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Abstract
One of the most common problem-solving heuris-
tics is by analogy. For a given problem, a solver
can be viewed as a strategic walk on its fitness
landscape. Thus if a solver works for one prob-
lem instance, we expect it will also be effective
for other instances whose fitness landscapes essen-
tially share structural similarities with each other.
However, due to the black-box nature of combi-
natorial optimization, it is far from trivial to infer
such similarity in real-world scenarios. To bridge
this gap, by using local optima network as a proxy
of fitness landscapes, this paper proposed to lever-
age graph data mining techniques to conduct qual-
itative and quantitative analyses to explore the la-
tent topological structural information embedded in
those landscapes. In our experiments, we use the
number partitioning problem as the case and our
empirical results are inspiring to support the over-
all assumption of the existence of structural similar-
ity between landscapes within neighboring dimen-
sions. Besides, experiments on simulated anneal-
ing demonstrate that the performance of a meta-
heuristic solver is similar on structurally similar
landscapes.

1 Introduction
Black-box optimization problems (BBOPs), originated from
black-box concepts in cybernetics, are ubiquitous in the real
world. Since there does not exist any analytical form or au-
thentic solution for a BBOP, it is hard to interpret and in-
vestigate except for an observation of input-output response
through experimentation. Fitness landscape analysis has
been widely recognized as a major approach for analyzing
and understanding the characteristics of BBOPs in the meta-
heuristic community [Zou et al., 2022]. In particular, it is
noticed that there exist certain patterns or structures associ-
ated with the fitness landscape of a BBOP, rather than a full
randomness [Tayarani-N and Prügel-Bennett, 2014].

In practice, one of the most common problem-solving ap-
proaches is by analogy. Its basic assumption is that if a BBOP
solver is effective for one problem, we can expect its effec-
tiveness for solving other problems belonging to the same

category whose fitness landscapes essentially share structural
similarities with each other. In other words, the strategic walk
on the fitness landscape induced by the solver may be ex-
tended to fitness landscapes of similar problems that are an-
ticipated to share certain patterns or sub-structures but vary
in different sizes or volumes. Thus the inference of such
similarity would not only deepen our understanding of the
solver’s behavior [Wang et al., 2018] but also facilitate the
design/selection of BBOP solvers with respect to its fitness
landscape potentially [Muñoz et al., 2015]. However, it is
in practice far from trivial to infer such similarity in fitness
landscapes when encountering BBOPs due to the lack of de-
scriptive methods for modeling fitness landscapes.

In recent two decades and beyond, there have been many
efforts devoted to developing computational models of fitness
landscape [Richter, 2012], among which local optima net-
works (LONs) [Ochoa et al., 2008] have become the most
popular one in the meta-heuristic community [Malan, 2021].
LONs are rooted in the study of energy landscapes in chem-
ical physics [Stillinger, 1995] and its basic idea is to model
the fitness landscape as a graph. In particular, the vertices of
a LON are local optima and the edges indicate certain search
dynamics of a meta-heuristic algorithm. Since LONs are able
to capture various characteristics of the underlying landscape
(e.g., the number of local optima, their distribution and con-
nectivity pattern), they are powerful tools for fitness land-
scape analysis [Ochoa and Malan, 2019]. In particular, the
graph nature of LONs allows researchers to take advantage of
many tools developed for analyzing complex networks, e.g.,
network metrics [Boccaletti et al., 2006], graph visualization
methods [Gibson et al., 2013], network representation learn-
ing (NRL) techniques [Zhang et al., 2020], to effectively ex-
plore LONs and thus advance the understanding of the corre-
sponding fitness landscapes.

With the application of LON and various graph mining
techniques, in this paper, we seek to gain constructive insights
into the potential existence of structural similarity among dif-
ferent combinatorial landscapes. To the best of our knowl-
edge, there is no dedicated research to infer or measure such
similarity in the related literature. To bridge this gap, this
work takes the first step towards this direction, with the focus
on the landscapes of number partitioning problem (NPP).

