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Abstract
Recent research on bidirectional heuristic search
(BiHS) is based on the must-expand pairs the-
ory (MEP theory), which describes which pairs of
nodes must be expanded during the search to guar-
antee the optimality of solutions. A separate line
of research in BiHS has proposed algorithms that
use lower bounds that are derived from consistent
heuristics during search. This paper links these
two directions, providing a comprehensive unify-
ing view and showing that both existing and novel
algorithms can be derived from the MEP theory.
An extended set of bounds is formulated, encom-
passing both previously discovered bounds and new
ones. Finally, the bounds are empirically evaluated
by their contribution to the efficiency of the search.

1 Introduction
Research on bidirectional heuristic search (BiHS) dates back
to the late sixties. Recently, a new theory was developed for
BiHS [Eckerle et al., 2017] that laid the foundation for a rich
line of research in the area [Shaham et al., 2017; Shaham et
al., 2018; Shperberg et al., 2019a; Sturtevant et al., 2020;
Alcázar et al., 2020; Alcázar, 2021; Shperberg et al., 2021].
This theory of must-expand pairs (MEP) characterizes the set
of forward- and backward- node pairs that must be expanded
in order to prove solutions’ optimality. Recent BiHS algo-
rithms, such as NBS [Chen et al., 2017] and DVCBS [Shper-
berg et al., 2019b] utilize the MEP theory to reduce the search
effort required to return optimal solutions.

This paper focuses on the case where the heuristic is known
to be consistent. In this case, the conditions for which pairs of
nodes must be expanded can be refined [Shaham et al., 2018],
which reduces the number of MEPs. Thus, assuming consis-
tency, these tighter conditions can potentially be exploited to
further reduce the number of nodes expanded by BiHS algo-
rithms. Algorithms like NBS and DVCBS, however, cannot
be efficiently adapted to these tighter conditions, whose en-
forcement requires significantly more computational effort.

BiHS algorithms for the consistent heuristics case have
also been developed. These algorithms utilize the information
derived from heuristic consistency to maintain lower bounds
(denoted search bounds) on solutions’ cost, which in turn are

used for speeding up the search [Kaindl and Kainz, 1997;
Sadhukhan, 2012; Alcázar et al., 2020; Sewell and Jacobson,
2021]. Fundamental questions include whether other bounds
can be developed and how well they will perform.

To answer these questions, the conceptual gap between
these algorithms and the MEP theory must be explored. This
paper provides a unifying view that closes this gap. The con-
tributions of this paper are : (1) A family of search bounds
that can be directly derived from the MEP conditions. To our
knowledge, this family includes all existing search bounds as
well as novel search bounds. (2) A global algorithmic frame-
work designed to exploit any subset of bounds; with a fo-
cus on exploiting single bounds for guiding the search. This
framework encompasses previous search-bounds-based algo-
rithms. (3) An experimental study on the effect of each bound
and the behaviors of variants of the framework. We also com-
pare the number of nodes expanded by these variants to the
theoretical lower bound from the MEP theory, showing that
existing algorithms are very close to the theoretical limits.

2 Definitions, Notations, and Background
In BiHS, the aim is to find a least-cost path, of cost C˚, be-
tween start and goal in a given graph G. distpx, yq denotes
the shortest distance between x and y, so distpstart, goalq “
C˚. In some cases, the cost of the cheapest edge of the graph
(denoted by ε) is available, otherwise, ε is assumed to be 0.

BiHS typically keeps two open lists, OpenF for the for-
ward search (F), and OpenB for the backward search (B).
Given a direction D (either F or B), we use fD, gD and
hD to indicate f -, g-, and h-values in direction D. We use
D to denote the direction that is opposite to D, and define
fD, gD and hD symmetrically. This paper considers the
two front-to-end heuristic functions [Kaindl and Kainz, 1997]
hF psq and hBpsq which respectively estimate distps, goalq
and distpstart, sq for all s P G. hF , is forward admissible iff
hF psq ď distps, goalq for all s inG and is forward consistent
iff hF psq ď distps, s1q ` hF ps

1q for all s and s1 in G. Back-
ward admissibility and consistency are defined analogously.

In addition to the known g, h, and f functions, we define
the following functions which are used throughout the paper:

(1) dDpnq “ gDpnq ´ hDpnq, the difference between the ac-
tual cost in directionD of node n and its heuristic estimation;
this indicates the heuristic error for node n.
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(2) bDpnq “ fDpnq ` dDpnq. bDpnq adds the heuristic er-
ror dDpnq to fDpnq to indicate that the opposite search using
hDpnq will underestimate by dDpnq.
(3) rf Dpnq “ gDpnq ´ hDpnq, the reverse f -value [Alcázar,
2021], a function that is similar to f , but which subtracts the
heuristic instead of adding it.
(4) rdDpnq “ gDpnq ` hDpnq, the reverse d-value [Alcázar,
2021], which adds the opposite heuristic instead of subtract-
ing it. The term reverse for rf and rd was coined by Alcázar
et al. (2020). While the motivation behind rf and rd might
seem unclear, they can be used as building blocks for some of
the bounds on optimal solutions cost, as we show below.

