
A Refined Upper Bound and Inprocessing for the Maximum K-plex Problem

Hua Jiang∗ , Fusheng Xu , Zhifei Zheng , Bowen Wang , Wei Zhou
Engineering Research Center of Cyberspace & School of Software, Yunnan University, China

huajiang@ynu.edu.cn,{xfs, zzfreya, morningnews}@mail.ynu.edu.cn, zwei@ynu.edu.cn

Abstract
A k-plex of a graph G is an induced subgraph in
which every vertex has at most k − 1 nonadjacent
vertices. The Maximum k-plex Problem (MKP)
consists in finding a k-plex of the largest size,
which is NP-hard and finds many applications. Ex-
isting exact algorithms mainly implement a branch-
and-bound approach and improve performance by
integrating effective upper bounds and graph reduc-
tion rules. In this paper, we propose a refined up-
per bound, which can derive a tighter upper bound
than existing methods, and an inprocessing strat-
egy, which performs graph reduction incrementally.
We implement a new BnB algorithm for MKP that
employs the two components to reduce the search
space. Extensive experiments show that both the
refined upper bound and the inprocessing strategy
are very efficient in the reduction of search space.
The new algorithm outperforms the state-of-the-art
algorithms on the tested benchmarks significantly.

1 Introduction
Let G = (V,E) be an undirected graph, where V is the set of
vertices and E is the set of edges. Two vertices are neighbors
if they are adjacent in G. Given an integer k, a subgraph G′
of G is a k-plex if every vertex in G′ has at most k − 1 non-
neighbors. The decision of existence of a k-plex of a given
size in graphs is NP-complete [Balasundaram et al., 2011].

Given a graph G and an integer k, the Maximum k-plex
Problem (MKP) consists in finding a k-plex with the largest
number of vertices. MKP is a generalization of the Maximum
Clique Problem (MCP), the latter is a special case of MKP (k
is 1) and is a well-known NP-hard combinatorial optimization
problem [Garey and Johnson, 1979].

The k-plex model finds many practical applications, such
as social network analysis [Seidman and Foster, 1978] and
scalable community detection[Conte et al., 2018]. Due to
the flexibility of the k-plex model, it is more suitable for the
analysis of the graphs encoding from real-world applications,
where noise and defective data are inevitable and the classic
clique model is too rigorous to be practical.

∗Corresponding author

Since MKP is relevant to practical applications, a lot of
work has devoted to seeking for efficient algorithms, includ-
ing exact and heuristic algorithms, for MKP in recent years
[Gujjula et al., 2014; Zhou and Hao, 2017; Xiao et al., 2017;
Miao and Balasundaram, 2017; Gao et al., 2018; Zhou et al.,
2020; Zhou et al., 2021; Jiang et al., 2021].

In the aspect of heuristics, Krishna et al. [2014] pro-
posed a greedy randomized adaptive search and tabu search
meta-heuristic for MKP. Zhou and Hao [2017] proposed a
frequency-driven multi-neighborhood tabu search for MKP
on large networks. Chen et al. [2020] implemented an ef-
ficient local search which is based on a double-attributes
incremental neighborhood updating and dynamic configura-
tion checking strategies. Pullan presented a local search for
MKP [Pullan, 2021]. These heuristics focus on obtaining a
suboptimal solution within a reasonable solving time.

Exact search algorithms seek for the optimal solutions by
exploring the search space systematically. Balasundaram
et al. [2011] designed an integer programming formulation
and a branch-and-cut algorithm for MKP. McClosky and
Hicks [2012] presented a BnB algorithm with a co-k-plex-
coloring upper bound. Xiao et al. [2017] proposed an exact
algorithm with time complexity in O(cnnO(1)) for a constant
c < 2 and each k ≥ 3. Gao et al. [2018] proposed several
reduction rules and a BnB algorithm with a dynamic vertex
selection mechanism. Zhou et al. [2021] proposed a BnB al-
gorithm with a second-order reduction and a graph coloring
upper bound to reduce the search space. Jiang et al. [2021]
gave a partition-based upper bound and designed an efficient
BnB algorithm for MKP. Moreover, algorithms for enumerat-
ing all maximal k-plexes were studied in [Conte et al., 2017;
Zhou et al., 2020] .

We note that exact algorithms for MKP, especially BnB al-
gorithms, have achieved a significant advance in recent years
and the advance mainly comes from improvements in two as-
pects: effective reduction rules and upper bounds [Xiao et al.,
2017; Gao et al., 2018; Zhou et al., 2021; Jiang et al., 2021].
The reduction rules reduce graphs by exploiting the structural
features of graphs and the upper bounds speed up the search
of BnB algorithms by pruning the search space efficiently at
every search tree node.

In this paper, we propose a refined upper bound and an
efficient inprocessing strategy for MKP. We analyze the de-
fects of existing methods for the partition-based upper bound

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5613

and then propose a novel notion and a sophisticated algorithm
to improve the upper bound. We present an inprocessing
strategy that employs a graph reduction procedure to reduce
graphs incrementally. Based on the two essential compo-
nents, we implement a new BnB algorithm for MKP. Exten-
sive experiments were performed to evaluate the performance
of the algorithm and the effectiveness of the two components.
Results show that both the refined upper bound and the inpro-
cessing strategy are very efficient in the reduction of search
space. The new algorithm outperforms the state-of-the-art ex-
act algorithms significantly on the tested benchmarks .

