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Abstract

The subgraph isomorphism problem (SIP) is a chal-
lenging problem with wide practical applications.
In the last decade, despite being a theoretical hard
problem, researchers designed various algorithms
for solving SIP. In this work, we propose three main
heuristics and develop an improved exact algorithm
for SIP. First, we design a probing search proce-
dure to try whether the search procedure can suc-
cessfully obtain a solution at first sight. Second,
we design a novel matching ordering as a value-
ordering heuristic, which uses some useful infor-
mation obtained from the probing search procedure
to preferentially select some promising target ver-
tices. Third, we discuss the characteristics of differ-
ent propagation methods in the context of SIP and
present an adaptive propagation method to make a
good balance between these methods. Experimen-
tal results on a broad range of real-world bench-
marks show that our proposed algorithm performs
better than state-of-the-art algorithms for the SIP.

1 Introduction
The (non-induced) subgraph isomorphism problem (SIP),
which is also known as the subgraph matching problem, in-
volves deciding if there exists a copy of a pattern graph in
a target graph. As one of the basic concepts of graph the-
ory, the SIP can be seen as a generalization of both the max-
imum clique problem and the problem of testing whether a
graph contains a Hamiltonian cycle. Recently, the SIP has
been used in various domains, such as symbol recognition
[Lladós et al., 2001], social networks [Snijders et al., 2006],
computer vision [Damiand et al., 2011], biochemical data
[Bonnici et al., 2013], RDF query processing [Kim et al.,
2015] and graph databases [Wang et al., 2022]. For example,
the SIP has also been used in the field of cheminformatics
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to search for some similarities between chemical compounds
from their structural formula [Ohlrich et al., 1993].

It is well known that the SIP is NP-complete in the gen-
eral case [Johnson and Garey, 1979]. For the optimized ver-
sion of the SIP, i.e., the maximum common induced sub-
graph (MCS) problem, many methods have been presented
to deal with the MCS problem [McCreesh et al., 2016a;
McCreesh et al., 2017; Liu et al., 2020; Gocht et al., 2020;
Zhou et al., 2022; Liu et al., 2022]. The MCS approaches can
be directly used into solving the SIP, but they usually have
poor performance practically due to the characteristics of the
SIP as the decision problem. Thus, up to now, the SIP has
been still considered as a challenging problem.

In the last decade, lots of researchers focused on design-
ing several exact methods to address the SIP [Zampelli et
al., 2010; Solnon, 2010; Bonnici et al., 2013; Audemard et
al., 2014; McCreesh and Prosser, 2015; Carletti et al., 2017;
McCreesh et al., 2018; Archibald et al., 2019; Solnon, 2019;
McCreesh et al., 2020]. We list some representative solvers
for the SIP as below. An early algorithm for the SIP named
VF2 was proposed, which used a state space representation
of the matching process and introduced a set of five feasibil-
ity rules for pruning the search tree [Cordella et al., 2004].
Bonnici et al. [2013] developed a new search strategy called
RI based on the pattern graph topology, which significantly
reduced the search space without using any complex prun-
ing rules or reduction procedures. Solnon [2010] introduced
a new filtering algorithm called LAD based on local all-
different constraints. The LAD algorithm was further im-
proved by combining the local all-different constraints with
the exploitation of path length properties, resulting in the
PathLAD algorithm [Kotthoff et al., 2016]. Very recently,
Kraiczy and McCreesh [2021] improved the Glasgow [Mc-
Creesh et al., 2020] by using a new form of filtering based
upon clique-finding and designed a new algorithm called
Glasgow+Clq. According to the literature, the current best al-
gorithm for the SIP is Glasgow+Clq [Kraiczy and McCreesh,
2021].
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1.1 Our Contribution
Motivated to contribute to further improving the performance
of SIP, in this work, we choose the PathLAD algorithm as a
baseline algorithm. Our proposed algorithm is divided into
two parts, including a probing search procedure and a main
search procedure. Below are three main novel ideas in our
proposed algorithm.

First, we propose a probing search procedure in which
the algorithm tries several times to judge whether the pattern
graph is isomorphic to a subgraph of the target graph quickly.
It has two main purposes. On the one hand, if this procedure
can successfully solve a given instance, we can obtain an out-
come within a short time. On the other hand, if this procedure
cannot get any outcomes (i.e., reaching cutoff time), instead
of using some traditional restart mechanisms, we can still ex-
tract the information from this search procedure to guide a
main search procedure. That is, the algorithm learns about the
useful search information between pattern vertices and target
vertices and then uses this information in our proposed main
procedure.