Finally, we denote by xMinD the minimal x value in
OpenD. For example, gMinD “ minnPOpenD gDpnq, the
minimal g-value in direction D. Additionally, tx, yuMinD
is the minimal x ` y value in OpenD, e.g., trf , duMinD “
minnPOpenDtrf Dpnq ` dDpnqu. Likewise, tx, y, zuMinD
is the minimal x` y ` z value in direction D.

2.1 Must-Expand Nodes in Bidirectional Search
Any unidirectional heuristic search (UniHS) algorithm (meet-
ing reasonable theoretical assumptions), that is guaranteed to
find an optimal solution on every problem with an admissible
heuristic, must expand all nodes n with fpnq ă C˚ to prove
the optimality of solutions when given a consistent heuristic
[Dechter and Pearl, 1985].

The generalization of this theory to BiHS [Eckerle et al.,
2017] showed that in BiHS the must expand attribute is de-
fined on pairs of nodes pu, vq from the forward and backward
frontiers (and not on a single node as in UniHS) as follows:
lbpu, vq “ maxtfF puq, fBpvq, gF puq ` gBpvq ` εu (1)

lbpu, vq is a lower bound on the cost of any path that can
connect start and goal via u and v. In BiHS, a pair of
nodes pu, vq is called a must-expand pair (denoted MEP) if
lbpu, vq ă C˚. In a MEP at least one of u or v must be ex-
panded. Otherwise, an algorithm that does not expand either
u or v when lbpu, vq ă C˚ might miss the optimal solution.

The set of MEPs can be reformulated as a bipartite graph,
denoted as the Must-Expand Graph (GMX) [Chen et al.,
2017]. For each state u P G, GMX includes a forward ver-
tex uF and a backward vertex uB . For each pair of states
u, v P G, there is an edge in GMX between uF and vB iff
pu, vq is a MEP. Since each edge of GMX is a MEP and
at least one node from each MEP must be expanded to en-
sure the optimality of the solution, it follows that any optimal
algorithm must expand a vertex cover of GMX. Thus, the
minimum number of node expansions required to guarantee
the optimality of a solution for problem instance by BiHS is
the size of the minimum vertex cover (denoted by MVC) of
GMX. When consistency is not assumed, the MVC of GMX
can be computed in linear time with respect to the number of
nodes in the GMX [Shaham et al., 2017].

2.2 MEPs When Assuming a Consistent Heuristics
This paper focuses on the case where algorithms can assume
that they are always given problem instances with a consis-
tent heuristic (i.e., they do not need to return an optimal solu-
tion when given admissible heuristics that are not consistent).

We denote this as the consistency case, under which more
information can be exploited and the aim is to develop algo-
rithms that utilize this. For the consistency case, Shaham et
al. (2018) introduced tighter lower bounds for pairs denoted
lbCpu, vq (C for consistency):

lbCpu, vq “ gF puq ` gBpvq `max
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All terms in the max expression are lower bounds on
distpu, vq and can thus be added to gF puq ` gBpvq. ε (term
2c) is a trivial lower bound, term 2a is derived from the defini-
tion of a forward-consistent heuristic: hF puq ď distpu, vq `
hF pvq ùñ hF puq ´ hF pvq ď distpu, vq, and term 2b is
derived analogously from the definition of backward consis-
tency.1 lbCpu, vq induces a new MEP definition, denoted as
MEPC . Since lbCpu, vq ď lbpu, vq for every pair of nodes
u, v, the number of MEPCs is smaller than or equal to the
number of MEPs for any given problem instance.

Finally, for undirected graphs, lbCpu, vq can be further
tightened resulting in lbCU pu, vq (U for undirected):

lbCU pu, vq “ gF puq ` gBpvq `max
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Both Equations 2 and 3 can be used for defining corre-
sponding GMX graphs, however, in these cases the MVC can
no longer be computed in linear time [Shaham et al., 2018].

2.3 NBS and DVCBS
Near-Optimal Bidirectional Search (NBS) [Chen et al., 2017]
is a prominent algorithm based on the MEP theory. At ev-
ery expansion cycle, NBS chooses a pair of nodes u, v with
a minimal lbpu, vq (denoted as LB) among all pairs in the
open lists, and expands both nodes. This approach is based
on the 2-factor approximation of minimal vertex covers [Pa-
padimitriou and Steiglitz, 1998]. Thus, NBS is guaranteed
to expand a vertex cover of GMX whose size is at most
2ˆ |MVC|. To find a pair with minimal lb value, NBS uses
two-level priority queues in each direction, a waiting queue
which stores all nodes n with fDpnq ą LB, sorted by f ,
and ready queue which stores all nodes n with fDpnq ď LB
sorted by g. These data structures enable NBS to only ex-
pand MEPs, while maintaining amortized insertion and dele-
tion time of logpnq, where n is the number of frontier nodes.

