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Abstract
The Minimum Dominating Set (MDS) problem
is a classic NP-hard combinatorial optimization
problem with many practical applications. Solv-
ing MDS is extremely challenging in computation.
Previous work on exact algorithms mainly focuses
on improving the theoretical time complexity and
existing practical algorithms for MDS are almost
based on heuristic search. In this paper, we pro-
pose a novel lower bound and an exact algorithm
for MDS. The algorithm implements a branch-and-
bound (BnB) approach and employs the new lower
bound to reduce search space. Extensive empiri-
cal results show that the new lower bound is effi-
cient in reduction of the search space and the new
algorithm is effective for the standard instances and
real-world instances. To the best of our knowledge,
this is the first effective BnB algorithm for MDS.

1 Introduction
Given an undirected graph G = (V,E), where V is the set of
vertices and E is the set of edges. Two vertices are neighbors
if there is an edge between them. A dominating set D is a
subset of V such that every vertex of G is either in D or has
at least one neighbor in D. The Minimum Dominating Set
(MDS) problem consists in finding a dominating set D with
the smallest cardinality for a given graph G.

MDS and its variants find applications in diverse areas, in-
cluding multi-document summarization [Shen and Li, 2010],
influences among individuals in social networks [Dinh et al.,
2014], routing in ad hoc wireless networks [Dai and Wu,
2004], graph mining [Chalupa, 2018] and action recognition
in computer vision [Yao and Fei-Fei, 2012].

Solving MDS in general graphs is NP-Hard [Karp, 1972;
Garey and Johnson, 1979]. On the theoretical side, Rooij
and Bodlaender [2011] proved that there is a branch-and-
reduce algorithm that solves MDS in O(1.4969n) time and
polynomial space, where n is the number of vertices. Dinur
and Steurer [2014] proved that obtaining a (1 − ε) ln(n)-
approximation for MDS is NP-hard for every ε > 0 unless
NP ⊆ DTIME(nO(log log n)). Gast et al. [2015] proved that
∗Corresponding author

MDS on power law graphs cannot be approximated within
an approximation ratio of Ω(ln(n)). Raz and Safra [1997]
gave a lower bound of approximation of c ln(n) under the as-
sumption of P 6= NP . In general, theoretical work for MDS
mainly focuses on improving the approximation ratio and the
upper bound of time complexity of exact algorithms.

Due to the relevance of MDS to practical applications,
there is a lot of work on heuristic algorithms for MDS. Ex-
perimental analysis and comparison of early heuristic algo-
rithms can be found in [Sanchis, 2002]. Hybrid genetic and
ant-colony optimization algorithms for MDS were proposed
in [Hedar and Ismail, 2010; Potluri and Singh, 2011]. Hybrid
meta-heuristic algorithms based on evolutionary and memetic
approaches were proposed for the Minimum Weight Domi-
nating Set (MWDS) problem in [Chaurasia and Singh, 2015;
Lin et al., 2016], which is a generalization of MDS. In re-
cent years, several local search algorithms were proposed
for MDS and its variants. Wang et al. [2017; 2018] pro-
posed two local search algorithms based on configuration
checking strategy and frequency scoring function for MWDS.
Fan et al. [2019] proposed a local search based on tabu and
probabilistic walk strategy for MDS in large graphs. Cai et
al. [2020] proposed a two-goal local search and inference
rules for MDS. Lei and Cai formulated MDS into maximum
satisfiability and proposed a specific local search to solve
MDS [Lei and Cai, 2020]. Li et al. [2020] proposed a local
search for the minimum connected dominating set problem.

Compared to heuristic algorithms, exact algorithms for
solving MDS are almost absent in the literature. Although
MDS is a subgraph problem in general, solving MDS is
quite different from solving other subgraph problems, such
as the Maximum Clique (MC) problem. When an algorithm
searches on a partial solution for MC, those vertices that are
inconsistent with the partial solution can be discarded safely,
resulting in a substantial reduction of search space. Whereas,
each vertex outside the partial solution for MDS could be a
candidate for the final solution. The actual search space for
MDS is much bigger than the search space for MC. There-
fore, solving MDS exactly is more challenging than solving
other subgraph problems like MC in the view of practice.

In this paper, we present an effective exact algorithm
for MDS, which implements a branch-and-bound (BnB) ap-
proach. To reduce the search space, we propose a novel lower
bound for MDS, which is derived from a new notion of 2-hop
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adjacency of vertices of G. Two vertices are 2-hop adjacent
if and only if they are neighbors or have common neighbors.
We prove that two vertices cannot be dominated by a sin-
gle vertex if they are not 2-hop adjacent. With this property,
we define a notion called 2-hop graph of G and prove that
the cardinality of any independent set of the 2-hop graph is a
lower bound of MDS in G. We design a sophisticated algo-
rithm to exploit the new lower bound to reduce the number of
branches at each search tree node in the BnB algorithm.

Extensive experiments were conducted to evaluate the per-
formance of the new algorithm and the lower bound. The re-
sults show that the lower bound can reduce the search space
efficiently and the proposed BnB algorithm is effective for
the standard instances for MDS and even can solve MDS in
real-world large graphs. To the best of our knowledge, this is
the first effective BnB algorithm for MDS.

The paper is organized as follows: Section 2 gives basic
graph notations and definitions. Section 3 presents the new
lower bound. Section 4 gives a BnB algorithm for MDS. Sec-
tion 5 reports on the empirical results. Section 6 concludes.