Second, we design a new matching ordering method to
decide which target vertex from the domain of the corre-
sponding pattern vertex is selected. Recently, several match-
ing ordering methods were proposed [Archibald et al., 2019;
Wang et al., 2022]. For example, Archibald et al. [2019]
found that it is effective to preferentially select vertices with
high degree values when selecting a matching target vertex.
We follow this line of research by attempting to apply the
degree information of target vertices in the matching pro-
cess. At the same time, we also use the useful search infor-
mation generated from the probing search procedure as an-
other matching criterion. Thus, our proposed matching order-
ing method considers the above two principles, resulting in a
novel scoring function denoted as oscore used in the match-
ing process.

Third, we present an adaptive propagation method to dy-
namically use different strong propagation methods for the
SIP. Previous algorithms have always applied strong propa-
gation methods to remove some unnecessary vertices from
the corresponding domains, but these propagation methods
need to cost lots of run time in practice, which reduces the
performance of these algorithms. In some cases, instead of
strong propagation methods, some weak propagation meth-
ods can make backtrack quickly or reduce the size of the
corresponding domain effectively on some branches. Con-
versely, the performance of these algorithms would be also
bad if they don’t use any strong propagation methods because
the algorithms fail to backtrack some branches immediately.
Based on the above considerations, we analyze the properties
of strong propagation methods and combine the search infor-
mation generated from the main search procedure to dynami-
cally employ different strong propagation methods during the
search. To our best knowledge, it is the first time that differ-
ent propagation methods are dynamically used to accelerate
the search procedure for addressing SIP.

By incorporating these ideas, we develop an improved ex-
act algorithm for the SIP called PathLAD+. Extensive exper-
iments are carried out to evaluate PathLAD+ on the bench-
marks used in the literature. Experimental results show that

PathLAD+ outperforms four state-of-the-art SIP algorithms
for all the benchmarks. In addition, our experimental analy-
ses report that the proposed strategies play important roles in
the outstanding performance of our proposed algorithm.

In the next section, we introduce some necessary back-
ground knowledge. After that, we present our proposed al-
gorithm and its components. Experimental results are shown
in Section 4. Finally, we make conclusions.

2 Preliminaries
2.1 Basic Definitions and Notations
Let G = (V,E) be an undirected graph where a vertex set is
V = {v1, v2, . . . , vn} and an edge set E = {e1, e2, . . . , em}.
Each edge e is a 2-element subset of V , i.e., e = (v, u). For
an edge e = (v, u), we say vertices v and u are the end-
points of edge e. For a vertex v ∈ V , the neighborhood of
vertex v is denoted as NG(v) = {u | (v, u) ∈ E} and its
degree is denoted as degG(v) = |NG(v)|. A finite walk is a
sequence of edges (e′1, e

′
2, . . . , e

′
q−1) for which there is a se-

quence of vertices (v′1, v
′
2, . . . , v

′
q) such that e′i = (v′i, v

′
i+1)

for i ∈ [1, q − 1]. A path is a finite walk in which all vertices
and all edges are distinct, denoted as ζG = (v′1, v

′
2, . . . , v

′
q).

The length of ζG is denoted as |ζG| = q.
Given a pattern graph Gp = (Vp, Ep) and a target graph

Gt = (Vt, Et), the SIP is to decide whether Gp is isomorphic
to some subgraph of Gt. Formally, the aim of the SIP is to ob-
tain an injective matching f : Vp → Vt that associates a differ-
ent target vertex to each pattern vertex, and preserves pattern
edges, i.e., (f(v), f(u)) ∈ Et for ∀(v, u) ∈ Ep. It is noted
that the subgraph is not necessarily induced, which means
that two pattern vertices that are not linked by an edge may be
matched to two target vertices that are linked by an edge. Dur-
ing the search procedure, the current matched list of pattern
and target pairs is denoted as D = {{vp1 , vt1}, . . . , {vpr , vtr}}.
For a pattern vertex vp ∈ Vp, the domain of vertex vp is de-
fined as the set of target vertices that may be matched to vp,
i.e., Dom(vp) = {vt1, vt2, . . . , vtl}, and the size of its domain
is |Dom(vp)| = l.

