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Abstract
Learning-augmented algorithms have been attract-
ing increasing interest, but have only recently been
considered in the setting of explorable uncertainty
where precise values of uncertain input elements
can be obtained by a query and the goal is to mini-
mize the number of queries needed to solve a prob-
lem. We study learning-augmented algorithms for
sorting and hypergraph orientation under uncer-
tainty, assuming access to untrusted predictions for
the uncertain values. Our algorithms provide im-
proved performance guarantees for accurate predic-
tions while maintaining worst-case guarantees that
are best possible without predictions. For sorting,
our algorithm uses the optimal number of queries
for accurate predictions and at most twice the opti-
mal number for arbitrarily wrong predictions. For
hypergraph orientation, for any γ ≥ 2, we give an
algorithm that uses at most 1 + 1/γ times the opti-
mal number of queries for accurate predictions and
at most γ times the optimal number for arbitrar-
ily wrong predictions. These tradeoffs are the best
possible. We also consider different error metrics
and show that the performance of our algorithms
degrades smoothly with the prediction error in all
the cases where this is possible.

1 Introduction
The emerging research area of learning-augmented algorithm
design has been attracting increasing attention in recent years.
For online algorithms, it was initiated in [Lykouris and Vassil-
vtiskii, 2018] for caching and has fostered an overwhelming
number of results for numerous problems, including online
graph problems [Kumar et al., 2019; Lindermayr et al., 2022;
Eberle et al., 2022; Azar et al., 2022b] and scheduling
problems [Purohit et al., 2018; Angelopoulos et al., 2020;
Mitzenmacher, 2020; Lattanzi et al., 2020; Azar et al., 2021;
Azar et al., 2022a; Lindermayr and Megow, 2022; Bampis
et al., 2022; Li and Xian, 2021]. In the research area of ex-
plorable uncertainty [Kahan, 1991; Erlebach and Hoffmann,
2015], however, learning-augmented algorithms have only re-
cently been studied for the first time, namely for the mini-
mum spanning tree problem (MST) [Erlebach et al., 2022].

This area considers problems with uncertainty in the input
data assuming that a query to an input element can be used
to obtain the exact value of that element. Queries are costly,
and hence the goal is to make as few queries as possible un-
til sufficient information has been obtained to solve the given
problem. Learning-augmented algorithms in this setting are
given (untrusted) predictions of the uncertain input values.
In this paper, we present and analyze learning-augmented al-
gorithms for further fundamental problems with explorable
uncertainty, namely sorting and hypergraph orientation.

In the hypergraph orientation problem under uncer-
tainty [Bampis et al., 2021], we are given a hypergraph
H = (V,E). Each vertex v ∈ V is associated with an un-
certainty interval Iv = (Lv, Uv) and an, initially unknown,
precise weight wv ∈ Iv . We call Lv and Uv the lower and
upper limit of v. A query of v reveals its precise weight wv

and reduces its uncertainty interval to Iv = [wv]. Our task is
to orient each hyperedge S ∈ E towards the vertex of mini-
mum precise weight in S. An adaptive algorithm can sequen-
tially make queries to vertices to learn their weights until it
has enough information to identify the minimum-weight ver-
tex of each hyperedge. A set Q ⊆ V is called feasible if
querying Q reveals sufficient information to find the orien-
tation. As queries are costly, the goal is to (adaptively) find
a feasible query set of minimum size. An important special
case is when the input graph is a simple graph that is exactly
the interval graph induced by the uncertainty intervals I. This
special case corresponds to the problem of sorting a set of un-
known values represented by uncertainty intervals and, there-
fore, we refer to it as sorting under uncertainty.

Since there exist input instances that are impossible to
solve without querying all vertices, we evaluate our algo-
rithms in an instance-dependent manner: For each input, we
compare the number of queries made by an algorithm with
the minimum possible number of queries for that input, using
competitive analysis. For a given problem instance, let OPT
denote an optimal query set. An algorithm is ρ-competitive
if it executes, for any problem instance, at most ρ · |OPT|
queries. As the query results are uncertain and, to a large
extent, are the deciding factor whether querying certain ver-
tices is a good strategy or not, the problem has a clear online
flavor. In particular, the uncertainty prevents 1-competitive
algorithms, even without any running time restrictions.

Variants of hypergraph orientation have been widely stud-
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ied since the model of explorable uncertainty has been pro-
posed [Kahan, 1991]. Sorting and hypergraph orientation are
well known to admit efficient polynomial-time algorithms if
precise input data is given, and they are well understood in the
setting of explorable uncertainty: The best known determin-
istic algorithms are 2-competitive, and no deterministic algo-
rithm can be better [Kahan, 1991; Halldórsson and de Lima,
2021; Bampis et al., 2021]. For sorting, the competitive ratio
can be improved to 1.5 using randomization [Halldórsson and
de Lima, 2021]. In the stochastic setting, where the precise
weights of the vertices are drawn according to known dis-
tributions over the intervals, there exists a 1.618-competitive
algorithm for hypergraph orientation and a 4/3-competitive
algorithm for special cases [Bampis et al., 2021]. For the
stochastic sorting problem, the algorithm with the optimal
expected query cost is known, but its competitive ratio re-
mains unknown [Chaplick et al., 2021]. Besides hyper-
graph orientation and other selection-type problems, there has
been work on combinatorial optimization problems with ex-
plorable uncertainty, such as shortest path [Feder et al., 2007],
knapsack [Goerigk et al., 2015], scheduling problems [Dürr
et al., 2020; Arantes et al., 2018; Albers and Eckl, 2020;
Albers and Eckl, 2021; Gong et al., 2022], the minimum
spanning tree (MST) problem and matroids [Erlebach et al.,
2008; Erlebach and Hoffmann, 2014; Megow et al., 2017;
Focke et al., 2020; Merino and Soto, 2019].

