamp t ∈ T . Although our focus in this paper is on handling
moving objects, for completeness, we discuss how to insert
an object, delete an object, and handle the change in the loca-
tion/text of an object.

Inserting a New Object
To insert a new object oti, we first identify the leaf node n that
contains the location oti.ρ. Then, oti is added to the object list
of n. Keyword list of n is also updated by incrementing the
frequency of each keyword κ ∈ oti.τ by one. If a keyword
does not exist in the keyword list, it is added with frequency
one. Then, all the ancestor nodes of n are iteratively accessed
and their keyword lists are updated in the same way.

Deleting an Object
To delete an object oti, it is deleted from the object list of the
node n containing it. The keyword list of n is also updated
by decrementing the frequency of each keyword κ ∈ oti.τ
by one. If the frequency of any keyword is reduced to zero,
it is deleted from the keyword list. The keyword lists of all
ancestor nodes of n are also updated in the same way.

Handling the Location Change of an Object
Assume that the location of an object changes between two
timestamps, e.g., ot−1

i .ρ ̸= oti.ρ. We update the Grid Tree
at timestamp t as follows. We identify the leaf nodes n and
n′ that contain the locations ot−1

i .ρ and oti.ρ, respectively. If
n and n′ are the same leaf node, we do not need to update
anything. Otherwise, we delete the object from the object list

of n and add it to the object list of n′. Keyword lists of n
and n′ are also updated accordingly, i.e., by decrementing the
frequency of each keyword κ ∈ oti in the keyword list of n
and incrementing it by one in the keyword list of n′. Then,
the parent nodes of n and n′ are iteratively accessed and their
keyword lists are updated accordingly until a common ances-
tor of n and n′ is reached. Note that the keyword list of the
common ancestor does not need to be updated.

Example 3. Consider the example shown in Figures 1 and 2
and assume that the object o3 moves from its current cell
C0,1 to the cell C1,1. We delete o3 from the object list of
C0,1 and add it to the object list of C1,1. The keyword list of
C0,1 is updated by decrementing the frequency of each of the
keywords x, y and z by one and, consequently, the keyword
list of C0,1 becomes empty. Then, the keyword list of C1,1

is updated by incrementing the frequencies of x, y and z by
one each. As a result, the keyword list of C1,1 is updated to
{w : 1, x : 3, y : 2, z : 2}. Next, we access the parent nodes
of the two cells C0,1 and C1,1. Since both have the same par-
ent N1, the keyword list of N1 does not need to be updated.

Handling Textual Change of an Object
Assume that textual description of an object changes be-
tween two timestamps. For each deleted keyword κ (i.e.,
κ ∈ ot−1

i .τ ∧ κ /∈ oti.τ), we update the keyword list of
the leaf node n containing oti.ρ by decrementing the fre-
quency of κ by one. For each newly added keyword κ′ (i.e.,
κ′ /∈ ot−1

i .τ ∧ κ′ ∈ oti.τ), we update the keyword list of n by
incrementing the frequency of κ′ by one. Keyword lists of all
ancestors of n are also updated.

If both the location and the textual description of an object
change between two timestamps, we delete the object ot−1

i
and insert oti as discussed earlier.

Complexity Analysis
Here, we provide complexity analysis for handling the up-
dates mentioned above. A key operation for handling the up-
dates is to identify the leaf node of the Grid Tree that contains
a particular location. This can be done in O(1) because the
leaf nodes correspond to a grid of 2h × 2h equal-sized cells
where h is the height of the tree. The object insertion and
deletion in the object list of a cell can also be done in O(1).
Specifically, the object list of each cell is implemented as a
linked list. Furthermore, we maintain a global object array
containing all objects indexed by their IDs. For each object
oti, this array stores a pointer to the place of oti in the object
list of the cell containing it. This allows deleting an object
from the object list in O(1). A new object is always inserted
at the end of the object list and its place in this object list is
reflected in the global object array. Keyword lists are imple-
mented as hash tables. Although the worst-case complexity
is linear to the number of keywords, on average, the cost is
O(1). Consider an update involving K keywords, the aver-
age cost of updating the keyword list is O(K). For all of the
updates mentioned above, we need to update at most O(h)
nodes. Therefore, the total cost for each update operation is
O(Kh) on average.