2 Preliminaries
Let G = (V,E) be an undirected graph with n vertices and
m edges. Two vertices u and v are neighbors or adjacent,
if there is an edge between u and v, i.e., (u, v) ∈ E. We
use NG(v) to denote the set of neighbors of a vertex v in G,
i.e., NG(v) = {u|(u, v) ∈ E}. NG(v) is also denoted by
N(v) if the context is clear. The degree of a vertex v, denoted
by deg(v), is the cardinality of NG(v). Following previous
literature, NG[v] is defined as NG(v)∪ {v} in this paper. Let
S be a subset of V , NG[S] is defined as

⋃
v∈S NG[v].

A subset D of V is a dominating set of G if and only if it
holds that N(v)∩D 6= ∅ for each vertex v ∈ V \D. A dom-
inating set D of the smallest size is the minimum dominating
set in G. If a vertex u is adjacent to v, we say that u can
dominate v in G, vice versa. Moreover, we give a definition
of subset dominating.

Definition 1 (Subset Dominating). Let G = (V,E), D and
U be two subsets of V . We say D can dominate U if it holds
that u ∈ D or N(u) ∩D 6= ∅ for each u ∈ U .

A subset of V is an Independent Set (IS) if every pair of
vertices in the set is nonadjacent. An IS becomes conflict-
ing if it contains adjacent vertices and the adjacent vertices
are called conflicting vertices. We use G[S] to denote the
subgraph of G = (V,E) induced by a subset S ⊆ V , i.e.,
G[S] = (S,E′), where E′ = {(u, v)|u, v ∈ S, (u, v) ∈ E}.

3 A New Lower Bound for MDS
In this section, we propose a novel lower bound for MDS. The
lower bound is based on a notion called 2-hop adjacent. We
first give the definitions of 2-hop adjacent and 2-hop graphs,
then introduce the new lower bound for MDS.

Definition 2 (2-hop adjacent). Given a graph G = (V,E),
two vertices u and v are 2-hop adjacent in G if and only if
u and v are adjacent or they have common neighbors, i.e.,
(u, v) ∈ E or NG(u) ∩NG(v) 6= ∅.

We call u and v 2-hop adjacent because the distance be-
tween u and v is smaller than or equal to 2 (hops) in G.

Definition 3 (2-hop graphs). Given a graph G = (V,E),
we define a new graph G2 = (V,E2) for G, where E2 =
{(u, v)|(u, v) ∈ E orNG(u)∩NG(v) 6= ∅}, i.e., two vertices
u and v are adjacent in G2 if and only if u and v are 2-hop
adjacent in G. G2 is called the 2-hop graph of G.

We use G2[U ] to denote the subgraph of G2 induced by U
andG[U ]2 to denote the 2-hop graph of the induced subgraph
G[U ]. With Definition 2, we introduce the following lemma.

Lemma 1. Given a graph G = (V,E), two vertices u and v
cannot be dominated by a single vertex if they are not 2-hop
adjacent in G.

Proof. If u and v are not 2-hop adjacent in G, then u and v
are not adjacent and cannot be dominated by each other. If
there is a vertex w that can dominate both u and v, w must
be adjacent to u and v simultaneously, which is inconsistent
with that u and v are not 2-hop adjacent in G. Thus, u and v
cannot be dominated by a single vertex.

With the definition of 2-hop graphs and Lemma 1, we have
the following lemma to derive a lower bound for MDS.

Lemma 2. Given a graph G = (V,E), let G2 be the 2-hop
graph of G. If S is an IS of G2, then the cardinality of S is a
lower bound of the minimum dominating set of G.

Proof. Since S is an IS in G2, any two vertices u and v in S
are not 2-hop adjacent in G. According to Lemma 1, u and
v cannot be dominated by a single vertex. Thus, it needs |S|
different vertices to dominate vertices in S. Note that S is a
subset of V , thus the size of any dominating set to dominate
all the vertices of G is not smaller than |S|. Therefore, |S| is
a lower bound of the minimum dominating set of G.

We call the lower bound in Lemma 2 the IS-based Lower
Bound (ISLB). Figure 1 illustrates the new lower bound.

Example 1. In Figure 1, the right subfigure b is the corre-
sponding 2-hop graph G2 of G in the left subfigure a. The
dashed lines denote the new added edges in G2. The sub-
set {v1, v2, v9} is an IS of G2. According to Lemma 2, its
cardinality of 3 is a lower bound of MDS of G in subfigure
a. In fact, 3 is a tight lower bound for MDS of G, because
{v2, v3, v7} is a minimum dominating set of G.

Further, we give the following lemma, which is a general-
ization of Lemma 2. It gives a lower bound of dominating
sets that can dominate a given subset of vertices of G.

Lemma 3. Given a graphG = (V,E) and itsG2. Let U be a
subset of V and S be an IS in G2[U ]. For any subset D ⊆ V
that can dominate U in G, it holds that |D| ≥ |S| .

Proof. Since S is an IS ofG2[U ], then any two vertices u and
v in S are not 2-hop adjacent in G. According to Lemma 1,
there is no single vertex that can dominate both u and v.
Therefore, it needs |S| different vertices to dominate vertices
in S. Since S ⊆ U , |S| is a lower bound of the cardinality of
any subset D that can dominate U , i.e., |D| ≥ |S|.
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(a) G = (V,E) (b) G2 = (V,E2)

Figure 1: An example for IS-based lower bound for MDS.