Dynamic Vertex Cover Bidirectional Search (DVCBS)
[Shperberg et al., 2019b] is a competitor to NBS. DVCBS
constructs a partial, dynamic GMX (denoted DGMX) based
on the nodes currently in OPEN, finds an MVC of DGMX,
and expands all nodes in this MVC. DVCBS is unbounded in
the worst case, but empirically outperforms NBS on average.
DVCBS computes the MVC of DGMX by bucketing nodes

1Equation 1 for lbpu, vq includes terms for fF puq and fBpvq.
These terms are redundant in lbCpu, vq, as gF puq`gBpvq`hF puq´
hF pvq “ fF puq`dBpvq ą fF puq, and for fBpvq using term 2b.
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with the same fD- and gD-values and solving a weighted
MVC problem in time that is linear in the number of buckets.

An issue arises when attempting to adapt NBS and DVCBS
to the consistency case. Although NBS can be defined for
lbC (Equation 2) and lbCU (Equation 3), its two-level priority
queue is no longer suitable for efficiently identifying a pair
with the minimum lbC (or lbCU ) value. Similarly, DVCBS
can no longer achieve a linear-time MVC of DGMX. In an ef-
fort to develop an efficient algorithm for the consistency case,
Alcázar (2021) introduced a method called bucket-to-bucket
(BTB). This scheme involves grouping nodes into buckets
that share the same gD, hD, hD values. Using these buckets,
both NBS and DVCBS can be applied using lbC (or lbCU ).
However, each expansion cycle of a bucket requires a com-
putational overhead that is quadratic in the number of buck-
ets. While the number of buckets may be small in certain do-
mains, in general, there could be an arbitrary number of buck-
ets. As a result, the quadratic runtime for every expansion
cycle can become impractical (e.g., in road maps or grids).

2.4 Search Bounds, DIBBS/BAE*, and DBBS
We use the term search bounds [Alcázar et al., 2020] to de-
note all lower bounds on the solution cost that can be com-
puted during the search. We classify the search bounds into
three categories. (1) Global bounds provide a lower bound on
the cost of every solution from start to goal. These bounds
can be used as termination conditions; when the incumbent
solution has a cost that equals the bound then it is optimal.
(2) Individual-node bounds bound the cost of every solution
from start to goal that passes through a given node n (e.g.
lbpnq). (3) Pair bounds bound the cost of paths from start to
goal that passes through a given pair of nodes u, v, where u P
OpenF and v P OpenB (e.g., lbpu, vq).

Several search bounds have been used in the heuristic
search literature. In UniHS the minimal f -value in the open
list, fMin , is a global bound on the cost of any solution.
This f -bound is commonly used in the termination conditions
of many algorithms (both unidirectional and bidirectional).
Similarly, in BiHS, fMinF and fMinB are global bounds.
Another bound in BiHS is the g-bound“ gMinF+gMinB`ε.

For the consistency case, other search bounds have been
proposed. Kaindl and Kainz (1997) proposed adding heuris-
tic errors (defined as dDpnq above), of direction D, to f -
values of the opposite direction D. In particular, they de-
fined the following individual-node bounds KKAddDpnq “
fDpnq ` dMinD and symmetrically, KKMaxDpnq “

dDpnq ` fMinD. Note that these node bounds can be trans-
formed to be global bounds by taking the minimal f - and d-
values from both directions as follows: KKAdd “ fMinD`
dMinD and KKMax “ dMinD ` fMinD. A lower bound
b1 is said to dominate another lower bound b2 iff b1 ě b2.
Since fMinD ` dMinD ě fMinF then KKAdd domi-
nates fMinF . Similarly, KKMax dominates fMinB . Another
global bound is the foundation of two identical algorithms,
BAE* [Sadhukhan, 2012] and DIBBS [Sewell and Jacobson,
2021], which expand nodes with minimal b-value. They in-
troduce a new global bound, b-bound“ pbMinF ` bMinBq{2,
and terminate when a solution is found with cost “ b-bound.

Alcázar (2021) combined the KK bounds, the g-bound,

and the b-bound together to improve their individual perfor-
mance. In this context, a node n is defined as expandable
iff n P argminn1POpenD pmaxtfDpn

1q` dMinD, dDpn
1q`

fMinD, pbDpn
1
q ` bMinDq{2, gDpuq ` gMinD ` εu. For

an undirected graph, two more bounds were introduced:
rfMinF ` rdMinB (forward rc (reverse consistent)) and
rdMinF ` rfMinB (backward rc). The minimal values
in the open lists, which are used for defining the global
search bounds, can be computed with respect to the set of
expandable nodes. This creates a fixpoint computation in
which the minimal values in the open lists are updated based
on the set of expandable nodes, and the set of expandable
nodes is updated based on the updated minimal values in the
open lists until convergence is reached. The DBBS algo-
rithm [Alcázar, 2021] performs this fixpoint computation to
find tighter bounds, and thus expand fewer nodes during the
search. This process, however, is computationally expensive.

3 Deriving Bounds from the MEP Theory
In this section, we introduce a unifying view for the consis-
tency case and draw a connection between lbC (Equation 2)
and all existing search bounds (presented in Section 2.4). In
addition, we show that additional search bounds can be de-
rived from lbC and even more bounds can be derived when
also considering undirected graphs (lbCU , Equation 3).