We remark that while the cost of handling location change
of an object is O(Kh) in general, the cost when the object

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5570

Algorithm 1: Boolean kNN query processing
Input: q.ρ, q.τ, k: query location, query keywords and k
Output: R: query results

1 R = ϕ; dk= ∞;
2 Initialise a min-heap H with the root node of Grid Tree ;
3 while H ̸= ϕ do
4 deheap an entry e from H ;
5 if e.key ≥ dk then
6 return R;
7 if e is an object then
8 compute d(q.ρ, e.ρ);
9 if d(q.ρ, e.ρ) < dk then

10 update R and dk by object e;
11 else if e is a leaf node then
12 for each object oti in the object list of e do
13 if q.τ ⊆ oti.τ then
14 insert oti in H with key

mindist(q.ρ, oti.ρ);
15 else
16 for each child node c of e do
17 if c contains all query keywords q.τ then
18 insert c in H with key mindist(q.ρ, c);

19 return R;

moves within the same leaf node is O(1). This is because, in
this case, we do not need to update the object list and keyword
list of any node. This enables our proposed index to handle
moving objects very efficiently. Traditional indexes such as
R-tree, Quad-tree and kd-tree cannot handle moving objects
in O(1).

4.3 Query Processing
Algorithm 1 shows the details of our algorithm to compute
boolean kNNs of a query using the Grid Tree. The algo-
rithm initialises the result set R to be empty and dk to infinity
(line 1) where dk is the distance of the kth closest object in
R. A min-heap H is initialised by inserting the root node of
the Grid Tree (line 2) with key set to zero. The key of an en-
try e (denoted as e.key) inserted in the heap is a lower bound
distance from q.ρ to the entry e (e.g., minimum Euclidean dis-
tance from q.ρ to the node e). In each iteration, the algorithm
de-heaps an entry e from the heap. If e.key is at least equal
to dk, the algorithm terminates by returning the result set R
(line 6). This is because all remaining entries have distances
from the query at least equal to dk and, therefore, cannot con-
tain an object closer to the query than the kth closest object.

If the de-heaped entry e is an object, its distance from
the query d(q.ρ, e.ρ) is computed (line 8). This distance
can be computed using any of the existing pathfinding algo-
rithms. In our implementation, we use Euclidean Hub La-
beling (EHL) [Du et al., 2023] which is the state-of-the-art
shortest path computation algorithm in game maps. If this
distance is smaller than dk, the result set R and dk are up-
dated accordingly (line 10). Specifically, we implement R
as a max-heap with keys set to distances between the query
and the objects stored in R. We insert e in R and ensure that
R contains at most k objects after each iteration. If after in-
serting e, R contains more than k objects, the object with the

largest distance (i.e., the top entry in the max-heap) is deleted
from R. If R contains less than k objects, dk is kept to be
infinity. Otherwise, dk is set to the distance of the kth closest
object in R (i.e., the key of the top entry in the max-heap).

If the de-heaped entry e is a leaf node of the Grid Tree, we
process the objects in its object list (line 12) and insert each
object oti that contains all query keywords in the min-heap H
(lines 13 and 14). The key of each object inserted in the min-
heap is a lower bound distance between the query and the
object locations. In our implementation, we use Euclidean
distance between q.ρ and oti.ρ as the lower bound distance.

Finally, if e is a non-leaf node of the Grid Tree, we process
each child node c of e as follows. First, we check if c contains
all query keywords or not (line 17). Specifically, a node c
contains all query keywords q.τ iff, for every keyword κ ∈
q.τ , κ exists in the keyword list of c. If c contains all query
keywords, it is inserted in the min-heap with key set to a lower
bound distance (e.g., minimum Euclidean distance) between
the query location and the node c. If the heap H becomes
empty, the algorithm returns R (line 19) which contains up to
k closest objects found by the algorithm.