The paper is organized as follows: Section 2 gives the no-
tations and graph definitions used in this paper. Section 3
reviews previous upper bounds and presents a refined upper
bound for MKP. Section 4 describes the inprocessing. Sec-
tion 5 presents a new BnB algorithm. Section 6 reports on the
empirical results. Section 7 concludes the paper.

2 Preliminaries
Let G = (V,E) be an undirected graph with n vertices and
m edges. Two vertices u and v are adjacent or neighbors, if
there is an edge between u and v, i.e., (u, v) ∈ E. The set
of neighbors of a vertex v is denoted as N(v). The degree of
vertex v in G, denoted by deg(v), is the number of neighbors
of v and the maximum degree inG is denoted as deg(G). The
density of G is computed as 2m/(n(n− 1)).

If V ′ is a subset of V , the induced subgraphG[V ′] by V ′ is
defined as G[V ′] = (V ′, E′), where E′ = {(u, v)|u, v ∈ V ′
and (u, v) ∈ E}. Given a positive integer k,G[V ′] is a k-plex
if the degree of v in the induced subgraph is greater than or
equal to |V ′| − k for each v ∈ V ′. The size of a k-plex is the
number of vertices in it. The size of the maximum k-plex in
G is denoted by κ(G) in this paper.

An Independent Set (IS) of G is a subset of V in which
every two vertices are nonadjacent in G. Graph coloring is
to assign a color to every vertex such that every two adjacent
vertices receive different colors. In a feasible coloring, the
vertices that receive the same color form an IS.

3 A Refined Upper Bound
Bounding strategies are crucial to the performance of BnB
algorithms. In this section, we review previous upper bounds
for MKP and present a refined upper bound.

Given a graph G = (V,E) and an integer k, let S =
{v1, v2, . . . , vq} be a partial solution for MKP in G and let
C be the set of candidate vertices that could join in S. In
BnB algorithms for MKP, a partial solution S corresponds to
a node in the search tree. In this paper, we mainly discuss the
upper bound of the maximum k-plex of containing the current
partial solution S. Existing BnB algorithms for MKP usually
estimate the upper bound by partitioning the candidate set C
of the current search tree node into subsets.

The graph coloring upper bound (COL for short), pre-
sented in [Zhou et al., 2021], partitions the vertices of C
into ISs I1, I2, . . . , Ip and then computes the upper bound as
|S|+

∑p
i=1 min{k, |Ii|}, because each IS Ii can contribute at

most k vertices to a k-plex. COL derives an upper bound by
considering the solution constraints within an IS.

Figure 1: A graph with 8 vertices to illustrate the partitioning-based
upper bound

The partition-based upper bound (PUB for short), proposed
in [Jiang et al., 2021], partitions the vertices of C into sub-
sets Π = {π0, π1, . . . , πq} w.r.t. the current partial solution
S = {v1, v2, . . . , vq}, where each πi (i ≥ 1) is a subset of
non-neighbors of vertex vi and π0 is the set of vertices in C
that are adjacent to every vertex vi ∈ S. Moreover, PUB
maintains an array ∆ = {δ1, δ2, . . . , δq} for S, where each
δi is the number of vertices in S that are nonadjacent to vi.
PUB is computed as |S|+ |π0|+

∑q
i=1 min{k−1−δi, |πi|},

because each πi ∈ Π (i ≥ 1) can contribute at most k−1−δi
vertices to S. PUB derives an upper bound by considering the
solution constraints of the current partial solution.

The experimental results show that PUB is more effec-
tive for pruning the search space than COL and other upper
bounds [Jiang et al., 2021]. However, as the authors point out,
the quality of PUB is relevant to the partition Π of C. Since
a vertex in C could be a non-neighbor of many vertices in S.
The total number of eligible partitions of C could be a power
of |C|. Different partitions of C derive different computa-
tional results of PUB. We use Figure 1, which is originally
presented in [Jiang et al., 2021], to illustrate the difference.

Example 1. Let k be 3 and the partial solution S ofG in Fig-
ure 1 be {v1, v2, v3}. Then, the ∆ array of S is {0, 1, 1} and
the candidate set C is {v4, v5, v6, v7, v8}. The following two
partitions Π1 and Π2 are eligible. Π1 is {π0 = {v4}, π1 =
∅, π2 = {v7, v8}, π3 = {v5, v6}} and its PUB is computed
as: |S|+|π0|+

∑3
i=1 min{k−1−δi, |πi|} = 3+1+0+1+1 =

6. Π2 is {π0 = {v4}, π1 = {v6, v8}, π2 = {v7}, π3 = {v5}}
and its PUB is computed as: 3 + 1 + 2 + 1 + 1 = 8.

Note that the PUB bound of Π2 is 2 bigger than that of
Π1 in Example 1. In fact, using the ordering v1 > v2 > v3,
the sequential construction algorithm proposed in [Jiang et
al., 2021] produces Π2 rather than Π1. We first analyze the
reason why Π1 computes a better upper bound than Π2 does
and then present a new algorithm that can derive a tighter
upper bound than the one presented in [Jiang et al., 2021].