2.2 Some Propagation Methods for the SIP
Recently, three filtering propositions [Zampelli et al., 2010;
McCreesh and Prosser, 2015] have been used in Glas-
gow+Clq [Kraiczy and McCreesh, 2021]. We first introduce
three propositions that are used to judge whether the pattern
vertices can be matched to the corresponding target vertices.
Proposition 1. Given a pattern graph Gp = (Vp, Ep) and
a target graph Gt = (Vt, Et), if vp ∈ Vp can be matched
to vt ∈ Vt (i.e., f(vp) = vt), it must satisfy degGp(v

p) ≤
degGt

(vt).
Proposition 2. Given a pattern graph Gp = (Vp, Ep) and a
target graph Gt = (Vt, Et), if vp ∈ Vp can be matched to
vt ∈ Vt (i.e., f(vp) = vt), it must satisfy the i-th value of
ND(vt) is not less than the same position of ND(vp) where
ND(vp) = {degGp(u

p) | up ∈ NGp(v
p)}, ND(vt) =

{degGt
(ut) | ut ∈ NGt

(vt)} and the positions of elements
in ND(vp) and ND(vt) both are arranged in a descending
order of the degree values.
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Proposition 3. Given a pattern graph Gp = (Vp, Ep) and
a target graph Gt = (Vt, Et), if vp and up in Vp can
be matched to vt and ut in Vt (i.e., f(vp) = vt and
f(up) = ut) as well as Pathp and Patht are not empty,
it must satisfy |Pathp| ≤ |Patht| where Pathp = {ζp |
ζp = (vp, . . . , up), |ζp| = 3} and Patht = {ζt | ζt =
(vt, . . . , ut), |ζt| = 3} .

Some propagation methods of difference constraints [Sol-
non, 2010] are used in the PathLAD [Kotthoff et al., 2016],
which are shown as below.

• Vertex constraint denoted as FC(Diff): whenever a
pattern vertex vp is matched to a target vertex vt,
FC(Diff) removes vt from the domains of all non-
matched pattern vertices. The time complexity of
FC(Diff) is O(|Vp|).

• Edge constraint denoted as FC(Edges): whenever
a pattern vertex vp is matched to a target vertex vt,
FC(Edges) removes any target vertex not adjacent to vt

from the domain of every pattern vertex adjacent to vp.
The time complexity of FC(Edges) is O(degGp

(vp) ·
|Vt|).

• Global neighborhood constraint denoted as
GAC(allDiff): It ensures that all pattern vertices
can be assigned to different target vertices. In detail, if a
set of k pattern vertices can be found with only k target
vertices among the domains of their pattern vertices,
then those target vertices can be removed from the
domains of other pattern vertices. The time complexity
of GAC(allDiff) is O(|Vp|2 · |Vt|2).

• Filtering method denoted as LAD-filtering: for
vt ∈ Dom(vp), a bipartite graph is defined
as G(vp,vt) = (NGp

(vp), NGt
(vt), E(vp,vt)) where

E(vp,vt) = {(v′, u′)|v′ ∈ NGp
(vp), u′ ∈ NGt

(vt), u′ ∈
Dom(v′)}. If there does not exist a matching of the
bipartite graph G(vp,vt) that covers NGp(v

p), the pat-
tern vertices adjacent to vp cannot be matched to all
different target vertices and thus vt can be removed
from Dom(vp). The time complexity of LAD-filtering
is O(|Vp| · |Vt| · deg2Gp

(vp) · deg2Gt
(vt)).

Note that two strong propagation methods LAD-filtering
and GAC(allDiff) are implemented by the matching algorithm
Hopcroft and Karp, and more details can be seen [Solnon,
2010].

3 The PathLAD+ Algorithm
This section describes the proposed PathLAD+ algorithm in
Algorithm 1. Details of important functions in PathLAD+
will be presented in the following subsections. We use
switchL and switchA to control whether the proposed al-
gorithm uses LAD-filtering and GAC(allDiff), respectively.
Meanwhile, nbnodes records the sum of call times and back-
track times of SearchSIP, nbfail records the number of back-
track times of SearchSIP, and Nb is used in our proposed
adaptive propagation method. The output value st has three
values: true means that the algorithm can return a successful
matched list; false means the pattern graph is not isomorphic

Algorithm 1 PathLAD+

Input: Pattern graph Gp, target graph Gt and the cutoff time
Output: outcome st

1: reduce the domain of pattern vertices based on Proposi-
tions 1 and 2;

2: if some domains become empty then
3: return false;
4: end if
5: nbnodes := nbfail := 0 and Nb := +∞;
6: switchL := switchA := 1;
7: st := unknown;
8: ProSearch(Gp, Gt);
9: return SearchSIP(Gp, Gt, ∅, cutoff);

to any subgraph of the target graph; unknown means that the
algorithm cannot solve a given instance within a cutoff time.
In the beginning, the algorithm reduces the domain of pattern
vertices in a given pattern graph according to Propositions 1
and 2. If any domain becomes an empty set, the algorithm
returns false. Otherwise, six variables are initialized accord-
ingly (Lines 5–7). Then, the proposed algorithm can be di-
vided into two procedures, including a probing search pro-
cedure (ProSearch in Line 8) and a main search procedure
(SearchSIP in Line 9).