Remarks. Although our implementation uses minimum
Euclidean distance as the lower bound at lines 14 and 18,
other lower bounds can also be used. One feature of the Grid
Tree is that its nodes do not spatially change regardless of the
updates (unlike other popular spatial indexes such as R-tree,
kd-tree etc.). Therefore, it is possible to precompute and store
lower bound distances. E.g., one may precompute minimum
distances from the convex vertices in the map to all nodes of
the Grid Tree. During query processing, the closest visible
vertex from the query can be used to obtain a lower bound
distance for any node of the Grid Tree by using triangular
inequality.

4.4 Extensions

Generalisation of boolean kNN query. Boolean kNN
queries can be generalised to find k closest objects that con-
tain at least n keywords in q.τ , e.g., for each result object
oti ∈ R, |q.τ∩oti.τ | ≥ n where |X| denotes the number of ele-
ments in a set. This generalised version can be easily handled
by changing the conditions at lines 13 and 17 accordingly.

Top-k spatial keyword query. In top-k spatial keyword
query [Chen et al., 2013], each object is assigned a score
computed using a scoring function that considers both its tex-
tual similarity to the query keywords and distance from query
location. The query requires finding k objects with the small-
est scores (assuming lower scores are better). Our algorithm
can answer such queries as follows. The min-heap H is mod-
ified such that the keys are minimum scores of the entries
instead of minimum distances. The minimum score of an en-
try e (an object or a node) is computed using the minimum
Euclidean distance between e and query location and the best
possible textual similarity of e to query keywords consider-
ing the keyword list of e. The algorithm employs sk, score of
the kth object in R, instead of dk. The conditions at lines 13
and 17 of the algorithm are modified such that an entry is
inserted in H only if its minimum score is smaller than sk.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5571

Game #Maps # Cells # Trav. Cells # Vertices
DA 67 151,420 15,911 1182.9
DAO 156 134,258 21,322 1727.6
BG 75 262,144 73,930 1294.4
SC 75 446,737 263,782 11487.5

Table 1: Total number of maps, and average number of total cells,
traversable cells and vertices in each benchmark.

Keyword range query. Given a distance range r, a key-
word range query returns every object oti ∈ Ot that satisfies
the query keywords and d(q.ρ, oti.ρ) < r. Our algorithm can
be easily modified by replacing dk with r. This ensures that
all objects with distances less than r are included in R.

5 Experiments
5.1 Settings
We run our experiments on a 3.2 GHz Intel Core i7 machine
with 32 GB of RAM. All the algorithms are implemented in
C++ and compiled with -O3 flag. We run experiments on
widely used game map benchmarks [Sturtevant, 2012] of four
popular games: Dragon Age II (DA); Dragon Age Origins
(DAO); Baldur’s Gate II (BG) and StarCraft (SC). In total,
this gives us 373 maps each represented as a grid map. Ta-
ble 1 shows details of these benchmarks including the average
size – represented by total number of cells and the total num-
ber of traversable (i.e., non-obstacle) cells in the maps – and
average number of obstacle vertices. We generate the objects,
their keywords and queries as follows.

Object Generation
Initial location of each object is a randomly generated point
in the traversable region of the map. We evaluate the effect of
object density which is the ratio of number of objects to the
number of traversable cells in the map, e.g., object density
of 1% indicates that the number of objects is 1% of the total
number of traversable cells in the map. We vary the density
from 0.1% to 10% and the default density is 1%. Although we
also study the effect of insertions/deletions, our main focus is
on moving objects. We define mobility of an object set as the
percentage of objects that move between two timestamps. We
vary the mobility from 10% to 100% and the default mobility
is 70%. We generate the moving objects as follow. For each
moving object, we randomly choose a target location in the
trarversable region of the map and compute the shortest path
from the initial location of the object to the target location.
The object then starts moving towards the target and travels
1 unit distance (i.e., which is equal to the width/height of one
cell in the map) in each timestamp. When an object reaches
the target, a new randomly generated target is chosen and the
object continues to travel on the shortest path towards this
new target.