Note that the computation of the optimal ISLB for a graph
G is equivalent to solving the Maximum Independent Set
(MIS) problem in its G2, which is NP-hard [Garey and John-
son, 1979]. In the next section, we will present a sophisti-
cated algorithm that exploits ISLB to reduce the number of
branches in BnB algorithms rather than to compute a lower
bound for the subproblem of each search tree node.

4 An Exact Algorithm for MDS
We present an exact algorithm for MDS, called EMOS (Ex-
act Minimum dOminating Set), which is depicted in Algo-
rithm 1. EMOS first calls a preprocessing procedure to com-
pute an initial solutionD0 and a fixed partial solutionDf , and
to reduce the input graph G to G′. Then, the algorithm calls
a BnB search procedure to search for an optimal solution in
the reduced graph G′ with Df as the starting partial solution
and D0 as the incumbent solution D∗. We first describe the
preprocessing procedure, then the BnB search algorithm.

4.1 The Preprocessing Procedure
The preprocessing procedure performs three tasks: compute
an initial solution D0, reduce the input graph G and obtain a
fixed partial solution Df .

To compute an initial solution D0 for a graph G = (V,E),
we adopt the following heuristic: Let D0 be an empty set at
the beginning, select a vertex v that can dominate the most
number of undominated vertices, mark v and its neighbors
as dominated and insert it into D0. The selection step exe-
cutes iteratively till all the vertices of V have been dominated.
Then, D0 is an initial solution. Using a maximum heap, the
process can be done in O((|E|+ |V |) · log |V |) time.

Reduction has been proven to be an effective strategy for
solving subgraph problems in real-world graphs [Jiang et al.,
2017; Gao et al., 2018; Zhou et al., 2021]. To reduce the in-
put graphG, we employ the reduction rule for MDS proposed
in [Alber et al., 2004]. The rule identifies vertices that must
be in an optimal solution of MDS by exploiting local struc-
tures of graphs. We implement the rule in our preprocessing
procedure, which partitions the setN(v) of vertex v into three
different subsets N1(v), N2(v) and N3(v).

• N1(v), the set of neighbors of v that have at least one
neighbor not in N [v].

• N2(v), the set of neighbors of v that are not in N1(v)
but have at least one neighbor in N1(v).

• N3(v), the set of neighbors of v not in N1(v) ∪N2(v).

Algorithm 1 EMOS(G), an exact algorithm for MDS
Input: A graph G = (V,E)
Output: a minimum dominating set D∗ in G.

1: (D0, Df , G
′ = (V ′, E′))← Preprocessing(G);

2: Let U = V ′ \NG′ [Df ];
3: return BnBSearch(G′, Df , U , D0);

For a vertex v ∈ V , ifN3(v) is not empty, the rule removes
those vertices in N2(v) and N3(v) from G and adds a new
vertex v′ to G as a neighbor of v. Alber et al. [2004] proved
that the optimality of MDS is preserved and v must be in an
optimal solution after the transformation. We take v as a fixed
vertex and insert it into the fixed partial solution Df .

After the rule is applied to every vertex in G, we obtain a
fixed partial solution Df and the reduced graph G′. We use
Df as the starting point of the following search in G′. Time
complexity of the reduction is O(|V |3).

4.2 The Branch-and-Bound Search Procedure
Algorithm 2 describes the BnB search procedure for MDS,
BnBSearch(G, D, U , D∗), where D is the partial solution
and U is the set of vertices that haven’t been dominated by
D. The procedure explores the search space to find a min-
imum dominating set of containing D and size smaller than
the incumbent D∗ to dominate all the vertices in G.

Theoretically, every vertex outside the partial solution D
could be a candidate of the final solution, resulting in a huge
search space for solving MDS. To prune the search space,
Algorithm 2 first calls a function ReduceBranches to identify
a minimal set B of branching vertices. Let b1 > b2 > · · · >
b|B| be the decreasing ordering of vertices of B w.r.t. the
number of undominated neighbors of each bi. The algorithm
branches only on each bi ∈ B from i = 1 to |B|. Once it
branches on bi, bi is marked as branched status. When all
the vertices in B have branched, they resume to unbranched
status before the algorithm backtracks to the upper level of
the search tree. Obviously, the smaller the branching set B,
the less search space needs to be explored.

We divide the set V \ D into following four subsets, ac-
cording to the branching and dominating status of vertices.
• S1: the set of unbranched and undominated vertices
• S2: the set of unbranched but dominated vertices
• S3: the set of branched but undominated vertices
• S4: the set of branched and dominated vertices

At the current search tree node, all the vertices in S1 and S2
could join in the partial solution D. The vertices in S3 cannot
join in D but must be dominated by the vertices in S1 ∪ S2.
The vertices in S4 can be omitted completely. Thus, C =
S1 ∪ S2 is the entire candidate set of branching vertices.