In this paper, we consider a third model (to the adversarial
and stochastic setting) and assume that the algorithm has, for
each vertex v, access to a prediction wv ∈ Iv for the unknown
weight wv . These predicted weights could for example be
computed using machine learning (ML) methods or other sta-
tistical tools on past data. Given the emerging success of ML
methods, it seems reasonable to expect predictions of high
accuracy. However, there are no theoretical guarantees and
the predictions might be arbitrarily wrong, which raises the
question whether an ML algorithm performs sufficiently well
in all circumstances. In the context of hypergraph orienta-
tion and explorable uncertainty, we answer this question af-
firmatively by designing learning-augmented algorithms that
perform very well if the predictions are accurate and still
match the adversarial lower bounds even if the predictions
are arbitrarily wrong. To formalize these properties, we use
the notions of α-consistency and β-robustness [Lykouris and
Vassilvtiskii, 2018; Purohit et al., 2018]: An algorithm is α-
consistent if it is α-competitive when the predictions are cor-
rect, and it is β-robust if it is β-competitive no matter how
wrong the predictions are. Additionally, we aim at guarantee-
ing a smooth transition between consistency and robustness
by giving performance guarantees that gracefully degrade
with the amount of prediction error. This raises interesting
questions regarding appropriate ways of measuring predic-
tion errors, and we explore several such measures. Analyzing
algorithms in terms of error-dependent consistency and ro-
bustness allows us to still give worst-case guarantees (in con-
trast to the stochastic setting) that are more fine-grained than
guarantees in the pure adversarial setting.

Research on explorable uncertainty with untrusted predic-
tions is in its infancy. In the only previous work that we are
aware of, Erlebach et al. 2022 studied the MST problem with

uncertainty and untrusted predictions. They propose an er-
ror measure kh called hop-distance (definition follows later)
and obtain a 1.5-consistent and 2-robust algorithm as well as
a parameterized consistency-robustness tradeoff with smooth
degradation, min{1 + 1

γ + 5·kh

|OPT| , γ + 1}, for any integral
γ ≥ 2 and error kh. It remained open whether or how other
problems with explorable uncertainty can leverage untrusted
predictions, and what other prediction models or error metrics
might be useful in explorable uncertainty settings.
Main results. We show how to utilize possibly erroneous
predictions for hypergraph orientation and sorting with ex-
plorable uncertainty. For sorting, we present an algorithm that
is 1-consistent and 2-robust, which is in a remarkable way
best possible: the algorithm identifies an optimal query set if
the predictions are accurate, while maintaining the best possi-
ble worst-case ratio of 2 for arbitrary predictions. For hyper-
graph orientation, we give a 1.5-consistent and 2-robust al-
gorithm and show that this consistency is best possible when
aiming for optimal robustness.

Our major focus lies on a more fine-grained performance
analysis with guarantees that improve with the prediction ac-
curacy. A key ingredient in this line of research is the choice
of error measure quantifying this (in)accuracy. We propose
and discuss three different error measures k#, kh and kM :
The number of inaccurate predictions k# is natural and al-
lows a smooth degradation result for sorting, but in general it
is too crude to allow for improving upon lower bounds of 2
for the setting without predictions. We therefore also consider
the hop distance kh, proposed in [Erlebach et al., 2022]. Fur-
ther, we introduce a new error measure kM called mandatory
query distance which is tailored to problems with explorable
uncertainty. It is defined in a more problem-specific way, and
we show it to be more restrictive in the sense that kM ≤ kh.

For the sorting problem, we obtain an algorithm with com-
petitive ratio min{1 + k/|OPT|, 2}, where k can be any of
the three error measures considered, which is best possible.
For the hypergraph orientation problem, we provide an algo-
rithm with competitive ratio min{(1 + 1

γ−1 )(1 +
kM

|OPT| ), γ},
for any integral γ ≥ 2. This is best possible for kM = 0 and
large kM . With respect to the hop distance, we achieve the
stronger bound min{(1+ 1

γ )(1+
kh

|OPT| ), γ}, for any integral
γ ≥ 2, which is also best possible for kh = 0 and large
kh. While the consistency and robustness trade-off of the
kM -dependent algorithm is weaker, we remark that the corre-
sponding algorithm requires less predicted information than
the kh-dependent algorithm and that the error dependency can
be stronger as kM can be significantly smaller than kh. We
note that parameter γ is in both results restricted to integral
values as it determines sizes of query sets, but a generaliza-
tion to reals γ ≥ 2 is possible at a small loss in the guarantee.