A first step towards a unifying view was taken by
Alcázar (2021) who observed that taking each element in the
max term of Equation 2 (2a, 2b, and 2c) individually, can
derive the KKAdd , KKMax , and g-bound, correspondingly.
For example, for term 2a, gF puq`gBpvq`hF puq´hF pvq “
fF puq ` dBpvq ě fMinF ` dMinB “ KKAdd . However,
the method of taking individual elements of the max term is
limited and cannot be used for producing other bounds, e.g.,
the b-bound. We now provide a general way to produce more
bounds from the max term. In fact, any max function over a
set of elements S can be bounded from below as follows:

maxS ě

ř

s1PS1 s1

|S1|
@S1 P PpSqzH (4)

where PpSq is the power set of S (i.e., the average of the
elements of any subset of S is always a lower bound of the
maximal element in S). Using this rule, the max expression
in Equation 2 can be lower-bounded by different subsets S1
of the terms inside (i.e., 2a, 2b, and 2c). For example, when
taking S1 “ t2a, 2bu, we get the b-bound (B4 below):

lbCpu, vq ě gF puq ` gBpvq `
rterm 2as ` rterm 2bs

2

“
2gF puq`2gBpvq`hF puq´hF pvq`hBpvq´hBpuq

2

“ 1{2 ¨ pfF puq ` dF puq ` fBpvq ` dBpvqq

“ 1{2 ¨ pbF puq ` bBpvqq ě 1{2 ¨ pbMinF ` bMinBq

“ b-bound pB4q

By considering all subsets S1 of terms 2a, 2b, and 2c, and
for a node n by replacing the value xDpnq with the minimal
x-value in OpenD, xMinD, as was demonstrated above (for
2a and for 2a, 2b), we get the following global bounds:
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B1: fMinF ` dMinB (KKAdd ), when S1 “ t2au
B2: dMinF ` fMinB (KKMax ), when S1 “ t2bu
B3: gMinF ` gMinB ` ε (g-bound), when S1 “ t2cu

B4: bMinF`bMinB
2 (b-bound), when S1 “ t2a, 2bu

B5: tf,guMinF`td,guMinB`ε
2 , when S1 “ t2a, 2cu

B6: td,guMinF`tf,guMinB`ε
2 , when S1 “ t2b, 2cu

B7: tb,guMinF`tb,guMinB`ε
3 , when S1 “ t2a, 2b, 2cu

The derivation of each of the bounds tB1, . . . , B7u can be
done similarly to the two examples presented above.

We note that substantial work was done to individually
prove each of the previously proposed bounds (e.g., [Kaindl
and Kainz, 1997; Sewell and Jacobson, 2021]), whereas the
derivation of these bounds from the MEP theory is straight-
forward. Finally, note that individual-node bounds that cor-
respond to each of the above global bounds tB1, . . . , B7u

can be derived from the MEP theory as well. This is done
by replacing the value of xDpnq with the minimal x value
in OpenD (xMinD) in one of the two directions instead of
the two directions, as was done in the derivations above. For
example, the last step in the KKAdd derivation above pB1q

becomes fF puq ` dBpvq ě fF puq ` dMinB .

3.1 Bounds for Undirected Graphs
For undirected graphs, we derive lower bounds from lbCU
instead of lbC . Since terms 2a, 2b, and 2c are identical to
3a, 3b, and 3c, the above seven bounds tB1, . . . , B7u are also
valid for for lbCU . Nevertheless, additional bounds for the
max expression can be derived from terms 3d and 3e. At first
glance, it might seem that there are 31 possible search bounds
for lbCU (corresponding to the 31 possible subsets of terms
3a to 3e excluding H). However, note that terms 3a and 3d
cancel each other (3a ` 3d “ hF puq ´ hF pvq ` hF pvq ´
hF puq “ 0). Thus, all subsets S1 that contain both term 3a
and term 3d are dominated either by S1zt3au or by S1zt3du
(which are also valid subsets of S), and can be ignored. The
same argument holds for terms 3b and 3e. Thus, we are left
with only 17 bounds that are not dominated by other bounds.
The resulting (additional) bounds and their respective subsets
of terms are as follows:

B8: rfMinF ` rdMinB (forward rc), when S1 “ t3du
B9: rdMinF ` rfMinB (backward rc), when S1 “ t3eu

B10: tf,rduMinF`trf ,duMinB

2 , when S1 “ t3a, 3eu

B11: trf ,duMinF`tf,rduMinB

2 , when S1 “ t3b, 3du

B12: trf ,guMinF`trd,guMinB`ε
2 , when S1 “ t3c, 3du

B13: trd,guMinF`trf ,guMinB`ε
2 , when S1 “ t3c, 3eu

B14: trf ,rduMinF`trf ,rduMinB

2 , when S1 “ t3d, 3eu

B15: tf,rd,guMinF`trf ,d,guMinB`ε
3 , when S1 “ t3a, 3c, 3eu

B16: trf ,d,guMinF`tf,rd,guMinB`ε
3 , when S1 “ t3b, 3c, 3du

B17: trf ,rd,guMinF`trf ,rd,guMinB`ε
3 , when S1 “ t3c, 3d, 3eu

The above set of bounds (tB1, . . . , B7u and tB1, . . . , B17u

for Equation 2 and Equation 3 (respectively) are all the possi-
ble bounds that can be produced when approximating the max
term in the equations using Equation 4. Other lower bounds
would require to bound the max terms in different ways (pos-
sibly using a convex combination) or using other methods al-
together. Another possibility for generating new bounds is
to introduce additional assumptions. For instance, as shown
by Alcázar et al. (2020), if the greatest common denomina-
tor among the cost of all non-zero-cost edges, denoted as ι, is
known, it can be used to tighten the bounds further. For each
bound Bi from the above set of bounds, we can use ιrBi

ι s as
a possibly tighter version of Bi. So, in unit-edge-cost graphs,
all of the above bounds can be rounded up.