Note that if a set πi already contains k − 1 − δi vertices,
inserting more vertices into it doesn’t increase the value of
min{k − 1 − δi, πi}, but could decrease the value of other
πj because the number of vertices in πj could be reduced. In
the partition Π2 in Example 1, π2 and π3 must contain one
vertex (v7 must be in π2 and v5 must be in π3) and they have
the maximum value of min{k − 1 − δi, πi}. Therefore, the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5614

insertion of v8 into π2 and v6 into π3 does not increase the
computational results of PUB for π2 and π3, but can decrease
the computational result of PUB for π1 by 2, because π1 be-
comes an empty set after v8 and v6 are moved into π2 and
π3, respectively. Obviously, to obtain a better upper bound,
the vertex v8 and v6 should be inserted into π2 and π3 in-
stead of π1. However, we don’t have any prior knowledge to
determine which π a vertex should be inserted into.

Inspired by the above observation, we propose a refined
upper bound, which can improve the quality of PUB. Recall
that the PUB bound of each πi is computed as min{k − 1 −
δi, |πi|}. We call it the cost for the construction of πi, denoted
by cost(πi), which is formulated as follows.

cost(πi) = min{k − 1− δi, |πi|} (1)

To obtain a tighter upper bound, we take the construction of
the partition Π as a process of distributing every vertex u ofC
into a proper πi with an objective to minimize the total cost.
We propose a notion called distribution efficiency, denoted by
dise(πi), for each πi ∈ Π (i > 0), which is the ratio of the
cardinality of πi to its cost(πi) and is formulated as follows.

dise(πi) = |πi|/cost(πi) (2)

Especially, if πi is empty, dise(πi) is defined as 0. We eval-
uate every π ∈ Π w.r.t. its distribution efficiency, i.e., we say
πi is better than πj if dise(πi) is greater than dise(πj).

Now we present a new algorithm to derive a better parti-
tion of Π, which is called DisePUB and is depicted in Al-
gorithm 1. DisePUB constructs Π with two steps. At the
first step, it constructs an overlapped partition Π′ of C, i.e.,
a vertex u ∈ C is distributed into every πi ∈ Π′ if u is non-
adjacent to vi of S. The initial upper bound ub is computed
as |S| + |π0|. At the second step, it picks a πi in Π′ with
the largest distribution efficiency dise(πi) iteratively. Each
time a πi is picked, its cost(πi) is accumulated to ub, πi is
removed from Π′ and is inserted into Π and all of the vertices
in πi are removed from the remaining π ∈ Π′. The process
repeats till Π′ becomes an empty set, i.e., every π ∈ Π has
been determined. The accumulated ub is an upper bound of
the maximum k-plex of containing S.

We illustrate how DisePUB constructs the partition and
computes the upper bound with Example 2.
Example 2. Let k and S be the same as in Example 1.
At the first step, DisePUB constructs the Π′ as {π1 =
{v6, v8}, π2 = {v7, v8}, π3 = {v5, v6}}, π0 = {v4} and the
initial upper bound ub is 3 + 1 = 4. Then, at the second step,
DisePUB picks π one by one. At first, dise(π1), dise(π2) and
dise(π3) are computed as 1, 2 and 2, respectively. Without
loss of generality, suppose DisePUB picks π2 at first and then
v7 and v8 are removed from π1 and π3, ub is increased by
cost(π2) = 1. Next, DisePUB picks π3 because dise(π3) is 2
and dise(π1) is 1 after removing vertices of π2 and increases
ub by cost(π3) = 1. Finally, DisePUB picks π1 which is an
empty set after removing vertices of π3 from π1. DisePUB
obtains a partition that is the same as Π1 in Example 1, the
upper bound is computed as 6. Note that the same partition
can be obtained if π3 is picked at first.

DisePUB is quite different from the algorithm described
in [Jiang et al., 2021], wherein the algorithm generates every

Algorithm 1 DisePUB(S, C, k), a partition algorithm based
on distribution efficiency.
Input: The partial solution S = {v1, v2, . . . , vq}, the candi-
date set C, the k value
Output: An upper bound of maximum k-plex containing S

1: Let Π = ∅, Π′ = ∅, S = {v1, v2, . . . , vq};
2: Let π0 = C ∩N(v1) ∩ · · · ∩N(vq), ub = |S|+ |π0|;
3: Π← Π ∪ {π0};
4: for i=1 to q do
5: create a πi = C \N(vi);
6: Π′ = Π′ ∪ {πi};
7: end for
8: repeat
9: select a πi ∈ Π′ with the largest dise(πi);

10: Π← Π ∪ {πi}, Π′ ← Π′ \ {πi}, ub← ub+cost(πi);
11: remove all vertices in πi from each π ∈ Π′;
12: until Π′ = ∅
13: return ub;

πi sequentially and the computed upper bound depends on
the ordering of vertices of S. DisePUB generates the parti-
tion with two steps that is guided by the novel notion of dis-
tribution efficiency. The computed upper bound of DisePUB
is not related to the ordering of vertices being inserted into Π.

In Algorithm 1, lines 2-7 implement the first step, con-
structing an overlapped partition Π′, which has a time com-
plexity of O(|S| × |C|). Lines 8-12 implement the second
step, picking a πi with the largest dise(πi) iteratively. Each
time a πi is determined, the dise(π) of the remaining π ∈ Π′

needs to be recomputed. The time complexity of the second
step is O(|S|2×|C|). Therefore, the total time complexity of
Algorithm 1 is O(|S|2 × |C|).

In section 5, we will explain how to adapt Algorithm 1 to
reduce the number of branches in a BnB algorithm.

4 Inprocessing for MKP
Previous work has proven that graph reduction is very effec-
tive for solving MKP in real-world graphs. In this section,
we present an efficient reduction procedure, which is based
on a lower bound of κ(G) and can be used as an inprocessing
strategy in a BnB algorithm to reduce graphs incrementally.