Towards this end, we first apply a LON construction rou-
tine to build a coarse-grained model to represent the fit-
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ness landscapes of NPP at various dimensions, i.e, different
numbers of items to partition. We then use the generated
LONs as the driver to conduct exploratory landscape anal-
ysis (ELA) [Mersmann et al., 2011] on the corresponding
landscapes to investigate the potential existence of structural
similarity among them. In particular, this is conducted from
both qualitative and statistical perspectives, which leads us to
our first two research questions (RQs):

RQ1: For NPP, can we investigate any potential struc-
tural similarity across landscapes of different dimensions
through the mining of statistical features?
RQ2: For NPP, can we visually investigate any potential
structural similarity across landscapes of different dimen-
sions?
The empirical analysis with regard to these two RQs is

highly inspiring to disclose concrete evidence that supports
the existence of structural similarity among NPP with various
dimensions. These observations, though more qualitative, we
design our next RQ to conduct a quantitative investigation
upon such similarity assumption to seek deeper insights.

RQ3: For NPP, if such structural similarity exists, can we
quantitatively investigate it across landscapes of different
dimensions?
Finally, to further verify our findings, we expect to see how

the measured structural similarity relates to the performance
of meta-heuristic search algorithm. Thus, our final RQ:

RQ4: For NPP, if such quantitative determination of
structural similarity is possible, how effective is it in ex-
plaining the performance difference of meta-heuristics
between different problem instances?

Details of our empirical experiments and responses to these
RQs will be elaborated in later sections step by step. Drawing
on these answers, this study, for the first time, provides new
insights help to further advance this field of research:

• If there exist certain structural similarities sharing across
the landscapes of different dimensions of NPP, it implies
BBOP solver(s) work for the low-dimensional problems,
which are relatively easier to develop, will be ‘directly’
scalable to a high dimension.

• Graph mining methods, which have shown to be capable
of discovering and analyzing hidden topological struc-
tures of fitness landscape, can be promising for assisting
the design and/or selection of BBOP solvers.

In the rest of this paper, Section 2 provides some prelimi-
nary knowledge related to this work. Section 3 delineates our
empirical methodologies for problem instance generation and
LON construction. Extensive empirical results are presented
and analyzed in Section 4. In the end, Section 5 concludes
this paper and threads some light on future directions.

2 Preliminaries
In this section, we provide some important background
knowledge and definitions pertinent to this paper.

Number Partitioning Problem (NPP). This is a classic
class of NP-complete problem [Korf, 1998] that considers
the task of deciding whether a given multiset S of positive in-
tegers can be divided into two disjoint subsets S1 and S2, i.e.,
S1 Y S2 “ S , such that the sum of the numbers in S1 equals
that in S2. A partition is called perfect if the discrepancy be-
tween the two subsets is 0 when the sum of the original set
is even, or 1 when the sum is odd. Mathematically, the NPP
considered in this paper is defined as follows:

min

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|S1
|

ÿ

i“1

S1
i ´

|S2
|

ÿ

i“1
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i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (1)

In this paper, we use NPP-n to denote the n-dimensional NPP
instance whose cardinality is n “ |S|.

Fitness Landscapes. The original idea of fitness land-
scape dates back to 1932 when Wright pioneered this concept
in evolutionary biology [Wright, 1932], and a formal expres-
sion was developed by Stadler as a triplet pX ,N , fq [Stadler,
2002], where X is the space of potential solutions, N indi-
cates a neighborhood structure that relates solutions in X , and
f : X Ñ R is the fitness function of the underlying problem.
For NPP, a solution in X can be represented as a vector binary
string with a length n.

Local Optimum. A solution is a local optimum if its fit-
ness value is superior to any other solution in its neighbor-
hood. In other words, for a minimization problem like NPP,
xℓ is a local optimum if @x P N pxℓq, we have fpxℓq ď fpxq.

Basin of Attraction. The basin of attraction B of a local
optimum xℓ is the set of all solutions from which local search
converges to xℓ, i.e., B “ tx P X | LocalSearch Ñ xℓu.