While our algorithm for sorting has polynomial running
time, the algorithms for the hypergraph orientation problem
may involve solving an NP-hard vertex cover problem. We
justify this increased complexity by showing that even the
offline version of the problem (determining the optimal query
set if the precise weights are known) is NP-hard.

All missing proofs are provided in the full version [Er-
lebach et al., 2023] of the paper.
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2 Preliminaries and Error Measures
An algorithm for the hypergraph orientation problem with
uncertainty that assumes that the predicted weights are ac-
curate can exploit the characterization of optimal solutions
given in [Bampis et al., 2021] to compute a query set that is
optimal if the predictions are indeed accurate. Querying this
set leads to 1-consistency but may perform arbitrarily bad in
case of incorrect predictions. On the other hand, known 2-
competitive algorithms for the adversarial problems without
predictions [Kahan, 1991; Halldórsson and de Lima, 2021]
are not better than 2-consistent, and the algorithms for the
stochastic setting [Bampis et al., 2021] do not guarantee any
robustness at all. The known lower bounds of 2 rule out any
robustness factor less than 2 for our model. They build on
the simple example with a single edge {u, v} and intersect-
ing intervals Iv, Iu. No matter which vertex a deterministic
algorithm queries first, say v, the realized weight could be
wv ∈ Iv ∩ Iu, which requires a second query. If the adver-
sary chooses wu /∈ Iv ∩ Iu, querying just u would have been
sufficient to identify the vertex of minimum weight.

The following bound on the best achievable tradeoff be-
tween consistency and robustness translates from the lower
bound in [Erlebach et al., 2022] for MST under uncertainty
with predictions. Later in this paper, we provide algorithms
with matching performance guarantees. Note that this lower
bound does not hold for the sorting problem.

Theorem 2.1. Let β ≥ 2 be a fixed integer. For hypergraph
orientation under uncertainty, there is no deterministic β-
robust algorithm that is α-consistent for α < 1+ 1

β . And vice
versa, no deterministic α-consistent algorithm, with α > 1,
is β-robust for β < max{ 1

α−1 , 2}. The result holds even for
orienting a single hyperedge or a simple (non-hyper) graph.

2.1 Preliminaries
The crucial structure and unifying concept in hypergraph ori-
entation and sorting under explorable uncertainty without
predictions are witness sets [Bruce et al., 2005]. Witness
sets are the key to any comparison with an optimal solution.
A “classical” witness set is a set of vertices for which we
can guarantee that any feasible solution must query at least
one of these vertices. In the classical setting without access
to predictions, sorting and hypergraph orientation admit 2-
competitive online algorithms that rely essentially on identi-
fying and querying disjoint witness sets of size two. We refer
to witness sets of size two also as witness pairs. The follow-
ing lemma characterizes witness pairs for our problems. We
call a vertex v leftmost in a hyperedge S if it is a vertex with
minimum lower limit Lv in S.

Lemma 2.2 (Kahan, 1991). Given (hyper)graph H =
(V,E). Consider some S ∈ E. A set {v, u} ⊆ S with
Iv ∩ Iu ̸= ∅, and v or u leftmost in S, is a witness set.

In terms of learning-augmented algorithms, completely re-
lying on querying witness pairs ensures 2-robustness, but it
does not lead to any improvements in terms of consistency.
In order to obtain an improved consistency, we need stronger
local guarantees. To that end, we call a vertex mandatory, if it

is part of every feasible query set. Identifying mandatory ver-
tices based on the interval structure alone is not always pos-
sible, otherwise there would be a 1-competitive algorithm.
Therefore, we want to identify vertices that are mandatory
under the assumption that the predictions are correct. We call
such vertices prediction mandatory. The following lemma
gives a characterization of (prediction) mandatory vertices.

Lemma 2.3. A vertex v ∈ V is mandatory if and only if
there is a hyperedge S ∈ E with v ∈ S such that either (i)
v is a minimum-weight vertex of S and wu ∈ Iv for some
u ∈ S \ {v}, or (ii) v is not a minimum-weight vertex of S
and wu ∈ Iv for the minimum-weight vertex u of S.

Proof. If v is a minimum-weight vertex of hyperedge S and
Iv contains wu of another vertex u ∈ S \ {v}, then S cannot
be oriented even if we query all vertices in S \ {v} as we
cannot prove wv ≤ wu without querying v. If v is not a
minimum-weight vertex of a hyperedge S with v ∈ S and
Iv contains the minimum weight w∗ of S, then S cannot be
solved even if we query all vertices in S \ {v}, as we cannot
prove that w∗ ≤ wv without querying v.

If v is a minimum-weight vertex of hyperedge S, but
wu /∈ Iv for every u ∈ S \ {v}, then S \ {v} is a feasible
solution for orienting S. If v is not a minimum-weight vertex
of hyperedge S and Iv does not contain the minimum weight
of S, then again S \ {v} is a feasible solution for S. If every
hyperedge S that contains v falls into one of these two cases,
then querying all vertices except v is a feasible query set for
the whole instance.