3.1 The Search Framework for SIP
The main function SearchSIP is shown in Algorithm 2, which
is a recursive function. The input variable D is denoted as
an already-matched list. If all vertices in the pattern graph
are matched, which means that the algorithm has found a
matched list for all pattern vertices, the algorithm returns
true (Lines 1–2). Otherwise, if the time limit is reached,
the algorithm returns unknown (Lines 3–4). The value of
nbnodes is increased by 1 (Line 6). The algorithm chooses a
non-matched pattern vertex vpi with the smallest domain size,
breaking ties by picking the one with the biggest degree value
(Line 7). Afterward, the algorithm arranges the positions of
target vertices in Dom(vpi ) based on a novel matching order-
ing method (i.e., oscore), which will be introduced in Section
3.3 (Line 8). In Lines 9–23, the algorithm tries to match each
target vertex in Dom(vpi ) orderly. Before executing Line 9,
the algorithm will store the domain of all pattern vertices. In
Line 14, the algorithm restores the domain of all pattern ver-
tices to their previous saved domain in Line 9. The algorithm
orderly tries to match a target vertex vti in the Dom(vpi ) to the
selected pattern vertex vpi (Line 10). In each time, the algo-
rithm reduces the domain of each non-matched pattern vertex
based on an adaptive propagation method APM, which will
be mentioned in Section 3.4 (Line 11). If the domain of some
pattern vertex becomes empty, which means that vti cannot
be matched to vpi , the algorithm will restore and then con-
tinue to select the next target vertex in Dom(vpi ) (Lines 12–
16). The corresponding values of nbfail and nbnodes will
be increased by 1 (Line 13). If the algorithm doesn’t obtain
any empty domains, it will search for the next pattern vertex
(Line 17). st stores the backtracking result of SearchSIP. If
st equals false, the algorithm needs to restore the related do-
mains and then continue to select the next target vertex (Lines
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Algorithm 2 SearchSIP

Input: Pattern graph Gp, target graph Gt, an already-
matched list of pattern and target pairs D =
{{vp1 , vt1}, . . . , {v

p
i−1, v

t
i−1}} and the cutoff time

Output: outcome st
1: if all the pattern vertices have been matched to respective

target vertices then
2: return true;
3: else if elapsed time > cutoff then
4: return unknown;
5: end if
6: nbnodes++;
7: select a vertex vpi with the smallest domain size

|Dom(vpi )| from all non-matched pattern vertices, break-
ing ties by picking the one with the biggest degree value;
/∗ recording info values in ProSearch, see Sec. 3.2 ∗/

8: sort the position of vertices in Dom(vpi ) based on the
descending order of oscore values; /∗ see Sec. 3.3 ∗/

9: for each target vertex vti ∈ Dom(vpi ) satisfying Propo-
sition 3 do

10: match vti to vpi ;
11: Dom(vpj ) := APM(Gt, v

p
j ) for each non-matched pat-

tern vertex vpj ;
12: if some domains become empty then
13: nbfail++ and nbnodes++;
14: restore the domain of some pattern vertices;
15: continue;
16: end if
17: st := SearchSIP(Gp, Gt, D ∪ {vpi , vti}, cutoff);
18: if st == false then
19: restore the domain of some pattern vertices;
20: else
21: return st;
22: end if
23: end for
24: return false;

18–19).

3.2 The Probing Search Procedure for SIP
Before calling a main search procedure, a probing search pro-
cedure ProSearch plans to use less time to try to successfully
solve an instance. If ProSearch can successfully solve an in-
stance, the algorithm can return a matched list of pattern and
target pairs quickly or can determine that the pattern graph
is not isomorphic to a subgraph of the target graph. Other-
wise, the algorithm can also grasp some useful information,
denoted as info in our algorithm, from this search procedure,
i.e., recording which target vertices are included in the do-
main of the corresponding pattern vertex during this proce-
dure. It means that the information obtained from ProSearch
can reflect which vertex pair has more potential.