Local Optima Network (LON). A LON is considered as
a subspace of fitness landscape constituted by local optima.
It compresses the information of the whole search space into
a graph G “ pV, Eq, where the vertex set V consists of local
optima and the edge set E indicates the transitions between
them. Note that there exist various types of definitions of
an edge in LONs, e.g., the transition probabilities between
basins [Ochoa et al., 2008], the escape probability between
local optima through perturbations [Vérel et al., 2011]. In
essence, these definitions all aim at constructing LONs that
could effectively capture the transition dynamics between lo-
cal optima while keeping the computational cost and the com-
plexity of the resulting network manageable.

3 The Empirical Study Methodology
This section elaborates the methodology and experimental
setup of our empirical study, including the problem instances
to investigate and the procedures we take to construct LONs.

3.1 Studied Problem Instances
In this paper, we take the NPP defined in Section 2 as a case to
conduct a preliminary investigation on the potential existence
of structural similarity among different fitness landscapes. In
particular, we consider NPP with dimensions varies within
n P t10, 13, 15, 17, 20, 23, 25, 27, 30u, which is adequate to
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illustrate patterns in fitness landscapes across a range of di-
mensions. To mitigate biases induced by randomness, 30
random NPP instances are generated for each dimension. In
particular, for each NPP instance, the n items on which par-
titioning is performed are randomly drawn within the range
r0, 2n¨ks, where k is a parameter that controls the hardness of
the underlying NPP and it is set as 0.7 in this study.

3.2 LON Construction and Iterated Local Search
There are two major ingredients to construct LONs: one is
a node set of local optima V and the other is an edge set
of transitions between local optima E . To generate V and
E from combinatorial landscapes, a proper sampling strat-
egy is essential to extract representative samples of local op-
tima and determine their connectivity patterns. In this pa-
per, we apply the widely used iterated local search (ILS),
a powerful local search meta-heuristic [Stützle, 2006; Blum
and Roli, 2003], to serve this purpose [Vérel et al., 2018;
Ochoa and Herrmann, 2018]. In particular, we adopt an ac-
ceptance criterion that only accepts non-deteriorating local
optima, i.e., ones with superior fitness value than their pre-
decessors, to V . For each non-deteriorating move, an edge
traced between the starting and the new local optimum is
recorded in E . The termination condition of an ILS is set
to K “ 500 non-improvement perturbations. Thereafter, an-
other ILS will be restarted from a new randomly initialized
solution. To sample sufficient local optima for each problem
instance, such ILS iterations will be performed T “ 5, 000
times. Different from the other LON literature [Vérel et al.,
2011], the weight associated with an edge is not recorded as
we only apply LON as a proxy to study the structural simi-
larity within a fitness landscape. Henceforth, the LON con-
structed in this paper is an unweighted and undirected graph.
The working mechanism of ILS can be found in Section 1 of
the supplementary material.1

4 Results and Analysis
In this section, we seek to address the four RQs raised in Sec-
tion 1 through a series of dedicated experiments.

4.1 Structural Similarity Analysis via Statistical
Mining

Research Methods
To address RQ1, we conduct a series of statistical analyses on
both network and local optima features2, which are expected
to inspect various topological structures and properties asso-
ciated with the corresponding fitness landscapes. In particu-
lar, our analyses are conducted at two levels.

1. We first calculate two sets of features which are able to
capture high-level properties of NPP landscapes.

• Graph features derived from LONs including i)
number of nodes nnode; ii) number of edges nedge;
iii) network density density; iv) average cluster-
ing coefficient ccavg; v) fitness assortativity fassor;

1Available at https://tinyurl.com/mw3bx92h.
2A detailed description for these features are available in Section

2 of the supplementary material.

vi) cumulative degree distribution (CDD), vii) rich
club coefficient (RCC) [Colizza et al., 2006], and
viii) average degree connectivity (ADC) [Boc-
caletti et al., 2006].

• Local optima features averaged over the whole
sampled population including i) average number
of hill climbs to reach a local optimum denoted
as nclimb; ii) average number of perturbations
imposed on a local optimum to find an improv-
ing move denoted as nimpr; iii) minimum/average
length for a local optimum to reach the accessible
global optimum denoted as lmin or lavg; and iv) av-
erage size of basin attraction for all local optima or
local optima with top 5% fitness values denoted as
bsize or top 5% bsize.