Keyword Generation
For each game, we use ChatGPT (Jan 9 version) to obtain 100
items in the game along with their descriptions. Specifically,
we use prompts like “describe characters in [game map]” to
get a list of items including characters, units, weapons, gems,
potions etc. We keep prompting ChatGPT until it generates

100 items and their descriptions1. We use nltk, an NLP
library, to remove stop words and normalise the remaining
words (e.g., “abilities” and “ability” both are normalised to
“ability”). After this pre-processing, maximum, minimum,
and average number of keywords per item in each game are
as follows: DA (19,7,15); DAO (17,7,12); BG (17,6,12); SC
(18,7,11). For each object, we randomly assign it to an item
type in the relevant game. Let m be the number of keywords
in that item, we randomly choose a number r between 1 and
m and randomly assign r keywords of this item to the object.

Query Generation
For each experiment, we generate 100 queries per times-
tamp. Location of each query is randomly generated in the
traversable region of the map. We evaluate the effect of k
which is varied from 1 to 10 where the default value of k is
3. We also evaluate the effect of number of query keywords
by varying the number of query keywords from 0 to 3 where
the default number of keywords is 2. Following the existing
works on geo-textual object search [Chen et al., 2013], we
generate a query containing x keywords by randomly choos-
ing an object from the map and selecting x words at random
from the object as the query keywords. This ensures that the
combination of query keywords is meaningful and at least one
object satisfies the query keywords.

Algorithms Evaluated
Our approach, Grid Tree, is shown as GT in the experi-
ments. We evaluate different sizes of Grid Tree each shown as
GT(m) where GT(m) is the Grid Tree with each leaf node of
size at most m×m units. E.g., in GT(4), we stop recursively
dividing nodes into children when the node size becomes less
than 4× 4.

We compare our approach with two state-of-the-art ap-
proaches presented in [Zhao et al., 2018a]: IER-Polyanya
(shown as IER-Pol) and Interval Heuristic (IH). We use
the source code provided by the authors. We also compare
against IER-EHL which is the same as IER-Pol except that
the shortest distances are computed using EHL [Du et al.,
2023] instead of Polyanya [Cui et al., 2017]. This gives a
like-for-like comparison with our approach as we also em-
ploy EHL for shortest distance computation.

5.2 Results
Each experiment is run for 50 timestamps and, for each times-
tamp t, we first update the underlying index considering all
object updates at t and then process 100 queries on the up-
dated index. We report average update time per timestamp
for all 50 timestamps as well as the average query processing
time for all 5000 queries.

Effect of Object Density
Figure 3 shows the effect of object density on query time (top
row) and update cost (bottom row) on each of the four bench-
marks. Overall, the fastest algorithms in terms of query pro-
cessing are GT(16) and GT(64) whereas the best performing
algorithms in terms of handling updates is GT(64). We dis-
cuss the details of query time and update time below.

1https://github.com/goldi1027/GT-EHL

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5572

https://github.com/goldi1027/GT-EHL

0.1 1 10
Object density (in %)

101

102

103

104

105

Q
ue

ry
 t

im
e

(μ
s)

Dragon Age II (DA)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

0.1 1 10
Object density (in %)

101

102

103

104

105

Dragon Age Origins (DAO)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

0.1 1 10
Object density (in %)

101

102

103

104

105

Baldur's Gate II (BG)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

0.1 1 10
Object density (in %)

101

102

103

104

105

StarCraft (SC)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

0.1 1 10
Object density (in %)

100

101

102

103

104

105

106

U
pd

at
e

ti
m

e
(μ

s)

Dragon Age II (DA)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

0.1 1 10
Object density (in %)

100

101

102

103

104

105

106

Dragon Age Origins (DAO)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

0.1 1 10
Object density (in %)

100

101

102

103

104

105

106

Baldur's Gate II (BG)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

0.1 1 10
Object density (in %)

101

102

103

104

105

106

StarCraft (SC)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

Figure 3: Effect of object density on query time (top row) and update time (bottom row) for each approach on default settings (k = 3,
mobility = 70%, # of query keywords = 2).