4 Using the Bounds within Algorithms
We now turn to the practical aspects of the proposed bounds.
We describe a general BiHS algorithmic framework for the
consistency case, presented in Algorithm 1, and show how to
utilize information from the bounds in this framework. There
are three decisions that define BiHS algorithms: (1) deciding
when to terminate the search, (2) choosing which node to ex-
pand from a given direction, and (3) choosing the direction
from which the next node will be expanded. Each of these
can utilize information from the bounds.

4.1 Termination Condition
Each global bound Bi can be used to prove that the incum-
bent solution is optimal, i.e., when a solution is found with
cost “ Bi the algorithm can terminate. Naturally, when there
are several lower bounds, their maximum is the tightest lower
bound among them and can be used as a termination condi-
tion. The advantage of using several bounds is that if we have
the optimal solution U (with cost C˚) in hand, we can halt
faster: once Bi “ C˚ for any of the available global bound
Bi. The tradeoff is the overhead of maintaining and consult-
ing several bounds. In addition, the bounds can be computed
either with the (computationally expensive) fixpoint compu-
tation, as in DBBS, or without it.

4.2 Choosing Which Node to Expand
The decision of which node in OpenD to expand next (i.e.,
what priority function to use) is at the heart of any search
algorithm. Since each global bound Bi is essentially a ter-
mination condition, expanding nodes that will cause Bi to in-
crease as early as possible would likely result in earlier termi-
nation. For example, A* [Hart et al., 1968] terminates when
a solution is found whose cost equals the minimal f -value in
OpenF (fMinF ). Consequently, A* expands a node n with
fpnq “ fMinF , as this expansion policy is targeted at in-
creasing the f -bound. Similarly, BAE* and DIBBS used the
b-bound as a termination condition and thus expand nodes n
with minimal bDpnq value. In a similar manner, expansion
policies can be defined to target each of the above bounds.
For example, the expansion policy that focuses on increasing
KKAdd (bound B1) expands a node n with minimal fF pnq-
value or the node m with minimal dBpmq, depending on the
chosen direction D. In general, each of our bounds has a
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Algorithm 1: BiHS General Algorithmic Framework
1 U Ð8, LB Ð ComputeLowerBoundpq
2 while OpenF ‰ H^OpenB ‰ H^ U ą LB do
3 D Ð ChooseDirectionpq
4 nÐ ChooseNodepDq
5 Expandpn,Dq // update U
6 LB Ð ComputeLowerBoundpq

7 return U

term to minimize from the forward side and a term to min-
imize from the backward side, and we choose to expand a
node whose bound equals the relevant Min term according to
the chosen direction D.

When several global bounds are used, we need to choose
which bound to target. Many policies are possible; we de-
scribe two of them that we used in our experiments:

Targeting the max. This policy targets the bound which
has the maximal value among all bounds, Bmax . The motiva-
tion here is that if we manage to raise this bound by expanding
nodes, then we have a higher chance that the incumbent so-
lution U will have costpU q “ Bmax , and the algorithm can
terminate. Thus, we choose to expand a node n in a given
direction D whose individual bound Bmax pnq “ Bmax .

Targeting the bound with the smallest span. Given a
global bound B, we define spanpBq to be the number of
nodes n with an individual-node bound Bpnq “ B. Let
Bss be the global bound with the smallest span in the set of
bounds. This policy chooses to expand a node n whose indi-
vidual bound Bsspnq “ Bss . The intuition for this policy is
to focus on the bound that would require the smallest effort
to increase.2

4.3 Choosing Which Side to Expand
Finally, we deal with the decision of whether to expand a node
from OpenF or OpenB at each step. To this end, we explore
three policies: alternating, cardinality criterion [Pohl, 1971],
and a new policy called fastest bound increase (FBI). The
alternating policy switches between forward and backward
sides, while the cardinality criterion selects the side with the
smallest open list. FBI aims to achieve the fastest increase in
a specific bound Bi by comparing the spans of Bi in OpenF
and OpenB and choosing the direction with the smaller span.
For policies targeting the maximal bound or minimal span,
FBI calculates Bmax or Bss for both directions and selects
the side with the smallest span.

5 Empirical Evaluation
The main purpose of the empirical evaluation is to assess the
different bounds. To this end, we implemented a targeted
bound algorithm for each of the 17 bounds, denoted as TBi
for all 1 ď i ď 17. In TBi we use all 17 bounds for termina-
tion (Line 3 in Algorithm 1), but only the targeted bound Bi
for choosing which node to expand (Line 5 in Algorithm 1).