We plot the trajectories of these features with the in-
crease in dimensionality. This allows us to compare the
high-level characteristics of different NPP landscapes.

2. To obtain deeper insights into these landscapes, we in-
spect the following low-level features.

• Node features including i) node degree; ii) clus-
tering coefficient; iii) betweenness centrality; iv)
eigenvector centrality; v) closeness centrality; vi)
PageRank centrality.

• Local optimum features including i) number of hill
climbs to reach a local optimum; ii) number of per-
turbations required to find an improved local opti-
mum; iii) minimum/average length for a local op-
timum to reach the accessible global optimum; iv)
size of basin attraction.

Specifically, we apply the Spearman correlation coeffi-
cient3 [Corder and Foreman, 2014] to quantitatively in-
spect the correlation between these features and the fit-
ness values of local optima, and thus enable comparison
of the intrinsic structural properties of each landscape.

Results for High-Level Qualitative Analysis
From the trajectories of graph features shown in Figure 1(a) to
Figure 1(e), we find that most indicators experience a mono-
tonic variation with the increase of n. In other words, LONs
of NPPs, so as their corresponding fitness landscapes, share
similar properties in ‘neighboring’ dimensions.

• As shown in Figure 1(a), nnode and nedge of LONs in-
crease exponentially with the increase of dimensionality.
This is reasonable as the size of the search space expands
exponentially with the problem size.

• As shown in Figure 1(b), density and ccavg experience
a significant reduction as n increases. This can be at-
tributed to the sparse distribution of the sampled local
optima in a high dimensional space, which makes them
hardly connect with each other. On the other hand, we

3Despite throughout this paper, we grounded all correlation anal-
yses on the Spearman coefficient, we have actually repeated the
experiments using other measures such as Pearson [Benesty et al.,
2009] and Kendall [Kendall, 1938] metric, the outcomes of which
are available in Section 6 of the supplementary material and highly
consistent with the results reported in this paper.
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Figure 1: Trajectories of the variations of various high-level features extracted from the LONs of NPP at different dimensions. The data are
averaged over 30 random instances.

find that fassor increases monotonically with n. This im-
plies there are more likely to have connections among
local optima with similar fitness values when n is large.

• From Figure 1(c), it is clear to see an increasing demand
for the number of hill climb steps (denoted as nclimb) to
reach a local optimum with the increase of dimension-
ality. Likewise, it becomes more struggling for an algo-
rithm to find an improving move by using perturbation,
as reflected by the climbing trajectory of nimpr.

• As shown in Figure 1(d), The average basin size (de-
noted as bsize) of the whole LON gradually increases
with the dimensionality. However, it is interesting to
note the bsize of those top 5% local optima shows an op-
posite trajectory. This indicates it becomes more dif-
ficult for a meta-heuristic algorithm to locate a high-
quality local optimum during the local search. Similar
conclusions could be drawn from Figure 1(e) where we
find that both lavg and lmin become larger for higher di-
mensional problems, implying that more steps will be
taken upon reaching a global optimum.

As for the trajectories of local optima features shown
in Figure 1(f) to Figure 1(h), we have similar observations
above, i.e., LONs of NPPs tend to produce similar trajecto-
ries when the dimensionality is close to each other. If we
take a closer look at RCC trajectories, we find that nodes
with a larger degree tend to have higher RCC values. This
implies local optima with many connections are likely to be
inter-connected to each other. Similar observations can also
be obtained from ADC trajectories, which suggest that high-
degree nodes tend to be connected with others that themselves
are linked with many more. It is also interesting to note that
such properties found in RCC and ADC trajectories are ac-
tually shared across almost all studied dimensions, though,
such trends are not obvious to perceive for some instances.