0 1 2 3
#Query keywords

100

101

102

103

Q
ue

ry
 t

im
e

(μ
s)

Dragon Age II (DA)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

1 3 5 10
k

100

101

102

103

Dragon Age II (DA)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

Figure 4: Effect of # of query keywords and k on query time

Query time. For lower object density, query performance
of our approach improves when the leaf nodes are bigger
(e.g., GT(64)) because the tree height is smaller and the
search needs to traverse fewer nodes. However, as the den-
sity increases, the performance of GT(64) degrades because
each leaf node contains more object requiring the algorithm to
process a larger number of objects. IER-EHL outperforms the
other competitors IH and IER-Poly, however, its performance
is comparable to GT(16) and GT(64) for lower object density
but worse for higher object density, e.g., for the SC bench-
mark, the query time of IER-EHL is several times higher than
that of GT(16). IH is the slowest algorithm (often more than
2 orders of magnitude slower than our algorithms) because
it needs to incrementally explore a large search space before
it can find the answers. IER-Poly is slower than IER-EHL

mainly because Polyanya is slower than EHL. However, the
performance of IER-Poly does not necessarily degrade with
the increase in object density. This is because the cost of
shortest distance computation for Polyanya decreases when
the objects are closer to the query and, for higher density, the
result objects are found closer to the query.

Update time. The update handling time of Grid Tree signif-
icantly improves as the size of leaf nodes increases, e.g., see
GT(64). This is because the height of the tree is smaller for
GT(64) which means fewer nodes are needed to be updated.
Also, the moving objects leave the leaf nodes less often be-
cause the leaf nodes are bigger as compared to the leaf nodes
in GT(1). The update handling time of GT(64) is up to 2 or-
ders of magnitude lower than the IER-EHL because IR-tree
is unable to efficiently handle moving objects. Note that we
do not show IER-Poly because it also employs IR-tree and,
therefore, its update cost is the same as IER-EHL. IH has a
significantly smaller update handling time than IER-EHL be-
cause it basically needs to maintain the object information in
relevant polygons of the navigation mesh. However, its up-
date handling time is higher than that of GT(64) but better or
comparable to that of GT(16).

Effect of Query Keywords and k
Figure 4 shows the effect of number of query keywords and
k on the query performance (the update time is not affected
by them). We show the results for the DA benchmark and the
results for the other benchmarks follow similar trends. The
query cost of all approaches increases with the increase in
number of query keywords. The cost of IH is most signif-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5573

10 40 70 100
mobility (in %)

100

101

102

103

104

U
pd

at
e

ti
m

e
(μ

s)
Dragon Age II (DA)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

10 40 70 100
insertions/deletions (in %)

100

101

102

103

104

Dragon Age II (DA)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

Figure 5: Update time for varying mobility and insertions/deletions.

icantly affected which is mainly because, as the number of
query keywords increases, there are fewer objects that contain
all query keywords. As a result, IH needs to incrementally ex-
plore larger search space to find the answer. As expected, the
cost of all approaches increases with the value of k because
the search space increases. GT(64) and IER-EHL are the best
performing algorithms in terms of query cost.

Effect of Mobility and Updates
Figure 5(left) shows the effect of number of moving ob-
jects at each timestamp (shown as mobility). GT(64) han-
dles the updates most efficiently and scales better mainly be-
cause the moving objects are less likely to leave the leaf nodes
as the leaf nodes get bigger and, therefore, requiring fewer
updates. Although less common in game maps than mov-
ing objects, the objects may be inserted and deleted in game
maps. Figure 5(right) studies the effect of insertions/deletions
in the game maps . For each experiment shown as x% in-
sertions/deletions, at each timestamp t, we first randomly in-
sert x