By using the lemma with the predicted weights instead of
the precise weights, we can identify prediction mandatory
vertices. Furthermore, the lemma does not only enable us
to identify mandatory vertices given full knowledge of the
precise weights, but also implies criteria to identify known
mandatory vertices, i.e., vertices that are known to be manda-
tory given only the hypergraph, the intervals, and precise
weights revealed by previous queries. Every algorithm can
query such vertices without worsening its competitive ratio.

Corollary 2.4. If the interval Iv of the leftmost vertex v in
a hyperedge S contains the precise weight of another vertex
in S, then v is mandatory. In particular, if v is leftmost in S
and Iu ⊆ Iv for some u ∈ S \ {v}, then v is mandatory.

We use Lemma 2.3 to define an offline algorithm, i.e., we
assume full access to the precise weights but still want to
compute a feasible query set, that follows a two-stage struc-
ture: First, we iteratively query all mandatory vertices com-
puted using Lemma 2.3. After that, each not yet oriented
hyperedge S has the following configuration: The leftmost
vertex v has a precise weight outside Iu for all u ∈ S \ {v},
and each other vertex in S has precise weight outside Iv . Thus
we can either query v or all other vertices u ∈ S \ {v} with
Iu ∩ Iv ̸= ∅ to determine the orientation. The optimum so-
lution is to query a minimum vertex cover in the following
auxiliary graph as introduced in [Bampis et al., 2021]:

Definition 2.5. Given a hypergraph H = (V,E), the vertex
cover instance of H is the graph Ḡ = (V, Ē) with {v, u} ∈ Ē
if and only if there is a hyperedge F ∈ E such that v, u ∈ F ,
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v is leftmost in F and Iv ∩ Iu ̸= ∅. For the sorting problem,
it holds that Ḡ = G.

The Lemmas 2.2 and 2.3 directly imply that the offline al-
gorithm is optimal. The algorithm may require exponential
time, but this is not surprising as we also show that the offline
version of the hypergraph orientation problem is NP-hard.

A key idea of our algorithms is to emulate the offline algo-
rithm using the predicted information. Since blindly follow-
ing the offline algorithm might lead to competitive ratio of n
for faulty predictions, we have to augment the algorithm with
additional, carefully selected queries.

The next lemma formulates a useful property of vertex
cover instances without known mandatory vertices.
Lemma 2.6. Given a hypergraph H = (V,E) without known
mandatory vertices (by Corollary 2.4), let Q be an arbitrary
vertex cover of Ḡ. After querying Q, for each hyperedge F ∈
E, we either know the orientation of F or can determine it by
exhaustively querying according to Corollary 2.4.

2.2 Accuracy of Predictions
While consistency and robustness only consider the extremes
in terms of prediction quality, we aim for a more fine-grained
analysis that relies on error metrics to measure the quality of
the predictions. As was discussed in [Erlebach et al., 2022],
for the MST problem, simple error measures like the number
of inaccurate predictions k# = |{v ∈ V |wv ̸= wv}| or an
ℓ1 error metric such as

∑
e∈E |we − we| are not meaningful;

this is also true for the hypergraph orientation problem. In
particular, we show that even for k# = 1 the competitive ratio
cannot be better than the known bound of 2 (cf. Appendix)
for general hypergraph orientation. For the sorting problem,
however, we show that k#-dependent guarantees are indeed
possible. In general we need more refined measures that take
the interleaving structure of intervals into account.

As a first refined measure, we consider the hop distance
as proposed in [Erlebach et al., 2022]. For a vertex v and
any vertex u ∈ V \ {v}, we define the function ku(v) that
indicates whether the relation of wv to interval Iu changes
compared to the relation of wv and Iu. To be more precise,
ku(v) = 1 if wv ≤ Lu < wv , wv ≤ Lu < wv , wv < Uu ≤
wv or wv < Uu ≤ wv , and ku(v) = 0 otherwise. Based on
this function, we define the hop distance of a single vertex as
k+(v) =

∑
u∈V \{v} ku(v). Intuitively k+(v) for a single v ∈

V counts the number of relations between wv and intervals
Iu with u ∈ V \ {v} that are not accurately predicted. For a
set of vertices V ′ ⊆ V , we define k+(V ′) =

∑
v∈V ′ k+(v).

Finally, we define the hop distance by kh = k+(V ). For an
example see Figure 1.

Note that k# = 0 implies kh = 0, so Theorem 2.1 implies
that no algorithm can simultaneously have competitive ratio
better than 1 + 1

β if kh = 0 and β for arbitrary kh.
While the hop distance takes the interval structure into ac-

count, it does not distinguish whether a “hop” affects a feasi-
ble solution. We introduce a third and strongest error measure
based on the sets of (prediction) mandatory elements.

Let IP be the set of prediction mandatory elements, and let
IR be the set of really mandatory elements. The mandatory
query distance is the size of the symmetric difference of IP

and IR, i.e., kM = |IP∆IR| = |(IP ∪ IR) \ (IP ∩ IR)| =
|(IP \ IR) ∪ (IR \ IP )|. Figure 1 (right) shows an example
with kM = 1. Considering the precise weights in the exam-
ple, both {v1} and {v2, v3, v4} are feasible solutions. Thus,
no element is part of every feasible solution and IR = ∅. As-
suming correct predicted weights, we have that v1 has to be
queried even if all other vertices have already been queried
and, therefore, IP = {v1}. It follows kM = |IP∆IR| = 1.