2This is a greedy computation based on the current state of the
open lists, as new nodes with the same Bss-values can be generated.

A secondary objective is to compare the performance of
the new algorithms with notable existing algorithms and to
determine when each algorithm should be used. For this,
we evaluated BAE*, which uses only the b-bound for both
node expansion and as the termination condition (related to
TB4 that expands nodes with minimal b-value, but terminates
using all the bounds). We evaluated both Pohl’s cardinality
criterion (denoted (p)) and alternating (denoted (a)) as side-
selection policies (Line 4 in Algorithm 1) for BAE* and the
TBi algorithms. We also experimented with A* and reverse
A* (denoted as rA*), which performs the search from goal
to start as representatives of UniHS algorithms. In addition,
for determining the effect of the consistency assumption on
the search we experimented with NBS and DVCBS, which
assume heuristic admissibility, but not consistency. Finally,
to study the effect of the fixpoint computation on the new
bounds, we ran DBBS, which uses the original four global
bounds, as well as DBBSall, which uses all 17 global bounds.
For the DBBS variants, we evaluate the node-expansion pol-
icy that targets the b-bound (as in [Alcázar et al., 2020]), and
the new node-expansion policies, max and smallest span. For
side-selection policies, we use (a), (p), and (FBI).

Finally, we calculated the theoretical lower bound on the
number of expansions required to guarantee the optimality
of solutions. To this end, we compute and report the MVC
of GMX using lb (Equation. 1), in which only heuristic ad-
missibility is assumed, as well as the MVC of GMXCU (de-
fined according to lbCU , Equation. 3), in which the consis-
tency is also assumed. This is the first time that GMXCU
has been computed in the BiHS literature. To compute the
MVC, we constructed GMXCU post facto (by collecting all
nodes with fDpnq ă C˚ to buckets), reduced the problem
to a max-flow problem (König’s theorem [Konig, 1931]),
and ran the Ford–Fulkerson algorithm [Ford and Fulkerson,
1956] to find the maximal flow, which is equal to the MVC
of GMXCU. The difference between the MVC and the ac-
tual number of nodes expanded by the evaluated algorithms
indicates whether new BiHS algorithms that assume consis-
tency should be developed (if there is a significant gap be-
tween them) or the focus should be turned elsewhere.

5.1 Experimental Settings
Domains. We experimented on five domains: (1) 50 14-
pancake puzzle instances with the GAP heuristic [Helmert,
2010]. To get a range of heuristic strengths, we also used
the GAP-n heuristics (for 1 ď n ď 6) where the n small-
est pancakes are left out of the heuristic computation. (2)
The standard 100 instances of the 15 puzzle problem (STP)
[Korf, 1985] using the Manhattan distance (MD) heuristic.
(3) Grid-based pathfinding using octile distance as a heuristic
and 1.5 cost for diagonal edges: 156 maps from Dragon Age
Origins (DAO) [Sturtevant, 2012], each with different start
and goal points (a total of 3149 instances); (4) 50 instances
of the 12-disk 4-peg Towers of Hanoi (TOH) problem with
(10+2), (8+4) and (6+6) additive PDBs [Felner et al., 2004];
and, (5) 100 random road map instances [Demetrescu et al.,
2009] on the map of Colorado, using the Euclidean distance
divided by the maximum speed as a heuristic.
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ToH - 12 DAO Road Maps STP
PDB (10+2) PDB (8+4) PDB (6+6) Octile Dist{Speedmax MD

Algorithm ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚ ď C˚ ă C˚

A
dm

is
si

bl
e A* 276K 276K 1,926K 1,925K 3,268K 3,239K 5,406 5,322 127K 127K 15,550K 14,700K

rA* 123K 123K 622K 620K 1,064K 1,033K 5,342 5,267 126K 126K 11,144K 10,956K
NBS 230K 230K 647K 645K 682K 662K 6,873 6,556 96K 96K 12,556K 11,739K
DVCBS 232K 232K 619K 609K 663K 635K 5,545 5,151 126K 126K 10,930K 10,720K
MVC(GMX) 123K 557K 624K 4,290 78K 9,267K

C
on

si
st

en
t

MVC(GMXCU) 41K 174K 363K N/A N/A 1,308K
BAE*(a) 47K 46K 187K 186K 383K 382K 6,718 6,668 67K 67K 2,707K 2,700K
TB1(a) 54K 53K 204K 204K 424K 423K 7,081 6,940 70K 70K 13,404K 12,953K
TB2(a) 69K 69K 240K 240K 435K 435K 7,150 7,018 72K 72K 10,815K 10,677K
TB3(a) 648K 622K 662K 660K 683K 664K 10,275 8,654 119K 119K N/A N/A
TB4(a) 47K 46K 187K 186K 383K 382K 6,706 6,483 67K 67K 2,707K 2,700K
TB5(a) 263K 262K 386K 382K 515K 509K 9,213 7,955 96K 96K N/A N/A
TB6(a) 282K 277K 412K 406K 513K 512K 9,221 8,021 96K 96K N/A N/A
TB7(a) 170K 165K 315K 308K 458K 455K 8,562 7,563 86K 86K 13,448K 13,275K
DBBSb(a) 48K 46K 189K 186K 383K 379K 6,105 5,829 N/A N/A 2,262K 1,701K
DBBSmax(FBI) 49K 48K 200K 197K 407K 400K 5,649 5,369 N/A N/A 2,521K 1,761K
DBBSss(FBI) 48K 47K 194K 192K 395K 393K 5,374 4,935 N/A N/A 2,027K 1,677K
DBBSall