2% of the total objects in the map as new objects and
then randomly delete the same number of objects. The cost
is average update cost per timestamp. The cost of our ap-
proach increases mainly because the Grid Tree needs to be
traversed for each insertion and deletion (unlike object move-
ments which may not require any update if the object is in the
same leaf node). On the other hand, the cost of IH and IER-
EHL is lower for insertions/deletions than for object move-
ment. This is because to handle a single object movement,
these approaches require almost double the work, i.e., delet-
ing the object followed by reinsertion. Grid Tree can still
handle updates much faster than IER-EHL but its update cost
is up to 1 order of magnitude higher than IH. However, as
shown earlier, IH is up to 2 orders of magnitude slower than
Grid Tree thus the higher update cost pays off in terms of
querying performance especially when the number of dele-
tions/insertions are small compared to the number of queries.

Effect of Object Distribution
The previous experiments show the results where the object
source and target locations are randomly distributed in the
traversable space of game maps. In this experiment, we show
the results for cases where object source and target locations
are clustered in certain areas of the map. Specifically, for
each experiment, we randomly generate x rectangles in the
traversable space where each rectangle area is 1% of the total

1 4 16 ∞
of rectangles

101

102

103

104

105

Q
ue

ry
 t

im
e

(μ
s)

StarCraft (SC)

GT(1)
GT(4)
GT(16)
GT(64)

IER-EHL
IH
IER-Pol

(a) Query time

1 4 16 ∞
of rectangles

101

102

103

104

105

106

U
pd

at
e

ti
m

e
(μ

s)

StarCraft (SC)

GT(1)
GT(4)
GT(16)

GT(64)
IER-EHL
IH

(b) Update time

Figure 6: Effect of # of rectangles

space. Object source and target locations are then generated
only within these rectangles. We study the effect of x (i.e.,
the number of rectangles/clusters) by varying x to 1, 4, 16 and
infinity. Here, a smaller x implies that objects are clustered
in fewer regions in the map and x = ∞ corresponds to the
random distribution. Note that the total number of objects
remain the same for all experiments (set to default density of
1% as explained in Section 5.1). The query set is exactly the
same as the previous experiments.

Figure 6(a) shows the effect of object distribution on query
performance on the SC benchmark. Query times of all al-
gorithms except IH increase for smaller x. This is because
these algorithms use Grid Tree or IR-tree for indexing the ob-
jects and the processing cost increases when the objects are
densely populated in certain areas. Since IH incrementally
explores the search space, its cost depends on how far the ob-
jects are located from the query location. When the objects
are clustered in certain areas, for most of the queries in this
experiment, they are found closer which results in improved
querying cost. Overall, query performance trend is similar to
the previous experiments, i.e., GT is similar to or better than
IER-EHL and 1 to 2 orders of magnitude faster than IH. Fig-
ure 6(b) shows the effect of object distribution on the update
time of the underlying indexes. The update cost of Grid Tree
and IH decreases slightly for smaller x. This is because when
x is small, the object source and target locations are closer to
each other resulting in fewer objects moving out of the leaf
nodes of the Grid Tree or the polygons of navigation mesh
used in IH thus resulting in lower update cost.

6 Conclusions
This paper presents the Grid Tree, a lightweight index for
storing moving objects and efficiently retrieving textually rel-
evant nearby objects in dynamic video game environments.
Extensive experiments on widely used game map benchmarks
using realistic keywords demonstrate that the proposed ap-
proach generally outperforms the state-of-the-art algorithms
in terms of update time and query performance. Grid Tree
is a simple, easy-to-implement and highly efficient index
which makes it well-suited for deployment in video games,
enabling efficient object search in highly dynamic environ-
ments. This work also has applications in domains such as
indoor location-based services and automated warehouses.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5574

Acknowledgements
This work is supported by Australian Research Council
(ARC) DP230100081 and FT180100140.

References
[Abraham et al., 2011] Ittai Abraham, Daniel Delling, An-

drew V Goldberg, and Renato F Werneck. A hub-based
labeling algorithm for shortest paths in road networks.
In International Symposium on Experimental Algorithms,
pages 230–241. Springer, 2011.