BnB algorithms usually begin their search with an initial
solution S0. We use lb = |S0| to denote the initial lower
bound of κ(G). Existing graph reduction rules for MKP are
mainly based on the following property.

Property 1. Given a graph G and a vertex v, the maximum
k-plex of containing v is smaller than or equal to deg(v) +k.

According to Property 1, if we are searching for a k-plex S
of size greater than lb, then those vertices with degree smaller
than or equal to lb−k are redundant and can be removed from
G iteratively in the preprocessing stage. [Gao et al., 2018;
Zhou et al., 2021; Jiang et al., 2021].

According to the number of common neighbors of two ver-
tices u and v, enhanced reduction rules are proposed in [Zhou
et al., 2021; Jiang et al., 2021], which are based on the fol-
lowing property.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5615

Algorithm 2 Reduce(G, k, lb), a reduction algorithm for
MKP.
Input: A graph G, k value and the lower bound lb of κ(G).
Output: A reduced graph G′

1: repeat
2: remove every vertex v if deg(v) ≤ lb− k;
3: remove every edge (u, v) if cone(u, v) ≤ lb− 2k;
4: until there is no vertex and edge be removed from G
5: return the reduced graph G′;

Property 2. Let cone(u, v) be the number of common neigh-
bors of vertex u and v in G. The maximum k-plex of contain-
ing u and v is smaller than or equal to cone(u, v) + 2k − γ,
where γ is 0 if (u, v) ∈ E; Otherwise, γ is 2.

Zhou et al. [2021] use Property 2 to remove an edge (u, v)
if cone(u, v) ≤ lb − 2k in the preprocessing. Jiang et
al. [2021] use the property to reduce graphs in the prepro-
cessing and to reduce the number of candidate vertices when
the search tree level is less than 3.

We note that the efficiency of reduction rules based on
Property 1 and 2 is relevant to the quality of the lower bound
lb. The higher the lower bound lb is, the more vertices could
be removed from G. However, because of the NP-hardness
of MKP, there could be a big gap between the initial lower
bound lb and κ(G), making the application of reduction rules
inadequate if they are just applied in the preprocessing stage.

Based on the above observation, we propose a new ap-
proach to perform graph reduction, i.e., performing reduc-
tion as an inprocessing. The graph reduction procedure is de-
picted in Algorithm 2, which performs reduction rules based
on Property 1 and 2 iteratively w.r.t. a given lower bound
lb of κ(G). The procedure is designed to be integrated into
a BnB algorithm as an inprocessing, which is triggered once
the lower bound lb is updated during the search.

The time complexity of removing a vertex (an edge) is
O(deg(G)) and the computation of common neighbors for
edges is O(|E|1.5)[Latapy, 2008]. Therefore, the total time
complexity of inprocessing isO(|E|1.5+(|V |+|E|) ·deg(G)).

5 A New BnB Algorithm for MKP
We present a new BnB algorithm for MKP, called DiseMKP,
which is depicted in Algorithm 3. The algorithm first gen-
erates an initial solution S0 and then calls Algorithm 2 to
reduce the input graph G to G′. The initial solution S0 is
generated with the heuristic presented in [Jiang et al., 2021].
Let v1 < v2 < · · · < vn be the degeneracy ordering. If vi
is the smallest vertex with degree of greater than or equal to
n − i + 1 − k, then G[{vi, vi+1, . . . , vn}] is a k-plex. After
reducing the graph, DiseMKP calls a BnB search procedure
to search for an optimal solution in the reduced graph G′.

The BnB search procedure is described in Algorithm 4,
which implements the BnB search approach proposed in [Li
et al., 2017]. Let S be the partial solution and C be the set
of candidate vertices. Instead of exploring the whole search
space formed by the set C, Algorithm 4 calls a function,
called PartitionDise, to identify a minimal setB of branching

Algorithm 3 DiseMKP(G, k), a BnB algorithm for MKP
Input: A graph G = (V,E) and an integer k
Output: a maximum k-plex S∗ in G.

1: generate an initial solution S0;
2: G′ = (V ′, E′)← Reduce(G, k, |S0|);
3: return BnBSearchMKP(G′, ∅, V ′, S0, k);

vertices and only branches on vertices inB w.r.t. the degener-
acy ordering of vertices ofB. Each time the search procedure
finds a better solution S∗, it calls the reduction procedure (Al-
gorithm 2) to perform graph reduction, which implements an
inprocessing. After the reduction, Algorithm 4 backtracks to
the root node of the search tree, clears the removed vertices
from B and C and then the search proceeds from the first
unbranched branching vertex.

The function PartitionDise is described in Algorithm 5,
which partitions the candidate set C into B and P subject
to κ(G[S ∪ P]) ≤ |S∗|. At the beginning, B is set to C. The
goal of PartitionDise is to minimize B. Let β = |S∗| − |S|.
We call β the total budget for the minimization of B. Al-
gorithm 5 first constructs an overlapped partition Π and then
select a π∗ with the highest distribution efficiency dise(π∗)
and cost(π∗) ≤ β. Each time a π∗ is determined, the vertices
in π∗ are removed from B and from the remaining π in Π,
and the budget is reduced by cost(π∗). The process repeats
till the budget β is depleted or no π can be selected. If β > 0
and B is not empty, Algorithm 5 removes min{β, |B|} more
vertices from B. Obviously, those vertices that are removed
from B form the set P and κ(G[S ∪ P]) ≤ |S∗| holds. Fi-
nally, Algorithm 5 returns the reducedB as the branching set.