The specific way of updating info values is presented as
follows. At first, the info value of each pair of pattern and
target vertices is initialized to 0. In the search procedure, as-
suming that we select a pattern vertex vp, we scan all target
vertices in the domain of vp (Line 7 in Algorithm 2). For each

target vertex vti in Dom(vp), the info({vp, vt}) is increased
by 1.

The proposed probing search procedure ProSearch works
as follows. During the search procedure of ProSearch, the al-
gorithm uses four propagation methods and the third propo-
sition which have already been introduced in Section 2.2 to
reduce the domain of pattern vertices. ProSearch has two
search modes. In the first mode, to explore the vertices in the
deep depth of the search tree, the algorithm runs SearchSIP
with a cutoff time of 10 seconds without sorting the domains
in any way (i.e., the default lexicographical order). Because
some SIP instances can be found with only a small num-
ber of conflicts, the heavy commitment to early branching
choices made by backtracking search can be extremely costly
for these instances [Archibald et al., 2019]. Based on the
above consideration, in the second mode, the algorithm runs
SearchSIP 20 times with a cutoff time of 1 second each time.
To diversify early branch selections, the second mode sorts
the position of target vertices in the corresponding domains
randomly each time.

According to preliminary experiments, we found updating
info during the main search procedure caused some vertex
pairs with high info values and led to the poor performance.
Thus, we restrict updating info only in ProSearch.

3.3 A Novel Matching Ordering Method
In the search procedure of SearchSIP, among non-matched
pattern vertices, we select a pattern vertex with the smallest
domain size. After choosing a pattern vertex, the next key
step is how to select a target vertex from the domain of the
selected pattern vertex. Whatever matching ordering method
is used, the method will only affect the performance for some
instances that have a successful matched list, whereas it has
no influence on some instances where a given pattern graph
is not isomorphic to any subgraph of the target graph because
a complete search must be performed.

During the probing search procedure, we use info to col-
lect useful information on the relationship between pattern
and target vertices. After some pattern vertices have already
matched to different target vertices, we assume that a target
vertex vti is often included in the domain of a pattern ver-
tex Dom(vp), i.e., info({vp, vti}) with a high value. We be-
lieve that vti has more potential to match vp compared to other
target vertices because a matched pair {vp, vti} would bring
few conflicts. This means that some other pattern vertices
are more likely to successfully find the corresponding target
vertices in the following search when vti matches vp. At the
same time, we consider the structure information of the tar-
get graph such as the degree value in our proposed matching
ordering method.

As a result, we have the notion of a novel ordering score,
which is formally defined as follows.

Definition 1. For a pattern graph Gp = (Vp, Ep) and a tar-
get graph Gt = (Vt, Et), the ordering score function, de-
noted as oscore is a function on vp ∈ Vp and vt ∈ Dom(vp)
such that

oscore(vp, vt) = info({vp, vt}) + degGt
(vt)
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In our proposed matching ordering method, when the al-
gorithm chooses a pattern vertex vp, the positions of target
vertices in the domain of a selected pattern are arranged in a
descending order of the oscore values (Line 8 in Algorithm
2). The proposed matching ordering method depends on the
search information of ProSearch. In the experimental section,
we will show that this method has outstanding performance
compared to several other sorting methods.

3.4 Adaptive Propagation Method
For the SIP, Glasgow [McCreesh et al., 2020] and PathLAD
[Kotthoff et al., 2016] have outstanding performance, but they
are completely different search strategies. Especially, Glas-
gow combines a weak propagation method with a fast restart
mechanism. According to our preliminary experiments, Glas-
gow can make at least 104 recursive calls per second for some
instances. On the contrary, PathLAD uses a strong propaga-
tion method at each stage of the search, and thus it sometimes
makes less than one recursive call per second when dealing
with some large target graphs. Based on our observations, no
current algorithms for the SIP use different strengths of prop-
agation methods at different stages of the search. Thus, our
motivation is to design a method that can flexibly use some
propagation methods in the search.

In the case of ProSearch procedure, the algorithm always
uses LAD-filtering and GAC(allDiff). Both of them have high
time complexity. Therefore, in the main search procedure,
we design an adaptive propagation method to guide the use of
strong propagation methods GAC(allDiff) and LAD-filtering.
The pseudo-code of APM is shown in Algorithm 3.