b (a) 48K 46K 189K 186K 383K 379K 6,104 5,827 N/A N/A 2,262K 1,701K
DBBSall

max(FBI) 59K 55K 236K 233K 549K 527K 5,648 5,367 N/A N/A 3,057K 2,208K
DBBSall

ss (FBI) 50K 48K 195K 194K 398K 397K 5,595 5,181 N/A N/A 2,054K 1,705K

Table 1: Average number of nodes expanded for ToH, DAO, Road Maps, and STP

GAP GAP-2 GAP-4
Algorithm ă C˚ ď C˚ ă C˚ ď C˚ ă C˚ ď C˚

A
dm

is
si

bl
e A* 72 46 351K 348K 47,289K N/A

rA* 77 52 350K 349K 48,323K N/A
NBS 148 66 123K 122K 1,433K 1,433K
DVCBS 209 47 85K 84K 977K 899K
MVC(GMX) 39 82K N/A

C
on

si
st

en
t

MVC(GMXCU) 37 6,711 N/A
BAE*(a) 90 66 15K 11K 469K 465K
TB1(a) 136 86 78K 78K 5,581K 5,492K
TB2(a) 149 100 81K 79K 6,178K 6,036K
TB3(a) 484K 120K 1,508K 1,508K 1,623K 1,623K
TB4(a) 90 66 15K 11K 469K 465K
TB5(a) 27K 16K 150K 133K 674K 634K
TB6(a) 26K 16K 153K 142K 741K 658K
TB7(a) 2,724 2,073 35K 33K 301K 282K
DBBSb(a) 114 57 10K 8,801 277K 272K
DBBSmax(FBI) 329 46 18K 10K 447K 378K
DBBSss(FBI) 104 43 8,545 7,678 232K 230K
DBBSall

b (a) 114 57 10K 8,801 274K 269K
DBBSall

max(FBI) 307 46 21K 11K 394K 310K
DBBSall

ss (FBI) 104 43 8,410 7,562 223K 219K

Table 2: Results on the 14-Pancake Problem

Metrics. For each algorithm, we report the average number
of node expansions required to terminate (denoted asď C˚).
In addition, we report the average number of necessary ex-
pansions required to prove optimality (denoted as ă C˚),
i.e., the number of nodes expanded until LB has reached C˚.

Hardware. We ran the experiment on an 82-machine clus-
ter. Each combination of algorithm and problem instance had
a memory limit of 128GB and a time limit of 24 hours. When
algorithms failed to solve some problems due to time or mem-
ory limits, the results are reported as N/A.

5.2 Results
Due to space limitations, only the results for bounds 1-7
(without the undirected graphs assumption) are included, as
bounds 8-17 were shown to be weak. Moreover, results for
the cardinality (p) side-selection policy are not reported, as

there were no significant differences compared to the alter-
nating policy. The results for ToH, DAO, road maps, and STP
appear in Table 1 and for the pancake problem in Table 2.

Comparison to the MVC of the GMXs
In ToH, STP, and pancake the MVC of GMX is significantly
larger than the MVC of GMXCU (by a factor of 3 for ToH, 7
for STP, and 8-15 for pancake, except for GAP, which is very
accurate). This shows that the consistency assumption signif-
icantly reduces the number of necessary expansions in these
domains. In road maps and DAO the MVC of GMXCU was
too costly to compute due to large solution costs and many
unique buckets. Nonetheless, the performance of the algo-
rithms that only assume admissibility compared to algorithms
that also make the consistency assumption hint that the MVC
of GMX and GMXCU have a similar size in DAO, while the
MVC of GMXCU is smaller in road maps by a small margin.

Comparison of Node Expansions
In ToH and road maps, BAE* had the best performance
among all algorithms, similar to DBBSall

b (except for road
maps, in which the DBBS variants could not complete ex-
ecution due to the 24h runtime limit). Moreover, the dif-
ference between the number of nodes expanded by BAE*
and the MVC of GMXCU is very small (5 ´ 10%). There-
fore, BAE* is very close to optimal, and no other algorithm
(UniHS or BiHS) will be able to significantly improve over
it. Finally, we see that the performance of BAE* is identical
to TB4, which means that the b-bound was always the tightest
and never benefited from the other termination criteria.