The time complexity of Algorithm 5 is the same with the
time complexity of Algorithm 1. Experimental results of the
new algorithm, the effects of the refined upper bound and the
inprocessing will be given in the next section.

Algorithm 4 BnBSearchMKP(G, S, C, S∗, k)
Input: A graph G=(V ,E), a partial solution S, the candidate
set C and the incumbent solution S∗ and the k value.
Output: the best solution S∗ in G.

1: remove every v ∈ C, if |S \N(v)| ≥ k;
2: if C is empty then return S;
3: B ←PartitionDise(C, k, S, S∗);
4: if B is empty then return S∗;
5: Let u1 < u2 < · · · < u|B| be the degeneracy ordering of

vertices of B and C ′ = C \B.
6: for i = |B| to 1 do
7: S′ ← BnBSearchMKP(G, S ∪ {ui}, C ′, S∗, k);
8: if |S′| > |S∗| then
9: S∗ ← S′;

10: G← Reduce(G, k, |S∗|);
11: backtrack to the root node and proceed the search

from the first unbranched branching vertex;
12: end if
13: C ′ ← C ′ ∪ {ui};
14: end for
15: return S∗;

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5616

Algorithm 5 PartitionDise(C, k, S, S∗), generates the
branching set B with the upper bound DisePUB
Input: The candidate set C, the k value, the partial solution
S and the best solution S∗ found so far
Output: A branching set B

1: Let S = {v1, v2, . . . , vq}, B = C, Π = ∅;
2: for i = 1 to q do
3: create a πi = C \N(vi);
4: Π = Π ∪ {πi};
5: end for
6: Let β = |S∗| − |S|;
7: repeat
8: π∗ ← ∅, max dise← 0;
9: for each non-empty π ∈ Π do

10: if cost(π) <= β and dise(π) > max dise then
11: π∗ ← π, max dise← dise(π);
12: end if
13: end for
14: if π∗ 6= ∅ then
15: B ← B \ π∗, Π← Π \ {π∗}, β ← β − cost(π∗);
16: π ← π \ π∗ for each π ∈ Π;
17: end if
18: until π∗ = ∅ or β = 0
19: if β > 0 and B 6= ∅ then
20: remove min{β, |B|} vertices from B;
21: end if
22: return B;

6 Experimental Results
We empirically evaluated the new algorithm DiseMKP and
its two essential components: the refined upper bound and
the inprocessing strategy. DiseMKP was compared with the
following three state-of-the-art BnB algorithms:

• BnBK1: It is the BnB algorithm proposed in [Gao et al.,
2018]. BnBK employs several sophisticated reduction
rules and a dynamic vertex selection branching heuristic.

• Maplex2: It is the BnB algorithm proposed in [Zhou et
al., 2021]. Maplex implements a second-order reduction
in the preprocessing and employs the graph coloring up-
per bound to reduce the search space.

• KpLeX3: It is the BnB algorithm proposed in [Jiang et
al., 2021]. KpLeX integrates the graph reduction rules
in the preprocessing and the partitioning-based upper
bound PUB to reduce the number of branches.

DiseMKP4 and the three compared algorithms were imple-
mented in C++ and compiled using GNU g++ -O3. Experi-
ments were performed on AMD EPYC CPUs 7702 @2.0GHz
under Linux with 128GB of memory. We tested a total of 675
graphs from three different datasets to evaluate DiseMKP and
the compared algorithms.

1https://github.com/JimNenu/codekplex
2https://github.com/ini111/Maplex
3https://github.com/huajiang-ynu/kplex
4Published at https://github.com/huajiang-ynu/ijcai23-kpx

Algorithm k = 2 k = 4 k = 6 k = 8

BnBK 516 444 439 419
Maplex 527 457 387 360
KpLeX 556 507 478 446

DiseMKP 580 545 517 499

Table 1: The total numbers of instances solved by DiseMKP,
KpLeX, Maplex and BnBk at k = 2, 4, 6 and 8. The cutoff time
is 1800 seconds.

• DIMACS graphs5: The dataset contains 80 graphs with
the number of vertices up to 4000 and densities ranging
from 0.03 to 0.99. The dataset has been widely used to
evaluate algorithms for MCP and MKP.

• DIMACS10 graphs6: The dataset contains 84 graphs
with the number of vertices up to 2 × 107. The dataset
has been widely used to evaluate graph algorithms like
MCP and MKP.

• Real-world graphs from Network Repository7: The
dataset contains 511 representative real-world graphs
which we select from Network Data Repository [Rossi
and Ahmed, 2015], including: biological networks (36),
dynamic networks (88), interaction networks (29), la-
beled networks (104), recommendation networks (12),
road networks (15), scientific computing (11), social
networks (72), facebook (114) and web networks (30).

We use four different k values: 2, 4, 6 and 8 to evaluate
the algorithms. In general, the difficulty of solving MKP in-
creases dramatically as the k value increases.

6.1 Performance Profiles
The first experiment we conducted is to evaluate the total per-
formance of DiseMKP and the three compared algorithms.
Algorithms were tested over the 675 instances with a cutoff
time of 1800s for each instance. The total numbers of in-
stances solved by each algorithm are reported in Table 1.