Results for Local Low-Level Quantitative Analysis
From the heatmap shown in Figure 2, it is interesting to
see that most features considered in our experiments show
high correlations with the corresponding fitness values when
n ď 23. The only two exceptions are the average neighbor
fitness/degree, which showed little relation with fitness when
n “ 10. We attributed this to the high density of LON for
NPP-10 shown in Figure 1(b). This suggests each local op-
timum in its LON may connect to a considerable fraction of
other nodes in the whole network, making it difficult to dis-
cover informative patterns through neighborhood statistics.
On the other hand, as marked by the black rectangle in Fig-
ure 2, we find that the previously identified high correlations
on some selected features are diminishing when n ą 23.
However, the correlations still remain strong on the other fea-
tures. These observations indicate some properties are actu-
ally shared across NPP with a wide range (even all) of dimen-
sions. Specifically, we interpret the results as follows.

• All four local optima features, as shown in the first four
rows of Figure 2, exhibited a remarkable degree of neg-
ative correlation with fitness across all studied dimen-
sions. This indicates that in all the corresponding land-
scapes, local optima with better fitness values require
more efforts to be reached/escaped from. Also, better lo-
cal optima tend to have larger basins of attraction as well
as higher chances to be visited during the local search.

• Three features derived from LONs, as shown in the last
three rows of Figure 2, including the average neighbor
fitness and the average/minimum length to global opti-
mum, show a high positive correlation with fitness val-
ues across all dimensions. This observation suggests that
local optima with better fitness values tend to be closer
to the global optimum while their neighbors are likely to
be solutions who are also high-quality local optima.
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Figure 2: Heatmap of Spearman correlation between fitness values
and selected features. Each dot represents the mean correlation met-
ric value collected over 30 random instances.

• On the other hand, other network features, as marked
in the black rectangle, are highly correlated with fitness
values when n ď 23. However, the relevant correlations
are diminishing significantly when n ą 23. This can be
attributed to the sparse distribution of the sampled local
optima which we have discussed in the previous subsec-
tion, since all these indicators are highly dependent on
the connectivity pattern of networks. Nevertheless, we
still believe that the characteristics discovered in lower
dimensions are generalizable to high dimensions in case
more ILS iterations can be conducted.

Response to RQ1: Since the features studied in this sub-
section are able to capture various structural charac-
teristics of LONs/fitness landscapes, their similar val-
ues/trajectories between problems with neighboring di-
mensions as well as the sharing/consistency of their cor-
relation with local optima fitness across different dimen-
sions, can be interpreted as structural similarity with re-
spect to the corresponding landscapes.

4.2 Structural Similarity Analysis via Visual
Mining

Research Methods
To address RQ2, we also ground our analyses on two levels.

1. To have a visual interpretation of the topological struc-
ture of the LONs, we apply an NRL technique along
with a dimensionality reduction to map the original
LONs into a 2-dimensional space. Specifically, we first
apply the HOPE node embedding method proposed
in [Ou et al., 2016] to generate a 128-dimensional fea-
ture representation for each node in a LON. By doing
so, the network will be transformed into a |V| ˆ128 ma-
trix. Thereafter, we apply the UMAP method proposed
in [McInnes and Healy, 2018] to further compress the
embedded features into two components.

Figure 3: 2D visualizations of LONs for problems at different di-
mensions. Axis labels and ticks representing the two UMAP com-
ponents are hidden. Node degree is indicated by point size (the
larger the higher), while local optima fitness is denoted using color
scheme, where warmer (e.g., red) colors imply higher fitness, and
colder (e.g., blue) ones represent lower fitness.

2. Inspired by [Smith-Miles and Tan, 2012; Iclanzan et al.,
2014], we apply another NRL technique along with the
UMAP to map the LONs into a 2-dimensional instance
space to directly visualize their ‘structural closeness’.
Specifically, we apply the Feather graph embedding
method proposed in [Rozemberczki and Sarkar, 2020]
to learn a 500-dimensional feature vector for a LON. We
then apply UMAP to further compress this embedding
into 2-dimension to enable visualization of the corre-
sponding problem instance in a bivariate instance space.

Note that HOPE, Feather, and UMAP methods are delin-
eated in Sections 3 and 4 of the supplementary document.

Remark 1. The motivation for our first proposed network
visualization method stems from the poor scalability of tra-
ditional techniques such as tree- or 3D-based methods for
large-scale networks like LONs [Herman et al., 2000]. Note
that this method is also different from the existing prac-
tices for LON visualization [Veerapen and Ochoa, 2018;
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Ochoa et al., 2015], but it has been successfully applied in
other disciplines [Goyal and Ferrara, 2018].