Obviously, kM is a problem-specific error measure as, in a
given set of uncertainty intervals, different intervals may be
mandatory for different problems. We can relate kM to kh.
Theorem 2.7. For any instance of hypergraph orientation
under uncertainty with predictions, the hop distance is at
least as large as the mandatory query distance, i.e., kM ≤ kh.

The learnability results of [Erlebach et al., 2022] trans-
late to the hypergraph orientation problem and show that the
predictions are PAC-learnable (cf. [Valiant, 1984]) w.r.t. kh
with polynomial running time and sample complexity. In
the full version, we show PAC-learnability w.r.t. kM . While
this might require exponential running time, we remark that
the set IP can be predicted with polynomial running time
and that access to that set is sufficient information to exe-
cute our kM -dependent algorithm for hypergraph orientation.
For sorting, our algorithm relies on access to the predicted
weights. Note that, under the PAC-learning assumption that
we can sample the precise weights, it is possible to apply the
algorithm for the stochastic problem variant given in [Bampis
et al., 2021]. However, in contrast to the results of this paper,
the guarantee of the algorithm given in [Bampis et al., 2021]
holds in expectation instead of in the worst-case and admits
no robustness. Furthermore, our algorithms work as a black-
box independent of how the predictions are obtained.

3 Hypergraph Orientation
We consider the general hypergraph orientation problem, and
give error-sensitive algorithms w.r.t. the measures kh and kM .
For kh, we show that we can use an adjusted variant of the al-
gorithm given in [Erlebach et al., 2022] for the MST problem.

To achieve error-sensitive guarantees w.r.t kM , we show
that the kh-dependent guarantee does not directly translate to
kM . Instead, we give an even simpler algorithm that emulates
the offline algorithm and augments it with additional queries,
and show that this algorithm achieves the optimal trade-off
w.r.t kM . We remark that this algorithm only requires access
to the set of prediction mandatory vertices, which is a weaker
type of prediction than access to the predicted weights w.

3.1 Error-Sensitive Algorithm w.r.t. Hop Distance
In the full version, we show how to adjust the algorithm
and analysis given in [Erlebach et al., 2022] for the MST
problem to prove the following theorem. In contrast to
the result of [Erlebach et al., 2022], we achieve the opti-
mal consistency-robustness tradeoff by essentially exploit-
ing Lemma 2.6. The corresponding analysis requires addi-
tional work specific to the hypergraph orientation problem.
Theorem 3.1. There is an algorithm for hypergraph orienta-
tion under uncertainty that, given γ ∈ N≥2, achieves a com-
petitive ratio of min{(1 + 1

γ )(1 + kh/|OPT|), γ}.
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Iv1

Iv2

Iv3

Iv4

k+(v1) = 2

k+(v2) = 3

k+(v3) = 0

k+(v4) = 0

Iv1

Iv2

Iv3

Iv4

Figure 1: Example from [Erlebach et al., 2022] interpreted for the hypergraph orientation problem with a hyperedge S = {v1, v2, v3, v4}.
Circles illustrate precise weights and crosses illustrate the predicted weights. Predictions and precise weights with a total hop distance of
kh = 5 and mandatory query distance of kM = 1 (left) and kh = 3 and kM = 1 (right).

3.2 An Error-Sensitive Algorithm w.r.t. the
Mandatory-Query Distance

We start by providing the following lower bound.
Theorem 3.2. Let γ ∈ R≥2 be fixed. If a deterministic
algorithm for hypergraph orientation under uncertainty is
γ-robust, then it cannot have competitive ratio better than
1 + 1

γ−1 for kM = 0. If an algorithm has competitive ratio
1 + 1

γ−1 for kM = 0, then it cannot be better than γ-robust.

This lower bound shows that the guarantee of Theorem 3.1
cannot translate to the error measure kM .

Further, we prove the following tight bound by presenting
the new Algorithm 1 with dependency on kM . Note that this
algorithm only uses the initial set of prediction mandatory
vertices, and otherwise ignores the predicted weights. Access
to this set is sufficient to execute the algorithm.
Theorem 3.3. There is an algorithm for hypergraph orienta-
tion under uncertainty that, given an integer parameter γ ≥
2, has a competitive ratio of min{(1+ 1

γ−1 ) ·(1+
kM

|OPT| ), γ}.
The full proof is in the Appendix; here we only give a

proof sketch. The algorithm emulates the two-stage struc-
ture of the offline algorithm. Recall that the offline algorithm
in a first stage queries all mandatory vertices and in a second
stage queries a minimum vertex cover in the remaining vertex
cover instance. Since blindly following the offline algorithm
based on the predicted weights would lead to a competitive
ratio of n, the algorithm augments both stages with additional
queries. Algorithm 1 implements the augmented first stage in
Lines 2 to 7 and afterwards executes the second stage.