[Beckmann et al., 1990] Norbert Beckmann, Hans-Peter
Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: An efficient and robust access method for points
and rectangles. In Proceedings of the 1990 ACM SIGMOD
international conference on Management of data, pages
322–331, 1990.

[Cheema, 2018] Muhammad Aamir Cheema. Indoor
location-based services: challenges and opportunities.
SIGSPATIAL Special, 10(2):10–17, 2018.

[Chen et al., 2013] Lisi Chen, Gao Cong, Christian S Jensen,
and Dingming Wu. Spatial keyword query processing: An
experimental evaluation. Proceedings of the VLDB En-
dowment, 6(3):217–228, 2013.

[Chen et al., 2020] Lisi Chen, Shuo Shang, Chengcheng
Yang, and Jing Li. Spatial keyword search: a survey.
GeoInformatica, 24(1):85–106, 2020.

[Cong et al., 2009] Gao Cong, Christian S Jensen, and Ding-
ming Wu. Efficient retrieval of the top-k most relevant spa-
tial web objects. Proceedings of the VLDB Endowment,
2(1):337–348, 2009.

[Cui et al., 2017] Michael Cui, Daniel Damir Harabor, and
Alban Grastien. Compromise-free pathfinding on a nav-
igation mesh. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages
496–502. ijcai.org, 2017.

[Custodio and Machado, 2020] Larissa Custodio and Ri-
cardo Machado. Flexible automated warehouse: a lit-
erature review and an innovative framework. The Inter-
national Journal of Advanced Manufacturing Technology,
106:533–558, 2020.

[De Felipe et al., 2008] Ian De Felipe, Vagelis Hristidis, and
Naphtali Rishe. Keyword search on spatial databases. In
2008 IEEE 24th International Conference on Data Engi-
neering, pages 656–665. IEEE, 2008.

[Demyen and Buro, 2006] Douglas Demyen and Michael
Buro. Efficient triangulation-based pathfinding. In Aaai,
volume 6, pages 942–947, 2006.

[Du et al., 2023] Jinchun Du, Bojie Shen, and Muham-
mad Aamir Cheema. Ultrafast euclidean shortest path
computation using hub labeling. In AAAI, 2023.

[Guttman, 1984] Antonin Guttman. R-trees: A dynamic in-
dex structure for spatial searching. In Proceedings of the
1984 ACM SIGMOD international conference on Manage-
ment of data, pages 47–57, 1984.

[Hidayat et al., 2022] Arif Hidayat, Muhammad Aamir
Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang.
Continuous monitoring of moving skyline and top-k
queries. The VLDB Journal, 31(3):459–482, 2022.

[Kallmann and Kapadia, 2014] Marcelo Kallmann and
Mubbasir Kapadia. Navigation meshes and real-time
dynamic planning for virtual worlds. In ACM SIGGRAPH
2014 Courses, pages 1–81. 2014.

[Krishnan and Mendoza Santos, 2021] Sivanand Krishnan
and Rochelle Xenia Mendoza Santos. Real-time asset
tracking for smart manufacturing. Implementing Industry
4.0: The Model Factory as the Key Enabler for the Future
of Manufacturing, pages 25–53, 2021.

[Li et al., 2010] Zhisheng Li, Ken CK Lee, Baihua Zheng,
Wang-Chien Lee, Dik Lee, and Xufa Wang. Ir-tree: An ef-
ficient index for geographic document search. IEEE trans-
actions on knowledge and data engineering, 23(4):585–
599, 2010.

[Luria et al., 2016] Michal Luria, Guy Hoffman, Benny
Megidish, Oren Zuckerman, and Sung Park. Designing
vyo, a robotic smart home assistant: Bridging the gap be-
tween device and social agent. In 2016 25th IEEE Interna-
tional Symposium on Robot and Human Interactive Com-
munication (RO-MAN), pages 1019–1025. IEEE, 2016.