Remark 2. To enable instance space analysis, instead of tak-
ing the LONs as a whole, which can be overly complicated,
it would be more feasible to investigate the topological char-
acteristics of LONs in a latent feature space. Different from
the previous works which mainly relied on hand-crafted fea-
tures based on human expertise [Iclanzan et al., 2014], we
argue that the features generated by the NRL technique could
be more plausible.

Results for Topological Visualization of LONs
The 2-dimensional projections of the global structure of
LONs for NPP at different dimensions are shown in Figure 3.
To avoid the plots being either too crowded or too sparse, we
only consider n P t15, 17, 20, 23, 25, 27u here without loss of
generality. From Figure 3, We find three patterns as follows.

1. Distribution of nodes: There exists a dense region of
nodes and it becomes more obvious as n increases.
Away from these crowded regions, local optima tend
to form separated “strips” when n ě 23. This obser-
vation supports our hypothesis in Section 4.1 that the
sampled local optima are sparsely distributed in a high-
dimensional space.

2. Distribution of fitness values: The nodes located at the
central dense regions tend to have unsatisfactory fitness
values. On the other hand, the fitness are gradually im-
proved for the nodes away from these central dense re-
gions. In particular, the best set of local optima are lo-
cated at the outer region. In other words, such local op-
tima are likely to occur at the outer end of each ‘strip’ in
a high-dimensional space.

3. Distribution of degree: The nodes with a higher degree
also tend to locate at the outer region and thus they are
usually associated with better fitness values. This obser-
vation also conforms with the results in Section 4.1.

Remark 3. The second observation is interesting since nei-
ther HOPE nor UMAP is provided with fitness information.
This indicates the pattern discovered in the fitness distribu-
tion is an intrinsic property of LONs and it is successfully
captured by HOPE merely based on the network typology.
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all studied dimensions. The data are averaged over 30 random in-
stances.

Results for Visualizing LONs in Bivariate Instance Space
Figure 4 shows the distribution of NPP instances of different
dimensions in 2D instance space, where 30 random instances
are drawn for each dimension. It is clear to see that instances
are grouped into clusters with respect to n. In particular, clus-
ters of ‘neighboring’ dimensions are adjacent to each other,
whereas those with very distinct dimensions tend to be far
apart in the instance space. These observations are consistent
with those in Figure 3 and Section 4.1.

Response to RQ2: By visualizing the structures of LONs
for NPP at different dimensions in a latent space, we find
certain regularities in terms of the distribution of local
optima and their associated fitness and degree. In par-
ticular, we find similar patterns for problems in neigh-
boring dimensions. Such observations are also reflected
from an instance space analysis where LONs of instances
with similar dimension(s) are close to/grouped with each
other. Such observations imply the existence of structural
similarity among their corresponding fitness landscapes.

4.3 Quantitative Measurement of Structural
Similarity

Research Methods
For RQ3, we propose to use the Spearman correlation coef-
ficient to measure the inter-correlation between those embed-
ded features generated by the Feather method used in Sec-
tion 4.2. Note that such evaluation could play as a metric
(denoted as Sim) to quantitatively evaluate the structural sim-
ilarity or ‘closeness’ between different fitness landscapes.

Empirical Results and Analysis
The Sim values, i.e., the Spearman correlations between dif-
ferent dimensions, are calculated and presented as a 9 ˆ 9
symmetric heatmap matrix shown in Figure 5. These re-
sults show some level of consensus with our previous find-
ings when responding to the first two RQs. More specifi-
cally, we find positive correlations across all dimensions. In
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particular, the NPP instance with a certain dimension tends
to have a higher correlation with problems of similar sizes,
whereas they are much less correlated with those of very dif-
ferent sizes. For example, the lowest correlation value of 0.12
occurs between NPP-10 and NPP-30 while NPP-27 and NPP-
30 revealed the highest correlation of 0.96.