To reduce the number of branches, we adopt the BnB
search approach proposed in [Jiang et al., 2016]. The func-
tion ReduceBranches is designed to partition the union S1 ∪
S2∪S3 intoB and P . Let UP ⊆ P be the set of undominated
vertices in P . The partition ofB and P satisfies that the cardi-
nality of the minimum dominating set inG[P ] for dominating
the subset UP is greater than or equal to |D∗| − |D|, which
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Algorithm 2 BnBSearch(G, D, U , D∗)
Input: A graph G=(V ,E), a partial solution D, the set of un-
dominated vertices U and the best solution D∗ found so far
Output: the best solution D∗ in G

1: if U is empty then
2: return D;
3: end if
4: B ←ReduceBranches(G, D, U , D∗);
5: if B is empty then
6: return D∗;
7: end if
8: sort vertices in B as b1 > b2 >...> b|B| in decreasing

ordering w.r.t. the number of undominated neighbors.
9: for i = 1 to |B| do

10: Let U ′ = U \N [bi];
11: mark bi as branched;
12: D′ ← BnBSearch(G, D ∪ {bi}, U ′, D∗);
13: if |D′| < |D∗| then
14: D∗ ← D′;
15: end if
16: end for
17: mark every bi ∈ B as unbranched;
18: return D∗;

implies that it is impossible to derive a dominating set of con-
taining D and size smaller than D∗ to dominate the whole G
using vertices in P solely. Consequently, B = C \ P is the
set of branching vertices of the current search tree node.

The function ReduceBranches is depicted in Algorithm 3,
which employs the new lower bound ISLB to implement the
partition. Let U = S1∪S3 be the set of undominated vertices.
At the beginning, P is an empty set. The algorithm constructs
the partition in two steps. At the first step (line 3-22), the al-
gorithm tries to identify a subset P ⊆ U such that the lower
bound of MDS ofG[P ] is greater than or equal to |D∗|−|D|.
If such a set P cannot be identified, the whole candidate set
C is returned as the branching set (line 24). In this case, the
number of branches of the current search tree node has not
been reduced. Otherwise, algorithm 3 conducts the second
step (line 26-36) to further enlarge P by inserting more ver-
tices in S2 into P , subject to the lower bound of dominating
sets for dominating all the undominated vertices in G[P ] is
still not smaller than |D∗|− |D|. Finally, Algorithm 3 returns
C \ P as the branching set B.

The First Step to Identify P
The essence of the first step of Algorithm 3 is to construct a
subgraph G[P ] (P ⊆ U ) with a MDS of size greater than or
equal to |D∗|−|D|. According to Lemma 2, the cardinality of
any IS of G[P ]2 is a lower bound of MDS of G[P ]. To obtain
an IS of G[P ]2 as big as possible, we maintain a set Π of at
most k ISs of G[P ]2 during the contruction. Let u1 < u2 <
· · · < u|U | be the natural ordering of vertices in U . We try to
insert each ui ∈ U into P from i = |U | to 1 and construct ISs
in Π. A vertex ui is allowed to join into many ISs of Π.

To obtain an IS of G[P ]2 of size greater than or equal to
|D∗|−|D|, we define a score for each vertex u and nonempty
IS Sj ∈ Π, denoted by δ(Sj , u), to measure the impact on the

Algorithm 3 ReduceBranches(G, D, U , D∗), algorithm to
identify a branching set B
Input: A graph G=(V ,E), a partial solution D, the set of un-
dominated vertices U and the best solution D∗ found so far
Output: A branching set B

1: Let P=∅, C=S1 ∪ S2, U=S1 ∪ S3={u1, u2, . . . , u|U |};
2: Let Π = {S1, S2, . . . , Sk} be the set of k ISs of G[P ]2,

each Si is initialized to ∅ at the beginning;
3: for i = |U | to 1 do
4: Let totalScore = 0;
5: for each nonempty IS Sj ∈ Π do
6: totalScore← totalScore+ δ(Sj , ui);
7: end for
8: if totalScore ≥ 0 then
9: P ← P ∪ {ui};

10: for each nonempty Sj ∈ Π do
11: if δ(Sj , ui) > 0 then
12: insert ui into Sj ;
13: end if
14: if δ(Sj , ui) < 0 then
15: remove |N(ui) ∩ Sj |-1 conf. vertices from Sj

16: end if
17: end for
18: if ui hasn’t been inserted into any nonempty IS then
19: insert ui into the first empty IS Si;
20: end if
21: end if
22: end for
23: Let lb = max{|Sj | | Sj ∈ Π};
24: if lb < |D∗| − |D| then return C;
25: Let S2 = {d1, d2, . . . , d|S2|};
26: for i = |S2| to 1 do
27: Let Π′ ← Π, P ← P ∪ {di};
28: for each nonempty Sj ∈ Π do
29: if δ(Sj , di) < 0 then
30: remove |N(di) ∩ Sj |-1 conf. vertices from Sj

31: end if
32: end for
33: if max{|Sj | | Sj ∈ Π} < |D∗| − |D| then
34: Π← Π′, P ← P \ {di};
35: end if
36: end for
37: return C \ P ;

size of Sj by the insertion of u into P .
Let N1 = NG(u) ∩ Sj be the set of neighbors of u in Sj

and N2 = NG[u] ∩ NG[Sj ] ∩ P ∩ C be the set of common
and unbranched neighbors of u and vertices of Sj in P . If N1

is empty, Sj is still an IS of G[P ] after inserting u into P . If
u is undominated and N2 is empty, u can be inserted into Sj .
The score δ(Sj , u) is defined in Equation 1.