From Table 1, we can see that our new algorithm DiseMKP
can solve more instances than the compared algorithms for
every tested k value. The performance superiority of Dis-
eMKP over the three compared algorithms increases steadily
as the increase of k value. Especially, DiseMKP can solve
499 instances at k = 8, which is 11.9%, 38.6% and 19% more
than the number of instances solved by KpLeX, Maplex and
BnBK, respectively.

We plotted the cumulative numbers of solved instances of
the four algorithms for each k value. The results are detailed
in Figure 2. From Figure 2, we can see that the biggest gaps of
cumulative numbers of solved instances between DiseMKP
and the compared algorithms almost always occur within the
first 200s for each tested k, showing that DiseMKP is steadily
faster than the compared algorithms. Moreover, we can see
that Maplex and BnBK have a comparable performance with
KpLeX at k = 2, but their performance declines dramatically

5http://archive.dimacs.rutgers.edu/pub/challenge/graph/
6https://www.cc.gatech.edu/dimacs10/downloads.shtml
7http://networkrepository.com/networks.php

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5617

0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds (k = 2)

300

350

400

450

500

550

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

DiseMKP
KpLeX
Maplex
BnBK

(a) Cumulative numbers of solved instances with k=2

0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds (k = 4)

300

350

400

450

500

550

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

DiseMKP
KpLeX
Maplex
BnBK

(b) Cumulative numbers of solved instances with k=4

0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds (k = 6)

300

350

400

450

500

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

DiseMKP
KpLeX
Maplex
BnBK

(c) Cumulative numbers of solved instances with k=6

0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds (k = 8)

250

300

350

400

450

500

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

DiseMKP
KpLeX
Maplex
BnBK

(d) Cumulative numbers of solved instances with k=8

Figure 2: The cumulative numbers of instances solved by DiseMKP, KpLeX, Maplex and BnBk. The cutoff time is 1800 seconds.

when k increases to 4. KpLeX also shows an obvious decline
in performance when k increases to 8. Whereas, the perfor-
mance of DiseMKP declines tardily as k increases. DiseMKP
is the most robust among the four tested algorithms.

In general, DiseMKP outperforms the three state-of-the-art
algorithms KpLeX, BnBK and Maplex on the tested datasets
significantly.

6.2 Effect of the New Upper Bound
To evaluate the effect of the new upper bound DisePUB
for pruning the search space, we implemented three variants
of DiseMKP, in which the inprocessing procedure (line 10
and 11 in Algorithm 4) is disabled and the Partition function
is implemented with the three different upper bounds.
• BnBcol: It generates the branching setB with graph col-

oring bound. Let lb = |S∗| − |S|. BnBcol constructs IS
I1, I2, . . . , Ip one by one and computes an upper bound
ub as

∑p
i=1 min{k, |Ii|} subject to ub ≤ lb. BnBcol

takes the candidate vertices that are not inserted into the
constructed ISs as the vertices of the set B.
• BnBpub: It generates the branching set B with the parti-

tion function presented in [Jiang et al., 2021], i.e., con-
structing each πi of Π one by one w.r.t. the vertex or-
dering in the partial solution S subject to the computed
upper bound of Π is not greater than lb. BnBpub takes
vertices that are not in Π as the vertices of the set B.
• BnBdise: It is DiseMKP but the inprocessing procedure

is disabled (line 10 and 11 in Algorithm 4 are removed).

BnBdise generates the branching set B with our new up-
per bound DisePUB that is depicted in Algorithm 5.

We conducted an experiment to compare BnBcol, BnBpub

and BnBdise using 40 representative instances with a cutoff
time of 3600s and k = 4 . We report the search tree size in
105 and the running time in seconds of each instance of the
three algorithms. Table 2 shows the results of the comparison.

In total, BnBdise solves all of the 40 instances, BnBpub

solves 33 instances and BnBcol solves only 7 instances within
the cutoff time. It is easy to see that the search tree sizes
of BnBdise are significantly smaller than that of BnBcol

and BnBpub, especially on hard instances. For example,
the search tree sizes of BnBdise for hamming6-2 and socfb-
UGA50 are 305.9 and 76.4, which are only 3.1% and 2.1%
of the search tree sizes of BnBpub for the two instances, re-
spectively. Consequently, BnBdise are almost always several
times faster than BnBpub on hard instances in Table 2.

The comparison shows that our new upper bound DisePUB
is more efficient in reducing search space than the COL and
PUB upper bounds for BnB algorithms for MKP.

6.3 Effect of the Inprocessing Procedure
To investigate the effect of the inprocessing procedure in Dis-
eMKP, we compared DiseMKP with a variant DiseMKP-
NOIP, which is DiseMKP but the inprocessing procedure
(line 10 and 11 in Algorithm 4) is disabled. We tested
DiseMKP and DiseMKP-NOIP over the 675 instances with
k = 2 and 4 using a cutoff time of 1800s.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5618