Response to RQ3: Our empirical study in this subsection
demonstrates that graph embedding method is able to
play as a driver to quantitatively evaluate the structural
similarity with respect to different fitness landscapes. The
observations in this subsection achieve a consensus with
those discussed in Section 4.1 and Section 4.2. This quan-
titatively consolidates the existence of structural similar-
ity among NPPs across different dimensions.

4.4 Effectiveness Verification of the Measured
Similarity

Research Methods
To answer RQ4, we choose simulated annealing (SA) [Kirk-
patrick et al., 1983] as the meta-heuristic and test its perfor-
mance on NPP instances with n P t10, ¨ ¨ ¨ , 20u. Following
the ideas in [Herrmann et al., 2018; Liefooghe et al., 2020;
Smith-Miles et al., 2014], we define the performance of SA
on a certain NPP instance as the capability to find the global
optimum under a fixed budget. Specifically, we run a SA
on each instance for 1, 000 independent runs, and record the
fraction of runs that successfully find the global optimum as
the success rate (SR). In practice, the stopping criterion of
SA is set to a fixed budget of 1, 000 iterations. In each iter-
ation, the temperature is reduced to T0 ˆ 0.8i{300, where the
initial temperature T0 is set as 1, 000. We propose two metrics
to measure the relative performance of SA between each pair
of problem instances. One is called the difference of success
rates ∆SR “ |SRi´SRj |; the other is called the relative ratio
of success rates ρSR “ SRi{SRj , where i, j P t10, ¨ ¨ ¨ , 20u

and i ‰ j. In this subsection, we first investigate the correla-
tion between Sim calculated using the method in Section 4.3
against ∆SR and ρSR. Then, we apply a quadratic regression
to evaluate to which extent can our calculated Sim explain the
relative performance of SA in terms of ∆SR and ρSR.

Empirical Results and Analysis
From the bar charts shown in Figure 6, it is clear to see
both ∆SR and ρSR change in correspondence with Sim.
Their Spearman coefficients are ´0.909 and ´0.862, respec-
tively4. Furthermore, it is interesting to see the correlation be-
tween neighboring dimensions is high and it diminishes when
the dimensionality becomes disparate. Such relationship is
further exploited in Figure 7 by using a quadratic regression
between ∆SR and ρSR against Sim, respectively. It is very
encouraging to see both quadratic regression analyses return
a high R2 score close to 0.9.

4We transform the Sim to reverse its trend thus the results are
shown in positive correlation values in Figure 6.
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Figure 6: 3D bar charts of the Spearman correlation coefficients of
Sim versus ∆SR and ρSR across different dimensions ranging from
10 to 20. The data are averaged over 30 random instances.
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Figure 7: Quadratic regression analysis of ∆SR and ρSR versus Sim.
Each data point represents average over 30 instances.

Response to RQ4: Here we empirically investigate the
correlation between the structural similarity of fitness
landscapes versus the performance of a meta-heuristic
algorithm, SA in particular in our experiments. In a
nutshell, SA requires similar computational cost to solve
structurally similar NPPs.

5 Conclusions and Future Directions
By using LON as the proxy of fitness landscapes of NPP in-
stances, this paper proposed to leverage graph data mining
techniques to conduct qualitative and quantitative analyses to
explore the latent topological structural information embed-
ded in those landscapes. Our empirical results are inspiring
to support the overall assumption of the existence of struc-
tural similarity between landscapes within neighboring di-
mensions. Besides, experiments on SA demonstrate that the
performance of a meta-heuristic solver is similar on struc-
turally similar landscapes.

To the best of our knowledge, this is the first attempt to-
wards the investigation of structural similarity within com-
binatorial fitness landscapes. We believe graph data mining
is a promising vehicle to facilitate the exploratory landscape
analysis. Our methodologies are applicable for the purpose of
exploring fitness landscapes of other combinatorial optimiza-
tion problems. It is intriguing to see whether the structural
similarity and generalizable to a wider range of combinato-
rial optimization problems. In addition, it is interesting to
investigate the potential of the features learned and extracted
by our methods for a wider range of tasks such as automatic
algorithm selection and algorithm performance prediction.
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