If u is unbranched (u ∈ S1), it could be selected to domi-
nate other vertices in the following search. Thus, u is used to
determine the 2-hop adjacency of vertices in G[P ], i.e., any
two neighbors of u in P are adjacent in G[P ]2 if u is inserted
into P . If N1 is not empty, the neighbors of u in Sj will be-
come conflicting after inserting u into P . To keep Sj as an
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IS, |N1| − 1 neighbors of u must be removed from Sj . Thus,
we define the score as 1 − |N1| because the size of Sj is de-
creased by |N1| − 1. Note that u is undominated thus u can
join into Sj if N1 and N2 are empty, the score is defined as 1.
The score is defined as 0 if N1 is empty but N2 is not empty.

If u is branched (u ∈ S3), the 2-hop adjacency between
vertices in G[P ] will not change after the insertion of u into
P , because u will not be selected as a candidate to dominate
other vertices in the following search. In this case, we only
need to consider whether u can join into Sj . IfN2 is empty, u
can join into Sj and the size of Sj is increased by 1, the score
is defined as 1; Otherwise, the score is defined as 0.

δ(Sj , u) =



1 u ∈ S1 ∧N1 = ∅ ∧N2 = ∅
0 u ∈ S1 ∧N1 = ∅ ∧N2 6= ∅
1− |N1| u ∈ S1 ∪ S2 ∧N1 6= ∅
0 u ∈ S2 ∧N1 = ∅
0 u ∈ S3 ∧N2 6= ∅
1 u ∈ S3 ∧N2 = ∅

(1)

If the total score of u, defined as the sum of δ(Sj , u) for
every non-empty Sj ∈ Π, is greater than or equal to 0, Al-
gorithm 3 inserts u into P , because it is expected to bring
positive impacts on the maximum cardinality of ISs in Π. It
inserts u into the ISs of positive scores and removes the con-
flicting vertices from ISs of negative scores. If u couldn’t be
inserted into any nonempty IS and there exists empty ISs, u
is inserted into the first empty IS. If the total score is smaller
than 0, Algorithm 3 does not insert u into P at the first step.

Let lb be the maximum cardinality of ISs in Π after the first
step. If lb ≥ |D∗| − |D|, it guarantees that using vertices in
P solely cannot obtain a dominating set of containing D and
size smaller thanD∗ to dominateG. In this case, Algorithm 3
takes the second step to insert more vertices of S2 into P to
further reduce the number of branches.

The Second Step to Enlarge P
The vertices in S2 (dominated but unbranched) can join in
P but cannot be inserted into ISs of Π to estimate the lower
bound. Let Up be the set of undominated vertices that are in-
serted into P in the first step. At the second step, we compute
the lower bound of dominating sets for dominating the subset
Up. Since the ISs in Π only contain vertices in Up, according
to Lemma 3, the cardinality of the maximum IS in Π is the
lower bound of dominating sets for dominating Up. There-
fore, to guarantee that a dominating set of containing D and
size smaller than D∗ couldn’t be derived with vertices in P
solely, we only insert those vertices that satisfy that the cardi-
nality of the maximum IS in Π is still greater than or equal to
|D∗| − |D| after the insertion.

Finally, Algorithm 3 returns the set of candidate vertices
that have not been inserted into P as the branching set B,
i.e., C \ P . We use Figure 1 to illustrate How Algorithm 3
identifies a minimal branching set B.
Example 2. Suppose k is 4, the partial solutionD={v4}, the
size ofD∗ is 4 and only v4 is branched, then we have lb=|D∗|-
|D|=3, S1={v1, v6, v7, v8, v9, v10}, S2={v2, v3, v5}, S3=∅,
S4=∅ and U=S1 ∪ S3={v1, v6, . . . , v10}. At the first step,
Algorithm 3 constructs P={v10, v9, v7, v6, v1} and obtains a

Π={{v10, v9, v1}, {v7, v1}, {v6, v1}, ∅}. It does not insert v8
into P , because its score is negative. The computed lower
bound of MDS for G[P ] is 3, which is greater than or equal
to lb. At the second step, v5, v3 and v2 are inserted into P
because they do not change the 2-hop adjacency of vertices
in the maximum IS {v10, v9, v1}. Finally, Algorithm 3 derives
a minimal branching set B = {v8}. The number of branches
is reduced from 9 to 1.

According to our experiments, k is fixed to 16 in Algo-
rithm 3. Let Γ(G) be the maximum degree of vertices in G.
The time complexity of determining the 2-hop adjacency of
two vertices is O(Γ(G)). The time complexity of the compu-
tation of the total score for each u is O(|C| ·Γ(G)). Thus, the
total time complexity of Algorithm 3 is O(|C|2 · Γ(G)).

5 Experimental Evaluations
We implemented the new algorithm EMOS1 in C and com-
plied it with GNU gcc -O3. Extensive experiments were con-
ducted to evaluate the performance of EMOS and the effec-
tiveness of the new lower bound ISLB for pruning branches.
Experiments were performed on AMD EPYC CPUs 7702
@2.0GHz under Linux with 128GB of memory.

Since there is no available exact algorithm for MDS. We
compared EMOS with three state-of-the-art heuristic algo-
rithms, FastDS [Cai et al., 2020], ScBppw [Fan et al., 2019]
and FastMWDS [Wang et al., 2018], which are incomplete
and cannot guarantee the optimality of solutions. The three
algorithms implement local search approach and employ dif-
ferent heuristic strategies to escape from local minimums.
The source code of the three algorithms was kindly provided
by their authors and was compiled using GNU g++ -O3.