Instances BnBcol BnBpub BnBdise

tree time tree time tree time
brock200-2 - - 1234 221.1 301.7 147.4
c-fat200-1 416.4 15.12 0.01 0.03 0.01 0.02
c-fat500-1 15362 1091 0.02 0.02 0.02 0.02
hamming6-2 - - 9607 2138 305.9 157.6
johnson8-4-4 - - 932.6 137.9 193.0 86.74
p-hat300-1 - - 25.58 3.97 7.08 2.99
p-hat500-1 - - 440.9 94.69 118.7 70.7
p-hat700-1 - - 2964 805.6 732.5 543.9
MANN-a81 - - 0.01 32.28 0.01 32.48
san200-0.9-1 - - 0.07 0.06 0.07 0.06
san200-0.9-3 - - - - 2119 2413
bio-CE-GN 31020 1361 22.7 2.37 2.52 0.88
bio-DM-CX - - 341.3 178.9 182.6 117.2
ia-wiki-Talk - - 98.1 24.56 17.6 11.14
ia-enron-large - - 23.5 4.65 4.9 2.25
ia-sx-mathoverflow - - 4335 2716 336.6 352.0
fb-CMU-Carnegie49 1405 45.52 1247 367.7 161.1 84.67
sc-pkustk13 - - 552.1 1043 426.4 1351
socfb-A-anon - - 489.0 101.3 71.3 51.23
socfb-B-anon - - 697.3 335.3 75.3 159.3
socfb-CMU 1443 46.96 1240 362.32 157.9 84.15
socfb-FSU53 - - - - 1083 1378
socfb-Indiana - - - - 3954 3244
socfb-MIT - - 429.9 127.6 95.3 51.48
socfb-Wisconsin87 105491 3452 11.6 5.76 3.4 2.96
socfb-UIllinois - - 1394 637.4 141.9 129.6
socfb-UF - - - - 625.0 712.7
socfb-UGA50 - - 3610 3127 76.4 83.7
socfb-Stanford3 - - - - 2228 1755
socfb-Texas84 - - - - 1475 1571
soc-flixster - - 4205 2073 291.1 251.7
soc-LiveMocha - - 1691 640.9 183.3 195.5
soc-slashdot - - 190.4 71.64 21.8 14.37
soc-wiki-conflict - - - - 1226 1595
soc-youtube-growth - - 734.5 451.2 62.9 87.68
tech-WHOIS - - 602.9 512.1 264.9 274.6
tech-as-topology - - 2292 1035 209.6 178.5
web-baidu-baike - - 211.5 81.0 25.1 37.67
web-spam 2893 72.17 0.85 0.17 0.17 0.09
web-wiki-ch-internal - - 2474 2429 149.4 336.4

Table 2: Comparison of BnBcol, BnBpub and BnBdise on 40 repre-
sentative instances. The cutoff time is 3600s. The search tree size is
in 105 and time is in seconds.

Figure 3 shows the cumulative numbers of instances solved
by DiseMKP and DiseMKP-NOIP. The results for k = 2 and
4 are plotted in dashed and solid lines, respectively. DiseMKP
solves 580 and 545 instances and DiseMKP-NOIP solves 558
and 516 instances for k = 2 and 4, respectively. It is easy to
see that without the inprocessing procedure, the performance
of DiseMKP declines significantly.

0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds

300

350

400

450

500

550

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

DiseMKP with k=2
DiseMKP-NOIP with k=2
DiseMKP with k=4
DiseMKP-NOIP with k=4

Figure 3: Comparison of DiseMKP with DiseMKP-NOIP using k=2
and 4. The cutoff time is 1800s.

Instance lb |V | |E| Density

sc-pkustk13

- 94893 3260967 0.00072429
27 94614 3251544 0.00072646
28 94614 3251544 0.00072646
29 94614 3251544 0.00072646
30 94471 3237739 0.00072557
31 93831 3221467 0.00073181
32 93813 3220327 0.00073183
33 91680 3159599 0.00075183
34 89415 3100882 0.00077571
35 89415 3100882 0.00077571
36 27120 644461 0.00175252

rec-epinions

- 755761 13396042 0.00004691
9 105798 3418701 0.00061086

10 59471 2126329 0.00120242
11 36245 1357240 0.00206634
12 21698 850540 0.00361331
13 12677 519981 0.00647171
14 7146 306208 0.01199448
15 4001 175462 0.02192727
16 2180 97234 0.04093874

Table 3: Two examples to illustrate the effectiveness of inprocessing
in DiseMKP with k = 4. |V | is the number of vertices and |E| is
the number of edges after graph reduction w.r.t. the lower bound lb.

To illustrate the effectiveness of the inprocessing, we se-
lected two representative instances, sc-pkustk13 and rec-
epinions, to present their graph reduction processes in inpro-
cessing as the increase of the lower bound lb. With k = 4,
DiseMKP solves sc-pkustk13 and rec-epinions in 26.9s and
418s, respectively. But DiseMKP-NOIP solves sc-pkustk13
using 402s and cannot solve rec-epinions within 1800s.

The reduction processes are presented in Table 3. The first
row of each instance shows the original numbers of vertices
and edges and the second row shows the initial lower bound
and the initial reduction result of the graph. The last row is
the optimal solution. From Table 3, we can see that the two
graphs are reduced dramatically as the increase of the lower
bound lb, which can speed up the search of DiseMKP in turn.

In general, the inprocessing procedure can exploit graph
reduction rules more efficiently and is essential to the perfor-
mance of the new algorithm DiseMKP.