[Mouratidis et al., 2005] Kyriakos Mouratidis, Dimitris Pa-
padias, and Marios Hadjieleftheriou. Conceptual partition-
ing: An efficient method for continuous nearest neighbor
monitoring. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages
634–645, 2005.

[Nash et al., 2007] Alex Nash, Kenny Daniel, Sven Koenig,
and Ariel Felner. Thetaˆ*: Any-angle path planning on
grids. In AAAI, volume 7, pages 1177–1183, 2007.

[Oh and Leong, 2017] Shunhao Oh and Hon Wai Leong.
Edge n-level sparse visibility graphs: Fast optimal any-
angle pathfinding using hierarchical taut paths. In Tenth
Annual Symposium on Combinatorial Search, 2017.

[Ooi, 1987] Beng Chin Ooi. Spatial kd-tree: an indexing
mechanism for spatial database. In COMPSAC 87, The
Eleventh Annual Int. Comp. Software & App. Conf., pages
433–438, 1987.

[Shen et al., 2020] Bojie Shen, Muhammad Aamir Cheema,
Daniel Harabor, and Peter J. Stuckey. Euclidean pathfind-
ing with compressed path databases. In Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2020, pages 4229–4235. ijcai.org,
2020.

[Shen et al., 2022] Bojie Shen, Muhammad Aamir Cheema,
Daniel D Harabor, and Peter J Stuckey. Fast optimal and
bounded suboptimal euclidean pathfinding. Artificial In-
telligence, 302:103624, 2022.

[Smith and Chang, 1994] John Smith and S-F Chang. Quad-
tree segmentation for texture-based image query. In Pro-
ceedings of the second ACM international conference on
Multimedia, pages 279–286, 1994.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5575

[Sturtevant, 2012] Nathan R. Sturtevant. Benchmarks for
grid-based pathfinding. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(2):144–148, 2012.

[Umair et al., 2021] Muhammad Umair, Muhammad Aamir
Cheema, Omer Cheema, Huan Li, and Hua Lu. Impact
of covid-19 on iot adoption in healthcare, smart homes,
smart buildings, smart cities, transportation and industrial
iot. Sensors, 21(11):3838, 2021.

[Uras and Koenig, 2015] Tansel Uras and Sven Koenig.
Speeding-up any-angle path-planning on grids. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, volume 25, pages 234–238,
2015.

[Xu et al., 2022] Tao Xu, Aopeng Xu, Joseph Mango,
Pengfei Liu, Xiaqing Ma, and Lei Zhang. Efficient pro-
cessing of top-k frequent spatial keyword queries. Scien-
tific Reports, 12(1):1–17, 2022.

[Yap et al., 2011] Peter Yap, Neil Burch, Robert Craig Holte,
and Jonathan Schaeffer. Block a*: Database-driven search
with applications in any-angle path-planning. In Twenty-
Fifth AAAI Conference on Artificial Intelligence, 2011.

[Zhao et al., 2018a] Shizhe Zhao, Daniel D Harabor, and
David Taniar. Faster and more robust mesh-based algo-
rithms for obstacle k-nearest neighbour. arXiv preprint
arXiv:1808.04043, 2018.

[Zhao et al., 2018b] Shizhe Zhao, David Taniar, and
Daniel D Harabor. Fast k-nearest neighbor on a navigation
mesh. In Eleventh Annual Symposium on Combinatorial
Search, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5576

	Introduction
	Preliminaries
	Related Work
	Pathfinding in Game Maps
	Object Search in Game Maps

	Our Approach
	Grid Tree
	Motivation
	Structure of Grid Tree

	Updating Grid Tree
	Inserting a New Object
	Deleting an Object
	Handling the Location Change of an Object
	Handling Textual Change of an Object
	Complexity Analysis

	Query Processing
	Extensions

	Experiments
	Settings
	Object Generation
	Keyword Generation
	Query Generation
	Algorithms Evaluated

	Results
	Effect of Object Density
	Effect of Query Keywords and k
	Effect of Mobility and Updates
	Effect of Object Distribution

	Conclusions