Experiments were conducted on two standard datasets
UDG and T1 and a dataset of real-world graphs, which are
widely used to evaluate algorithms for MDS [Jovanovic et
al., 2010; Hedar and Ismail, 2010; Potluri and Singh, 2013;
Wang et al., 2018; Fan et al., 2019; Cai et al., 2020].

• UDG. The set contains 120 unit disk graphs, which
are generated with the topology generator described
in [Potluri and Singh, 2013] and divided into 12 fami-
lies, each containing 10 different graphs.

• T1. The set contains 530 random connected undirected
graphs with vertices ranging from 50 to 1000 [Jovanovic
et al., 2010]. The set is divided into 53 groups, each
containing 10 different graphs.

• Real-world graphs. The set contains 400 real-world
graphs which we select from Network Repository2. We
use this set to evaluate the performance of our algorithm
for graphs encoding from real-world applications.

5.1 The Total Performance
In the first experiment, we evaluated the total performance of
EMOS and compared it with the three heuristic algorithms in
terms of quality of solutions.

1Published at https://github.com/huajiang-ynu/ijcai23-mds/
2http://networkrepository.com/networks.php
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Instance |V | |E| EMOS FastDS ScBppw Fast
MWDStime opt

100 A 0 100 297 0.01 17 17 17(17.9) 17
100 A 1 100 302 0.03 19 19 19 19
100 A 2 100 309 0.05 17 17 17(18.3) 17
100 A 3 100 286 0.05 19 19 19(19.3) 19
100 A 4 100 305 0.01 17 17 17(17.9) 17
100 A 5 100 284 0.01 18 18 19 18
100 A 6 100 305 0.02 16 16 16(16.5) 16
100 A 7 100 297 0.02 15 15 16 15
100 A 8 100 336 0.01 16 16 16(16.3) 16
100 A 9 100 306 0.01 16 16 17 16
100 B 0 100 519 0.22 12 12 12 12
100 B 1 100 518 0.01 10 10 11 10
100 B 2 100 511 0.01 9 9(9.9) 9(10.2) 9
100 B 3 100 516 0.01 11 11 11(11.7) 11
100 B 4 100 550 0.01 11 11 11(11.9) 11
100 B 5 100 502 0.02 10 10 10(11.6) 10
100 B 6 100 559 0.01 11 11 11(12) 11
100 B 7 100 598 0.01 10 10 11(11.5) 10
100 B 8 100 527 0.01 10 10 10(10.3) 10
100 B 9 100 507 0.03 10 10 10(10.3) 10
250 A 0 250 1902 673.8 18 18(18.4) 19(19.3) 18
250 A 1 250 2008 207.9 17 18 18(19.7) 17
250 A 2 250 1933 1966 18 18(18.1) 19(20.5) 18
250 A 3 250 1946 9376 19 19(19.1) 19(20.4) 19
250 A 4 250 1903 160.1 18 18(18.8) 19(19.7) 18
250 A 5 250 1857 74.07 18 18(18.5) 19(20.3) 18
250 A 6 250 1918 2161 18 18(18.3) 18(19.7) 18
250 A 7 250 1891 3496 19 19 19(21) 19
250 A 8 250 1872 6732 18 18 19(19.9) 18
250 A 9 250 1886 173.5 17 17(17.8) 18(19.1) 17
250 B 0 250 3269 5.3 10 11 10(11.7) 10
250 B 1 250 3344 107.1 11 11(11.2) 12(13.4) 11
250 B 2 250 3294 19.3 11 11(11.1) 11(12.8) 11
250 B 3 250 3353 6.77 10 10(10.6) 12(12.9) 10
250 B 4 250 3305 69.34 11 12 12(13.4) 11
250 B 5 250 3182 14.9 11 11 11(11.4) 11
250 B 6 250 3237 2.44 10 10(10.9) 11(11.3) 10
250 B 7 250 3287 57.29 11 12 12(13.3) 11
250 B 8 250 3218 19.71 11 11 11(12.4) 11
250 B 9 250 3158 254.0 12 12 12(12.8) 12
500 B 0 500 13289 1972 11 11(11.5) 11(11.9) 11
500 B 2 500 12969 4078 11 11(11.9) 12(12.6) 11
500 B 3 500 13036 2273 11 11(11.4) 12(12.9) 11
500 B 6 500 13032 10808 11 12 12(13.4) 11
500 B 9 500 13366 1375 11 11(11.8) 12(13) 11

total solved 45 40(24) 24(2) 45(45)

Table 1: Experimental comparison of EMOS and heuristic algo-
rithms on UDG instances. The average is in brackets if it is not
equal to the best for heuristic algorithms. Time is in seconds.

We tested EMOS on the three datasets with a cutoff time of
5 hours for each instance. For those instances that EMOS can
solve within the cutoff time, we ran the heuristic algorithms
on them 10 times using random seeds 1 to 10 and a cutoff time
of 1800s for each run. So, the total running time of heuristic
algorithms for each instance is also 5 hours. We report the
running time (time) in seconds and the optimal solution (opt)
of EMOS and the best and the average of solutions of 10 runs
of heuristic algorithms for each instance in Table 1-3. The
average is put in brackets if it is not equal to the best.

For UDG instances, EMOS solves all of the instances in
groups of 50, 100 and 250 and a few of instances in group
500. To save space, we discard group 50 and report the re-
maining 45 instances in Table 1. For the heuristic algorithms,
FastMWDS finds the optimum at each run for every instance.
FastDS and ScBppw find 40 (24) and 24 (2) optimums in
terms of best (average) solutions, respectively.