To start the first phase, the algorithm computes the set P
of initial prediction mandatory vertices (Lemma 2.3). Then
it tries to find a vertex p ∈ P that is part of a witness set
{p, b}. If |P | ≥ γ − 1, we query a set P ′ ⊆ P of size
γ − 1 that includes p, plus b (we allow b ∈ P ′). This is
clearly a witness set of size at most γ, which ensures that the
queries do not violate the γ-robustness. Also, at least a γ−1

γ

fraction of the queried vertices are in P , and every vertex in
P \ OPT is in IP \ IR. This ensures, at least locally, that
the queried vertices do not violate the error-dependent consis-
tency. We then repeatedly query known mandatory vertices,
remove them from P and repeat without recomputing P , un-
til P is empty or no vertex in P is part of a witness set.

We may have one last iteration of the loop where |P | <
γ − 1. After that, the algorithm will proceed to the second

Algorithm 1: Algorithm for hypergraph orientation
under uncertainty w.r.t. error measure kM

Input: Hypergraph H = (V,E), intervals Iv and
predictions wv for all v ∈ V

1 P ← set of initial prediction mandatory vertices
(characterized in Lemma 2.3);

2 while ∃p ∈ P and an unqueried vertex b where {p, b}
is a witness set for the current instance by Lemma 2.2
do

3 if |P | ≥ γ − 1 then
4 pick P ′ ⊆ P with p ∈ P ′ and |P ′| = γ − 1;
5 query P ′ ∪ {b}, P ← P \ (P ′ ∪ {b});
6 while there is a known mandatory vertex v do

query v, P ← P \ {v} ;
7 else query P , P ← ∅ ;
8 Compute and query a minimum vertex cover Q′ on the

current vertex cover instance;
9 Exhaustively apply Corollary 2.4 ;

phase, querying a minimum vertex cover and intervals that
become known mandatory. For the second phase itself, we
can use that a minimum vertex cover of the vertex cover in-
stance (cf. Definition 2.5) is a lower bound on the optimal
solution for the remaining instance by Lemma 2.2. Since all
queries of Line 9 are mandatory, the queries of the Lines 8
and 9 are 2-robust for the remaining instance. Even in com-
bination with the additional at most γ − 2 queries of the last
iteration of the loop, this is still γ-robust. It is not hard to
show that each query of Line 9 contributes an error to kM ,
which completes the argument.

4 Sorting under Uncertainty
We consider the special case of the hypergraph orientation
problem, where the input graph is a simple graph G = (V,E)
that satisfies {u, v} ∈ E if and only if Iv ∩ Iu ̸= ∅. That
is, G corresponds to the interval graph induced by the un-
certainty intervals I = {Iv | v ∈ V }. To orient such a
graph, we have to, for each pair of intersecting intervals, de-
cide which one has the smaller precise weight. An orienta-
tion of the graph defines an order of the intervals according to
their precise weights (and vice versa). Thus, the problem cor-
responds to the problem of sorting a single set of uncertainty
intervals. Note that, by querying vertices, the uncertainty in-
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tervals change and, thus, the graph induced by the intervals
also changes. When we speak of the current interval graph,
we refer to the interval graph induced by the uncertainty in-
tervals after all previous queries. We show in the full version:
Theorem 4.1. Any deterministic algorithm for sorting or
hypergraph orientation with predictions (even for pairwise
disjoint hyperedges) has a competitive ratio ρ ≥ min{1 +

k
|OPT| , 2}, for any error measure k ∈ {k#, kM , kh}.

As a main result, we show a matching upper bound.
Theorem 4.2. There exists a single polynomial-time algo-
rithm for sorting under uncertainty with predictions that is
min{1 + k

|OPT| , 2}-competitive for any k ∈ {k#, kM , kh}.
The key observation that allows us to achieve improved

results for interval graphs is the simple characterization
of mandatory vertices: any vertex with an interval that
contains the precise weight of another vertex is manda-
tory [Halldórsson and de Lima, 2021]. This observation is
a direct consequence of Lemma 2.3 and the structure of in-
terval graphs. Analogously, each vertex with an interval that
contains the predicted weight of another vertex is prediction
mandatory. Furthermore, Lemma 2.2 implies that any two
vertices with intersecting intervals constitute a witness set.

To obtain a guarantee of |OPT| + k for any measure k,
our algorithm (cf. Algorithm 2) must trust the predictions as
much as possible. That is, the algorithm must behave very
close to the offline algorithm under the assumption that the
predictions are correct. Recall that the offline algorithm in
a first stage queries all mandatory vertices and in a second
stage queries a minimum vertex cover in the remaining vertex
cover instance. Algorithm 2 emulates again these two stages.
In contrast to the algorithms for general hypergraph orienta-
tion, we cannot afford to augment the stages with additional
queries as we aim at achieving 1-consistency. Thus, we need
a new algorithm and cannot apply existing results.