Let us consider LAD-filtering first. We define a target graph
to be sparse if the median of its vertex degrees is less than
degm. In our work, degm is set to 20. When a pattern vertex
vp is matched to a target vertex vti ∈ Dom(vp), LAD-filtering
ensures that every pattern vertex in NGp

(vp) can match dif-
ferent target vertices in NGt(v

t
i). Its execution time is based

on the degree values of vp and vti . Because degGt(v
t
i) must be

larger than or be equal to degGp(v
p), we just need to focus on

the degree of target vertex vti . If the target graph is sparse, the
execution time of LAD-filtering is reasonable and we think
that using it at every stage of the main search procedure is
feasible.

In other cases, if the algorithm often backtracks due to lots
of conflicts, the algorithm can actually turn to use some weak
propagation methods including FC(Diff) and FC(Edges) in-
stead of strong propagation methods. Although using weak
propagation methods may result in searching deeper on the
wrong branch compared to strong propagation methods, the
algorithm can backtrack faster because the complexity of
these weak methods is quite low. For such cases, calling
LAD-filtering multiple times during the main search proce-
dure will waste a lot of computation time. In our work, we
analyze whether backtracking often occurs in the main search
procedure by observing the values of nbnodes and nbfail.
Meanwhile, we use a parameter max tries as the upper
bound of nbnodes. In detail, on the one hand, If nbnodes
is smaller than max tries, it may occur in the early stage of
the search procedure. Because the backtracking for branch
selection is costly, we want to explore more conflicts by us-

Algorithm 3 APM

Input: Target graph Gt and a non-matched pattern vertex vp

Output: The reduced domain D(vp) of vp
1: reduce D(vp) based on FC(Diff) and FC(Edges);
2: if Gt is not a sparse graph then
3: if nbnodes > max tries && nbfail/nbnodes > β1

then
4: switchL := 0;
5: if switchL == 0 at the first time then
6: Nb := nbnodes;
7: end if
8: end if
9: if switchL == 0 && nbnodes > 2Nb &&

nbfail/nbnodes > β2 then
10: switchA := 0;
11: end if
12: end if
13: if switchL == 1 then
14: reduce D(vp) based on LAD-filtering;
15: end if
16: if switchA == 1 then
17: reduce D(vp) based on GAC(allDiff);
18: end if
19: return D(vp);

ing LAD-filtering on the wrong branches as early as possi-
ble. On the other hand, if nbnodes is larger than max tries,
the algorithm has already explored some parts of the whole
search space. For this case, we think the relationship be-
tween nbfail and nbnodes can provide some useful infor-
mation for a given instance. If the number of failed vertices
in the search procedure is large (i.e., nbfail/nbnodes > β1

where β1 is a parameter), it means that the algorithm has al-
ready backtracked a lot and thus the algorithm no longer uses
LAD-filtering (Lines 3–4).

In the following, we consider another strong propaga-
tion method GAC(allDiff). Although this constraint has
high time complexity in theory, it is actually faster than
LAD-filtering in most cases. We will explain this reason as
below. GAC(allDiff) constructs a bipartite graph between
pattern vertices and target vertices. If a pattern vertex vp is
matched to a target vertex vti , GAC(allDiff) will remove vti
from the domain of some other pattern vertices and ensures
that all pattern vertices can still match different target ver-
tices. Removing a selected target vertex from the generated
bipartite graph only needs to find the next free target ver-
tices for some pattern vertices by looking for an augmenting
path [Derigs, 1981]. In fact, the size of a given target graph
is usually larger than that of a corresponding pattern graph.
Thus, when the sizes of the two graphs are quite different,
GAC(allDiff) is likely to be run in linear time.

In the main search procedure, after disabling the
LAD-filtering, the algorithm begins to consider whether to
disable the GAC(allDiff). When LAD-filtering is forbidden
for the first time, we use variable Nb to record the current
value of nbnodes (Lines 5–6). GAC(allDiff) will continue
to be used until nbnodes has been increased twofold since
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LAD-filtering is disabled at the first time, i.e., nbnodes >
2Nb. At this time, if the algorithm still backtracks frequently
(i.e., nbfail/nbnodes > β2 where β2 is a parameter), we
disable GAC(allDiff) (Lines 9–10). In the subsequent search
procedure, the algorithm doesn’t employ any strong propaga-
tion methods including LAD-filtering and GAC(allDiff).