For T1 instances, EMOS solves all of the instances in

Instance |V | |E| EMOS FastDS ScBppw Fast
MWDStime opt

150 150 0 150 150 59.43 50 50 50 50
150 150 1 150 150 167.9 50 50 50 50
150 150 2 150 150 259.7 50 50 50(50.5) 50
150 150 3 150 150 108.7 50 50 50 50
150 150 4 150 150 181.5 50 50 50 50
150 150 5 150 150 92.02 50 50 50 50
150 150 6 150 150 187.0 50 50 50(50.3) 50
150 150 7 150 150 190.6 50 50 50(50.7) 50
150 150 8 150 150 179.1 50 50 50(50.8) 50
150 150 9 150 150 67.36 50 50 50(50.5) 50
150 250 0 150 250 2084 38 39 39(39.1) 38
150 250 1 150 250 2951 40 40 40(40.1) 40
150 250 2 150 250 687.2 39 39 39(39.8) 39
150 250 3 150 250 712.4 39 39(39.8) 40(41.1) 39
150 250 4 150 250 2807 39 39 39(39.9) 39
150 250 5 150 250 4436 40 40 40 40
150 250 6 150 250 964.8 39 39(39.2) 39(39.9) 39
150 250 7 150 250 2820 40 40 40(40.9) 40
150 250 8 150 250 918.2 38 38 38(39.2) 38
150 250 9 150 250 217.3 39 39(39.2) 39(40.1) 39
150 500 7 150 500 12617 23 23(24.3) 24(24.5) 23
150 2000 0 150 2000 10505 9 10 9(9.9) 9
150 2000 1 150 2000 11088 9 9 9(9.4) 9
150 2000 2 150 2000 8379 9 9 10 9
150 2000 3 150 2000 9697 9 10 10 9
150 2000 4 150 2000 11919 9 9 9(9.7) 9
150 2000 5 150 2000 11382 9 9 9(9.3) 9
150 2000 6 150 2000 10054 9 10 9(9.7) 9
150 2000 7 150 2000 10326 9 10 10 9
150 2000 8 150 2000 12839 9 10 10 9
150 2000 9 150 2000 9764 9 9 10 9
150 3000 0 150 3000 1906 7 7 7 7
150 3000 1 150 3000 1929 7 7 7 7
150 3000 2 150 3000 1656 7 7 7 7
150 3000 3 150 3000 1836 7 7 7 7
150 3000 4 150 3000 1662 7 7 7 7
150 3000 5 150 3000 131.7 6 6(6.9) 6(6.7) 6
150 3000 6 150 3000 1607 7 7 7 7
150 3000 7 150 3000 1893 7 7 7 7
150 3000 8 150 3000 1836 7 7 7 7
150 3000 9 150 3000 1450 7 7 7(7.2) 7
200 250 2 200 250 13454 61 61(61.2) 61(62.6) 61
200 250 3 200 250 15234 61 61 61(62.5) 61
200 250 9 200 250 17279 61 61(61.2) 61(62.7) 61

total solved 44 38(31) 36(14) 44(44)

Table 2: Experimental comparison of EMOS and heuristic algo-
rithms on T1 instances. The average is in brackets if it is not equal
to the best for heuristic algorithms. Time is in seconds.

group 50 and 100 and most instances in group 150 and a
few of instances in group 200. The results of group 150
and 200 are reported in Table 2. For the heuristic algorithms,
FastMWDS can find the optimum at each run for the 44 in-
stances. FastDS and ScBppw find 38 (31) and 36 (14) opti-
mums in terms of best (average) solutions, respectively.

For the real-world instances, EMOS solves 203 instances
out of the total 400 instances. Moreover, among the 203
solved instances, there are 162 instances for which the ini-
tial solutions derived by EMOS are the optimal solutions and
EMOS can solve most of them within 1s. We exclude those
easy instances and report the remaining 41 instances. Results
are shown in Table 3. From the table, we can see that among
the 41 instances solved by EMOS, there are 31 instances that
can be solved by EMOS within 100s. However, FastDS,
ScBppw and FastMWDS can only find 24 (21), 19 (12) and
31(27) optimums in terms of best (average) solutions respec-
tively, showing a weak performance for real-world graphs.

In general, the empirical results show that EMOS is effec-
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Instance |V | |E| EMOS FastDS ScBppw Fast
MWDStime opt

bio-CE-GT 924 3239 10.12 126 126 126(126.8) 126
bio-CE-PG 1871 47754 6671 180 180(180.4) 181 180
bio-DM-LC 658 1129 0.03 163 163 163 163
bio-SC-TS 636 3959 2705 124 124 124 124

bio-WormNet-v3 2445 78736 7243 139 140 141(141.8) 139
bio-celegans 453 2025 0.01 29 29 29(29.1) 29

bio-celegans-dir 453 2025 0.01 29 31 31 55(71.5)
ca-GrQc 4158 13422 7.14 776 777 777(779.1) 776

BA-1 10 60-L5 804 46410 12.37 3 3(3.7) 3 3
ENZYMES118 96 121 0.2 30 30 31 30
ENZYMES123 90 127 0.01 26 26 26(26.2) 26
ENZYMES295 124 139 0.41 42 42 42 42
ENZYMES296 126 141 2.13 41 41 41(41.5) 41
ENZYMES297 122 149 2.34 38 38 39(39.1) 38