7 Conclusions

We proposed two efficient strategies for BnB algorithms for
MKP, a refined upper bound and an inprocessing procedure.
The upper bound is based on a novel notion of distribution ef-
ficiency and can compute a tighter bound than existing upper
bounds for MKP. The inprocessing procedure implements in-
cremental graph reduction, which can help BnB algorithms to
reduce more search space. Based on the two components, we
implemented a new BnB algorithm for MKP. Extensive ex-
periments show that the two components are very efficient in
the reduction of the search space in BnB algorithms. The new
algorithm outperforms the state-of-the-art exact algorithms
significantly on the tested benchmarks.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5619

Acknowledgments
This work is funded by the National Natural Science Foun-
dation of China (Grant NO. 62162066, 62162067 and
62162064), and in part supported by the project of Research
and Application of Object Detection Based on Artificial In-
telligence, by the project of Research on Data Driven Intel-
ligent Logistics System Construction and Key Technologies
(Grant NO. 202302AD080006), Science and Technology De-
partment of Yunnan Province. The experiments were per-
formed on Hefei advanced computing center.

References
[Balasundaram et al., 2011] Balabhaskar Balasundaram,

Sergiy Butenko, and Illya V. Hicks. Clique relaxations in
social network analysis: The maximum k-plex problem.
Oper. Res., 59(1):133–142, 2011.

[Chen et al., 2020] Peilin Chen, Hai Wan, Shaowei Cai, Jia
Li, and Haicheng Chen. Local search with dynamic-
threshold configuration checking and incremental neigh-
borhood updating for maximum k-plex problem. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 2343–2350. AAAI Press, 2020.

[Conte et al., 2017] Alessio Conte, Donatella Firmani, Cate-
rina Mordente, Maurizio Patrignani, and Riccardo Tor-
lone. Fast enumeration of large k-plexes. In Proceed-
ings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017, pages 115–124. ACM,
2017.

[Conte et al., 2018] Alessio Conte, Tiziano De Matteis,
Daniele De Sensi, Roberto Grossi, Andrea Marino, and
Luca Versari. D2K: scalable community detection in mas-
sive networks via small-diameter k-plexes. In Yike Guo
and Faisal Farooq, editors, Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 2018, London, UK, August 19-
23, 2018, pages 1272–1281. ACM, 2018.

[Gao et al., 2018] Jian Gao, Jiejiang Chen, Minghao Yin,
Rong Chen, and Yiyuan Wang. An exact algorithm for
maximum k-plexes in massive graphs. In Jérôme Lang, ed-
itor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden, pages 1449–1455. ijcai.org,
2018.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[Gujjula et al., 2014] Krishna Reddy Gujjula, Krishnan Ay-
alur Seshadrinathan, and Amirhossein Meisami. A hybrid
metaheuristic for the maximum k-plex problem. In Sergiy
Butenko, Eduardo L. Pasiliao, and Volodymyr Shylo, ed-
itors, Examining Robustness and Vulnerability of Net-
worked Systems, volume 37 of NATO Science for Peace

and Security Series, D: Information and Communication
Security, pages 83–92. IOS Press, 2014.

[Jiang et al., 2021] Hua Jiang, Dongming Zhu, Zhichao Xie,
Shaowen Yao, and Zhang-Hua Fu. A new upper bound
based on vertex partitioning for the maximum k-plex prob-
lem. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 Au-
gust 2021, pages 1689–1696. ijcai.org, 2021.

[Latapy, 2008] Matthieu Latapy. Main-memory triangle
computations for very large (sparse (power-law)) graphs.
Theor. Comput. Sci., 407(1-3):458–473, 2008.

[Li et al., 2017] Chu Min Li, Hua Jiang, and Felip Manyà.
On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem.
Computers & OR, 84:1–15, 2017.

[McClosky and Hicks, 2012] Benjamin McClosky and
Illya V. Hicks. Combinatorial algorithms for the max-
imum k-plex problem. J. Comb. Optim., 23(1):29–49,
2012.

[Miao and Balasundaram, 2017] Zhuqi Miao and Balab-
haskar Balasundaram. Approaches for finding cohesive
subgroups in large-scale social networks via maximum k-
plex detection. Networks, 69(4):388–407, 2017.

[Pullan, 2021] Wayne Pullan. Local search for the maximum
k-plex problem. J. Heuristics, 27(3):303–324, 2021.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with interactive
graph analytics and visualization. In Blai Bonet and
Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pages 4292–4293. AAAI
Press, 2015.

[Seidman and Foster, 1978] Stephen B. Seidman and
Brian L. Foster. A graph theoretic generalization of
the clique concept. Journal of Mathematical Sociology,
6(1):139–154, 1978.

[Xiao et al., 2017] Mingyu Xiao, Weibo Lin, Yuanshun Dai,
and Yifeng Zeng. A fast algorithm to compute maximum
k-plexes in social network analysis. In Satinder P. Singh
and Shaul Markovitch, editors, Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages 919–
925. AAAI Press, 2017.

[Zhou and Hao, 2017] Yi Zhou and Jin-Kao Hao.
Frequency-driven tabu search for the maximum s-plex
problem. Comput. Oper. Res., 86:65–78, 2017.

[Zhou et al., 2020] Yi Zhou, Jingwei Xu, Zhenyu Guo,
Mingyu Xiao, and Yan Jin. Enumerating maximal k-
plexes with worst-case time guarantee. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 2442–2449. AAAI Press, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5620

[Zhou et al., 2021] Yi Zhou, Shan Hu, Mingyu Xiao, and
Zhang-Hua Fu. Improving maximum k-plex solver via
second-order reduction and graph color bounding. In
Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 12453–12460. AAAI Press, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5621

	Introduction
	Preliminaries
	A Refined Upper Bound
	Inprocessing for MKP
	A New BnB Algorithm for MKP
	Experimental Results
	Performance Profiles
	Effect of the New Upper Bound
	Effect of the Inprocessing Procedure

	Conclusions