Remark that, in our work, the switch of propagation meth-
ods is one-way. The strength of weak propagation methods
increases significantly with search depth, so there is no need
to switch back to using strong propagation methods when the
search depth reaches a certain point. Based on our prelimi-
nary experiments, we found that one-way switching was both
straightforward and effective, whereas two-way switching ex-
hibited poor performance on some instances. Recently, re-
searchers have developed dynamic choice methods for several
well-known problems, such as CSP [Stergiou, 2021]. One
crucial step in algorithm design is to dynamically combine
various methods for a particular problem. It’s worth noting
that our method is the first to use a dynamic choice approach
to select propagation methods for the SIP.

Here, we will summarize the impact of the parameters β1

and β2 on the propagator choices as below. Parameters β1 and
β2 are two thresholds that define whether a given instance
is easy to backtrack due to numerous conflicts. When the
conflict ratio is larger than these two parameters, we turn to
using some simple propagation methods to make backtrack
fast. Specifically, a higher value of β1 indicates a greater tol-
erance for conflicts, allowing us to use all propagation meth-
ods. However, if the conflict ratio surpasses β1, we discard
the LAD-filtering method. On the other hand, a larger value
of β2 implies a higher tolerance for conflicts to solely rely
on the strong propagation method GAC(allDiff). When the
conflict ratio exceeds β2, we also abandon the GAC(allDiff).

4 Experimental Evaluation
In this section, we carry out experiments to evaluate Path-
LAD+ on a broad range of various benchmarks, compared
against the state-of-the-art algorithms for the SIP.

4.1 Benchmarks
For our experiments, we select all used instances from
[Kraiczy and McCreesh, 2021; Liu et al., 2022] which can
also download from the website1. In total, we choose 15396
instances, which can be grouped into 8 benchmarks.

• images-CVIU11 (6278 instances): This benchmark in-
cludes 43 pattern graphs and 146 target graphs, which
have been generated from segmented images [Damiand
et al., 2011]. In the benchmark, pattern graphs have be-
tween 22 and 151 vertices, whereas target graphs have
between 1072 and 5972 vertices.

• meshes-CVIU11 (3018 instances): It is composed of 6
pattern graphs and 503 target graphs, which have been
generated from meshes modeling 3D object [Damiand
et al., 2011]. The number of vertices for pattern graphs
is from 40 to 199, while the number of vertices is from
208 to 5873.

1http://liris.cnrs.fr/csolnon/SIP.html

• images-PR15 (24 instances): There are 24 pattern
graphs that have between 4 and 170 vertices and 1 target
graph that has 4838 vertices. All the graphs have been
derived from segmented images [Solnon et al., 2015].

• scalefree (100 instances): Each instance contains a tar-
get graph whose vertices are between 200 and 1000 and
a pattern graph whose vertices are 90% of the vertices of
the corresponding target graph. All the instances in the
benchmark have been randomly generated using a power
law distribution of degrees [Solnon, 2010].

• si (1170 instances): Each instance is composed of a tar-
get graph (between 200 and 1296 vertices) and a pat-
tern graph (between 20% and 60% of the vertices of
the corresponding target graph). This benchmark is
from bounded valence graphs, modified bounded va-
lence graphs, 4D meshes, and random generated graphs
[Solnon, 2010].

• phase-transition (200 instances): These random in-
stances are chosen to be close to the satisfiable-
unsatisfiable phase transition. Pattern graphs have 30
vertices, while target graphs have 150 vertices [Mc-
Creesh et al., 2016b].

• LV (1176 instances): The selected 49 graphs whose ver-
tices are between 10 and 128 are considered as pattern
and target graphs, and this benchmark has already been
used as the tested benchmark [Liu et al., 2020]. These
graphs have different properties [Solnon, 2010], such as
connected, biconnected, triconnected, etc.

• LargerLV (3430 instances): From the above 49 LV
graphs as the pattern graph and the other 70 graphs as the
target graph whose vertices are between 138 and 6671.
More details of the target graphs can be seen on the web-
site2.

4.2 Experiment Setup
We compare PathLAD+ with four state-of-the-art SIP al-
gorithms, including Glasgow+Clq [Kraiczy and McCreesh,
2021], PathLAD [Kotthoff et al., 2016], RI [Bonnici et al.,
2013] and VF2 [Cordella et al., 2004]. The codes of these
competitors are kindly provided by the authors. Our source
code is publicly available at github3. Our proposed algorithm
and four competitors are all implemented in C++ and com-
piled by g++ with ‘-O3’ option. All the algorithms are run on
Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz 512GB
RAM under CentOS 7.9. The cutoff time is 3600 seconds
for each instance. According to our preliminary experiments,
parameters max tries, β1, and β2 are set to 1000, 0.85, and
0.8, respectively.