In the emulated first phase, our algorithm queries all pre-
diction mandatory intervals (cf. Line 4) and all intervals that
are mandatory based on the already obtained information
(cf. Lines 2 and 5). This phase clearly does not violate the
|OPT|+k guarantee for k ∈ {kM , kh}, as all queried known
mandatory vertices (cf. Lines 2 and 5) are contained in OPT
and all queried prediction mandatory vertices (cf. Line 4) are
either in OPT or contribute one to kM ≤ kh. We will show
that the same holds for k = k#. However, the main challenge
is to guarantee 2-robustness. Our key ingredient for ensuring
this is the following lemma, which we show in the full ver-
sion.
Lemma 4.3. For an instance of the sorting problem, let IP
be the set of prediction mandatory vertices and M the set of
known mandatory vertices after querying IP (by exhaustively
applying Corollary 2.4). Then, we can partition IP ∪M into
a set of disjoint cliques C such that each v with {v} ∈ C either
satisfies v ∈ M or Iv ∩ Iu ̸= ∅ for a distinct u ̸∈ IP ∪M .
The partition can be computed in polynomial time.

We can apply the lemma to the queries of the first phase of
the algorithm (cf. Line 7). Given the partition C of the lemma,
we know that queries to vertices v that are part of some C ∈ C
with |C| ≥ 2 (or mandatory, i.e., v ∈ M ) do not violate the

Algorithm 2: A nicely degrading algorithm for sort-
ing with uncertainty and predictions

Input: Interval graph G = (V,E), intervals Iv and
predictions wv for all v ∈ V

1 IP ← set of prediction mandatory vertices;
2 while ∃v ̸= u with Iu ⊆ Iv , or u was queried and

wu ∈ Iv do query v;
3 M1 ← vertices queried in Line 2; S ← IP \M1 ;
4 Query S;
5 Exhaustively apply Corollary 2.4 ;
6 M2 ← set of vertices queried in Line 5;
7 C ← Clique partition of S ∪M1 ∪M2 such that all

isolated vertices v satisfy either v ∈M1 ∪M2 or
Iu ∩ Iv ̸= ∅ for a distinct u ̸∈ S ∪M1 ∪M2

(computed using Lemma 4.3);
8 while the problem is unsolved do
9 let P = x1x2 · · ·xp be a path component of the

current interval graph with p ≥ 2 in direction of
non-increasing lower limits Lxi ;

10 if p is odd then query {x2, x4, . . . , xp−1};
11 else
12 if x1 is the distinct partner of a critical

isolated vertex v (Ix1
∩ Iv ̸= ∅ and

v ̸∈M1 ∪M2; cf. Lemma 4.3) then query
{x1, x3, . . . , xp−1};

13 else query {x2, x4, . . . , xp};
14 Exhaustively apply Corollary 2.4;

2-robustness as even the optimal solution can avoid at most
one query per clique [Halldórsson and de Lima, 2021]. Thus,
we only have to worry about vertices v ̸∈ M with {v} ∈ C.
We call such vertices critical isolated vertices. But even for
critical isolated vertices v, the lemma gives us a distinct not
yet queried u with Iv ∩ Iu ̸= ∅, i.e., {v, u} is a witness set.

In line with the offline algorithm, the second phase of the
algorithm (cf. Lines 8 to 14) queries a minimum vertex cover
of the remaining instance (the interval graph defined by the
intervals of non-queried vertices). However, to guarantee 2-
robustness, we have to take the witness sets of the critical
isolated vertices into account when deciding which vertex
cover to query. To see this, consider the example of Figure 2:
only v1 is prediction mandatory, so the first phase of the al-
gorithm just queries v1. After querying v1, there are no pre-
diction mandatory (or mandatory) intervals left. One possible
minimum vertex cover of the remaining instance is {v3, v5},
but querying this vertex cover renders v2 and v4 mandatory.
Thus, the algorithm would query all five intervals, which vi-
olates the 2-robustness as the optimal solution just queries
{v2, v4}. The example shows that the selection of the mini-
mum vertex cover in the second phase is important.

We show in the Appendix that instances occurring in the
second phase have a structure similar to the example by using
that such instances have no prediction mandatory vertices.

Lemma 4.4. Each connected component of an interval graph
without prediction mandatory vertices is either a path or a
single vertex.
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Iv1

Iv2

Iv3

Iv4

Iv5

Figure 2: Example showing that it is necessary to query a specific
vertex cover in the second phase to ensure 2-robustness. Circles
illustrate precise values and crosses illustrate the predicted values.

Further, we observe that if the intervals of critical isolated
vertices intersect intervals of vertices on such a path compo-
nent, they intersect the interval of an endpoint of the com-
ponent. Otherwise, the predicted weight wv of the critical
isolated vertex v would be contained in the interval of at
least one vertex on the path component, which contradicts
the vertices on the path not being prediction mandatory. The
distinct partner u of a critical isolated vertex v that exists
by Lemma 4.3 is an endpoint of such a path component.

The second phase of our algorithm iterates through all such
connected components and, for each component, queries a
minimum vertex cover (cf. Lines 10, 12 and 13) and all re-
sulting mandatory intervals (cf. Line 14). If the path is of
odd length, then the minimum vertex cover is unique. Other-
wise, the algorithm selects the minimum vertex cover based
on whether the interval of a critical isolated vertex intersects
the interval of the first path endpoint. Lemma 2.6 guarantees
that the algorithm indeed queries a feasible query set. The
following lemma shows that this strategy indeed ensures 2-
robustness (using Lemma 4.3).
Lemma 4.5. Algorithm 2 is 2-robust.