In STP, BAE* and TB4 were the best among the bounds
that do not make use of fixpoint computation, improving over
A*, rA*, NBS and DVCBS by a factor ą 4. Here too, the
additional stopping criteria of TB4 did not improve the per-
formance over BAE*. The DBBS variants, which perform the
fixpoint computation, improved over BAE* by approximately
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Figure 1: Value of different bounds as a function of search progress

25%, where the best-performing variant was DBBSss(FBI).
In fact, DBBSss(FBI) expands only 28% more nodes than the
MVC of GMXCU before raising LB to C˚. Thus, there is
only a small margin left for improvement in STP as well.

In contrast to ToH, STP, and road maps, BAE* does not
perform well on DAO. In this domain, rA* required the least
expansions to return a solution, and DBBSss(FBI) required
only a few additional expansions (ď C˚), and fewer neces-
sary expansions (ă C˚). Notably, the additional termination
conditions of TB4 show a (small) improvement over BAE*,
which means that the b-bound is not always dominating in
DAO, even when the node-expansion policy only targets b.

Finally, in pancake (Table 2), we see a slightly different
trend. A* is the best-performing algorithm for GAP, which
is a very accurate heuristic, though DBBSss(FBI) required
fewer necessary expansions. Among the algorithms that do
not perform the fixpoint computation, BAE* had the best per-
formance on GAP-1 and GAP-2, while TB7 (which also uses
the g-value of nodes, as well as ε) had a better performance
(by up to a factor of 2) on GAP-3 to GAP-5, which are weaker
heuristics. When also considering algorithms that perform
the fixpoint computation, the new DBBSall

ss (FBI) has the best
performance for GAP-1 to GAP-5, improving over the best
non-fixpoint algorithm by up to 40%, and getting close to the
theoretical bound (MVC), with a difference of at most 15%.

The Effect of Bounds throughout the Search
We now turn to analyze the effect of the TBi variants for dif-
ferent values of i on the value of all used bound throughout
the search. Figure 1 shows the average value of each of the 7
bounds (as a fraction of C˚) during the search on the pancake
domain using two targeted bounds, TB4 (b-bound, left) and
TB7 (right), and two heuristics, GAP-1 (top) and GAP-5 (bot-
tom). The bound on top in each plot is the dominating bound,
and the search terminates when this dominating bound equals
C˚. Figures 1c and 1d show that on GAP-5, the bound that
is targeted is the one with the highest value throughout the
search, indicating that the targeted-bound policy achieves its
purpose of rapidly increasing the bound of interest. However,
Figure 1b shows that when one of the non-targeted bounds is
significantly better than the targeted bound, the non-targeted
bound might still have the highest value during the search.

STP DAO
Algorithm Time (s) n{s Time (ms) n⁄ms

A* 55.42 281K 2.28 2371.12
BAE*(a) 10.07 269K 4.08 1646.61
TB4(a) 59.99 45K 87.69 76.48
DBBSb(a) 34.85 65K 2,390.74 2.55

Table 3: Runtime Results of Representative Algorithms

Runtime Analysis
Table 3 shows a focused report of the runtime for represen-
tative algorithms and problem instances. We used DAO and
STP as polynomial and exponential representative domains,
respectively. We aim to answer the following questions: (1)
What is the overhead of using all bounds for termination com-
pared to using a single bound? (2) What is the overhead of
the fixpoint computation? and (3) How does the overhead
of the BiHS algorithms compare to A*? The results show
that BAE* is between 6 and 20 times faster than TB4, due to
the overhead required to maintain all other bounds (a sorted
vector of pointers for each bound). This suggests that TB4

should never be used, as its greater runtime overhead does
not justify the small reduction in node expansions. As for the
second question, the runtime of DBBS (i.e., the fixpoint com-
putation) in DAO (polynomial domain) is several orders of
magnitude smaller than other algorithms, while in STP (ex-
ponential domain) DBBS is only four times slower in terms
of node expansions per second. Nonetheless, even in STP we
see that BAE* is faster than DBBS in terms of total runtime,
despite expanding more nodes. Finally, we see that A* is only
slightly faster than BAE* in terms of expansions per second,
thus the total runtime of the two algorithms mostly depends
on their respective number of expansions.

As a general guideline, based on the empirical evaluation,
BAE* should be the default algorithm to use for the consis-
tency case, as it strikes a good balance between node expan-
sions and runtime across different domains and heuristics.
For weaker heuristics (e.g., as seen in GAP-4), we suggest
using a targeted-bound algorithm that uses only B7. While
in some domains the DBBS variants expand the least num-
ber of nodes, the overhead of the fixpoint computation is not
justified in terms of total runtime.

6 Summary and Conclusions
This paper drew a connection between the MEP theory and
the existing search bounds, showing that all bounds can be di-
rectly derived from the theory. Furthermore, we introduced a
set of 17 search bounds, both existing and novel. Algorithms
that target each of these bounds were developed and evalu-
ated, showing that the b-bound is the most informative bound
for most domains, but another bound (B7, which uses both b
and g) is better for weak heuristics. In addition, the DBBS
variants often expand the smallest number of nodes, but they
incur an expensive computation overhead that always resulted
in larger runtime. Finally, we compared the actual expansions
by algorithms to the optimal number of necessary expansions,
showing that there is not much room for further improvement.
So, the focus on BiHS research can now move away from de-
vising more algorithms for the consistency case.
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