For each algorithm, we report the number of instances for
each benchmark (#inst) and the number of successful solved
instances (#solved). The bold values in the tables indicate
the best solution among all the algorithms.

2https://github.com/ciaranm/cpaior2021-finding-subgraphs-
with-side-constraints/tree/main/instances/largerGraphs

3https://github.com/yiyuanwang1988/PathLAD-Plus

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5644

https://github.com/yiyuanwang1988/PathLAD-Plus


Benchmark PathLAD+ Glasgow+Clq PathLAD RI VF2
#inst #solved #solved #solved #solved #solved

images-CVIU11 6278 6278 6278 6278 6278 6278
meshes-CVIU11 3018 3008 2987 2983 2695 2647
images-PR15 24 24 24 24 24 24
scalefree 100 100 100 100 82 21
si 1170 1170 1170 1109 1163 886
phase-transition 200 134 128 44 31 0
LV 1176 1139 1136 1130 1039 811
LargerLV 3430 3344 3318 3300 3154 2505
#total 15396 15197 15141 14968 14466 13172

Table 1: Experiment results on all the benchmarks.

Figure 1: Detailed Results of PathLAD+ and all competitors on all
the benchmarks.

Figure 2: The run time of PathLAD with different matching ordering
strategy on all the isomorphic satisfiable instances.

4.3 Experiment Results
We show the experiment results of our proposed algorithm
and all competitors in Table 1. As observed from the results
of Table 1, PathLAD+ performs much better than our base-
line algorithm PathLAD on all the benchmarks. Overall, the
performance of PathLAD+ totally dominates Glasgow+Clq,
PathLAD, RI, and VF2. Because all algorithms can solve
simple instances very well, we mainly focus on some hard
instances. We can find that the performance of PathLAD+ is
significantly better than all competitors on some hard bench-
marks, especially in meshes-CVIU11. In this benchmark, all
competitors have at least more than 30 unsolvable instances,
whereas PathLAD+ only has 10 unsolvable instances within a
cutoff time. Among the selected 15396 instances, PathLAD+
can solve 15197 instances within a cutoff time whereas the
current best algorithm Glasgow+Clq can only solve 15141 in-
stances. Furthermore, to intuitively display the performance
of each algorithm, we report detailed results in Figure 1,
which verifies the effectiveness of our proposed algorithm.

4.4 Analysis of Proposed Strategies
To confirm the effectiveness of our proposed matching or-
dering method, we evaluate different matching ordering
methods on our baseline algorithm PathLAD, including 1)
PathLAD-our uses our proposed matching ordering method;
2) PathLAD-degree selects a target vertex with the biggest
degree value from the given domain; 3) PathLAD-random
chooses a random target vertex from the given domain; 4)
PathLAD-anti picks a target vertex with the smallest degree
value from the given domain. Since different matching order-
ing methods only affect some isomorphic satisfiable instances
[Archibald et al., 2019], we have shown the performance of
different matching ordering methods in these instances in Fig-
ure 2. Results show that our proposed matching ordering
method performs better than other methods. Moreover, the
proposed sorting method effectively utilizes the useful infor-
mation generated from the probing search procedure, and it
clearly improves the performance of SIP.

We compare PathLAD with one alternative algorithm
PathLAD-1 that uses the adaptive propagation method.
PathLAD-1 and PathLAD don’t use any matching ordering
methods, and the effectiveness of the adaptive propagation
method can be clearly observed in Figure 3. The different
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Figure 3: The run time of PathLAD and PathLAD-1 on all the
benchmarks.

Figure 4: The run time of PathLAD+ and PathLAD on all the bench-
marks.

colored points show the instance from the different bench-
marks. Figures 2 and 3 intuitively show that the proposed
two strategies make an important role in our proposed algo-
rithm. Besides, because PathLAD is a baseline algorithm of
our proposed algorithm, we compare PathLAD+ with Path-
LAD in terms of run time in Figure 4. Once again, the results
show the superiority of PathLAD+.

5 Conclusion
In this paper, we propose a probing search procedure, a
novel matching ordering method, and an adaptive propaga-
tion method for the SIP. Based on the above strategies, we de-
velop an efficient algorithm called PathLAD+. Experiments
show PathLAD+ significantly outperforms the state-of-the-
art SIP algorithms.

As for future work, the proposed adaptive propagation

method can be considered as a general idea to solve some
other NP-hard problems [Chen et al., 2023].
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