Proof. Fix an optimum solution OPT. Let M1, M2 and S
denote the phase one queries of the algorithm as defined in
the pseudocode. Consider the clique partition C as computed
in Line 7, then all C ∈ C with |C| ≥ 2 satisfy |C| ≤ 2 ·
|C ∩OPT| and all C ∈ C with C ⊆M1 ∪M2 satisfy |C| ≤
|C ∩ OPT|. The latter holds as all members of M1 ∪ M2

are mandatory by Lemma 2.3. Queries to vertices that are
covered by such cliques do not violate the 2-robustness. This
leaves members of S that are critical isolated vertices in C and
queries of the second phase. We partition such queries (and
some non-queried vertices) into a collectionW such that, for
each W ∈ W , the algorithm queries at most 2 · |W ∩ OPT|
intervals in W . If we have such a partition, then it is clear that
we spend at most 2 · |OPT| queries and are 2-robust.

By Lemma 4.3, there is a distinct vertex u ̸∈M1 ∪M2 ∪S
for each critical isolated vertex v with Iv ∩ Iu ̸= ∅; as argued
above, u is the endpoint of a path component of the current
instance before line 8. We create the partitionW as follows:
Iteratively consider all connected (path) components P of the
current instance before line 8. Let W be the union of P and
the critical isolated vertices that are the distinct partner of at
least one endpoint of P . If |W | ≥ 2, add W toW . Clearly,
W contains all critical isolated vertices of C and all intervals
that are queried in the Lines 10, 12, 13 and 14.

We conclude the proof by arguing that each W ∈ W satis-
fies that the algorithm queries at most 2 · |W ∩OPT| vertices
in W . By construction, W contains a path component P and
up-to two critical isolated vertices. Furthermore, W itself is
a path in the initial interval graph (in addition to the edges
of the path, there may be an additional edge between each

critical isolated vertex of C in W and the second or penulti-
mate vertex of P , but this does not affect the argument that
follows). Consider an arbitrary W ∈ W . If |W | is even,
then |W | ≤ 2 · |W ∩ OPT| as all pairs of neighboring ver-
tices in path W are witness pairs. Thus, assume that |W | is
odd. As each critical isolated vertex has a distinct partner
by Lemma 4.3 and this partner is an endpoint of a path com-
ponent, W contains at most one critical isolated vertex per
distinct endpoint of P and we have |P | ≥ 2.

We divide the analysis in two cases. First assume
that |P | = p is odd. Then the algorithm queries
{x2, x4, . . . , xp−1} in Line 10. As P is a path, the precise
weight of each queried vertex can be contained in the inter-
val of at most one other vertex of P and, therefore, force at
most one query in Line 14. This leaves at least one vertex
in P ⊆ W that is never queried by the algorithm. Since
|W ∩ OPT| ≥ ⌊|W |/2⌋ (as the subgraph induced by W
contains a path of the vertices in W ), clearly the algorithm
queries at most 2 · |W ∩OPT| vertices in W .

Now assume that |P | = p is even. Then either x1 or xp

(but not both) is the distinct partner of a critical isolated mem-
ber of W , otherwise |W | would be even. If Ix1 intersects Iv
of the critical isolated vertex v, then the algorithm queries
{x1, x3, . . . , xp−1} in Line 12. If wx1

forces a query to x2

in Line 14, then |{x1, x2, v}| ≤ 2 · |{x1, x2, v} ∩ OPT| and
the remaining vertices W ′ = W \ {x1, x2, v} form an even
path, which implies |W ′| ≤ 2 · |W ′ ∩ OPT| and, therefore
|W | ≤ 2 · |W ∩ OPT|. If wx1

forces no query to x2 in
Line 14, then |{x1, v}| ≤ 2 · |OPT∩{x1, v}| and we analyze
W ′ = W \ {x1, v} as in the subcase for odd |P |. Hence, the
algorithm queries at most 2 · |W ∩OPT| intervals of W .

If Ixp intersects the interval Iv of critical isolated member
v, then we can analyze W analogously.

Lemma 4.6. Algorithm 2 spends at most |OPT| + kM ≤
|OPT|+ kh queries.

Proof. We show that the algorithm spends at most |OPT| +
kM queries. Theorem 2.7 implies |OPT| + kM ≤ |OPT| +
kh . Fix an optimum solution OPT. Every vertex queried
in Lines 2 and 5 is in OPT by Lemma 2.3. Every vertex
queried in Line 4 that is not in OPT is clearly in IP \ IR and
contributes one to kM .

For each path P considered in Line 9, let P ′ be the vertices
queried in Lines 10–13. It clearly holds that |P ′| ≤ |P ∩
OPT|. Finally, every vertex queried in Line 14 is in IR \
IP , and therefore contributes to kM , because we query all
prediction mandatory vertices at the latest in Line 4.

The previous two lemmas imply Theorem 4.2 for k ∈
{kh, kM}. In the full version, we show the same for k = k#.

5 Final Remarks
We showed how untrusted predictions enable us to circum-
vent known lower bounds for hypergraph orientation and sort-
ing under explorable uncertainty and sparked the discussion
on error measures by presenting a new error metric and show-
ing relations between the different errors. As a next research
step, we suggest investigating the application of error mea-
sure kM for different problems under explorable uncertainty.
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