ENZYMES8 88 133 0.01 25 25 25(25.7) 25
fb-pages-food 620 2091 0.03 118 118 118 118

gene 1103 1672 0.01 315 315 315(315.6) 315
ia-crime-moreno 829 1473 0.19 211 211 211 211

ia-enron-
employees

151 1526 0.1 10 14 14 15(17)

ia-fb-messages 1266 6451 2.07 249 249 249 249
insecta-ant-

colony1
41 256 0.01 4 5 5(5.3) 4(4.2)

insecta-ant-
colony2

39 245 0.01 5 6 6(6.9) 5(5.9)

mammalia-voles-
plj-trapping

1263 3380 763.5 280 282(283.6) 297(298.1) 281(285.3)

rec-movielens-
tag-movies-10m

16528 71067 1770 2992 3026 3019(3022) 3011(3018)

rec-movielens-
user-movies-10m

7601 55384 0.4 341 352 352(353.4) 345(349.9)

reptilia-tortoise-
network-bsv

136 374 0.01 34 35(36.5) 36(36.7) 35

reptilia-tortoise-
network-cs

73 132 0.01 21 22 22(22.2) 21(21.7)

soc-ANU-
residence

217 1839 12238 17 22(22.9) 21(22.1) 21(21.9)

soc-BlogCatalog-
ASU

10312 333983 41.5 218 218 218 218

soc-Epinions1 75888 405740 434.5 15743 15862 15870(15878) 15877(15887)
soc-advogato 6551 39432 3399 2192 2211 2208(2210) 2206(2212)

soc-highschool-
moreno

70 274 0.03 11 11 12(12.5) 11

soc-political-
retweet

18470 48053 1.01 3277 3300 3297(3301) 3285(3287)

soc-student-coop 185 311 0.02 48 48(48.8) 50 48(48.1)
soc-tribes 16 58 0.01 2 3 2(2.8) 2

soc-wiki-elec 8297 100753 1041 2298 2300 2299(2300) 2298
socfb-Caltech36 769 16656 1.06 62 62 62 62

tech-pgp 10680 24316 4127 2711 2711 2712 2711
tech-routers-rf 2113 6632 0.26 479 479 479 479

web-EPA 4772 8909 75.87 763 763 763 763
web-spam 4767 37375 20.29 831 831 831 831

total solved 41 24(21) 19(12) 31(27)

Table 3: Experimental comparison of EMOS and heuristic algo-
rithms on real-world graphs. The average is in brackets if it is not
equal to the best for heuristic algorithms. Time is in seconds.

tive on the three datasets. Especially, EMOS shows a promis-
ing performance for graphs from real-world applications.

5.2 Effects of the Lower Bound and Graph
Reduction

To investigate the effects of the new lower bound ISLB for
pruning branches and the reduction rule for graph reduction
in the preprocessing. We compared EMOS with the following
two variants using the 130 instances reported in Table 1-3.
• EMOS\islb. It is EMOS but the partition of C in func-

tion ReduceBranches is disabled. It uses the whole set
C as the branching set B.
• EMOS\reduction. It is EMOS but the reduction rule

in the preprocessing is disabled, i.e., no vertices are re-
moved and fixed. It uses ∅ as the initial partial solution.

Figure 2 plots the cumulative numbers of instances solved
by EMOS and the two variants. Compared to EMOS,
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Figure 2: Cumulative numbers of instances solved by EMOS,
EMOS\islb and EMOS\reducion. The cutoff time is 18000s.

EMOS\reduction fails to solve 38 instances (24 from real-
world dataset and 14 from UDG and T1) in 1800s and the
performance of EMOS\islb declines dramatically, showing
that the reduction rule in the preprocessing is very effective
and the lower bound is crucial to the performance of EMOS.

To investigate the efficiency of the new lower bound ISLB
for reducing the number of branches in EMOS, we compute
the sum of the size of the branching set B, denoted by Σ|B|,
and the sum of the size of the candidate set C, denoted by
Σ|C|, of every search tree node for each instance in Table 1-
3. We call the ratio of (Σ|C| − Σ|B|) to Σ|C| the pruning
rate of instances by ISLB. We report the percentages of the
numbers of instances with different pruning rates in Table 4.

It is easy to see that for more than 80% instances, the prun-
ing rates are greater than or equal to 0.95, and for 93% in-
stances, the pruning rates are greater than or equal to 0.90,
showing that the new lower bound ISLB is very efficient for
pruning branches and is crucial to the performance of EMOS.

Pruning rates ≥ 0.20 ≥ 0.80 ≥ 0.90 ≥ 0.95

Percentages 100% 98% 93% 81%

Table 4: The percentages of the numbers of instances with different
pruning rates on 130 tested instances in Table 1-3.

6 Conclusions
MDS is extremely challenging in computation. In this pa-
per, we propose a novel lower bound and an exact algorithm
for MDS. The algorithm implements a branch-and-bound ap-
proach and employs the new lower bound to reduce search
space. Empirical results show that the new lower bound is
very efficient in reducing the number of branches and the new
algorithm EMOS is very effective for the tested instances, es-
pecially for instances encoding from real-world applications.
To the best of our knowledge, this is the first effective branch-
and-bound algorithm for MDS.
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