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Abstract
Given a graph, the k-plex is a vertex set in which
each vertex is not adjacent to at most k − 1 other
vertices in the set. The maximum k-plex prob-
lem, which asks for the largest k-plex from a given
graph, is an important but computationally chal-
lenging problem in applications like graph search
and community detection. So far, there is a number
of empirical algorithms without sufficient theoreti-
cal explanations on the efficiency. We try to bridge
this gap by defining a novel parameter of the input
instance, gk(G), the gap between the degeneracy
bound and the size of maximum k-plex in the given
graph, and presenting an exact algorithm parame-
terized by gk(G). In other words, we design an al-
gorithm with running time polynomial in the size of
input graph and exponential in gk(G) where k is a
constant. Usually, gk(G) is small and bounded by
O(log (|V |)) in real-world graphs, indicating that
the algorithm runs in polynomial time. We also
carry out massive experiments and show that the
algorithm is competitive with the state-of-the-art
solvers. Additionally, for large k values such as
15 and 20, our algorithm has superior performance
over existing algorithms.

1 Introduction
A clique of a graph is a set of vertices that are pairwise
connected. The maximum clique problem (MCP), which is
to obtain the largest clique from the given graph, is a fun-
damental NP-hard problem. Applications of MCP include
coding theory, computer vision and multi-agent systems [Wu
and Hao, 2015; Tošić and Agha, 2004]. However, for many
other applications such as complex network analysis, where
dense, not necessarily fully connected structures are of par-
ticular interest, the clique model is over-restrictive [Pattillo
et al., 2012]. Hence, the k-plex is proposed as a relaxed
form of clique [Seidman and Foster, 1978]. A k-plex is a
vertex set that is nearly a clique but each vertex of the k-
plex is allowed to have k − 1 missing adjacent vertices in
this vertex set, k being a positive integer. As a basic prob-
lem of the k-plex model, the maximum k-plex problem asks
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for the largest k-plex from the given graph. Algorithms for
this problem are also important tools in the analysis of com-
plex networks [Pattillo et al., 2013], especially in the commu-
nity detection problem [Conte et al., 2018; Zhou et al., 2020;
Zhu et al., 2020].

It is known that maximum k-plex problem is NP-hard and
W[1]-hard for any fixed k ≥ 1 [Lewis and Yannakakis, 1980;
Balasundaram et al., 2011]. So currently there is almost no
hope of finding a polynomial time algorithm, or an algo-
rithm that is parameterized by a given solution size. Although
the maximum k-plex problem is computationally challeng-
ing, there exist a number of practical exact algorithms in re-
cent years, for instance, BS [Xiao et al., 2017], BnB [Gao
et al., 2018], Maplex [Zhou et al., 2021], KpLeX [Jiang et
al., 2021], kPlexS [Chang et al., 2022]. These algorithms are
notably fast in large real-world graphs, despite with millions
of vertices and edges. But for some small dense graphs like
these from the 2nd-DIMACS challenge 1, these algorithms
can hardly solve them in reasonable time. It is still unclear
that why this happens.

Recently, Wang et al. [2022] made some efforts to answer
this question from the perspective of parameterized complex-
ity. They showed that, for any fixed k, their maximal k-plex
enumeration algorithm, which also can find the maximum k-
plex, is parameterized by d(G), the degeneracy of the given
graph. That is to say, the maximum k-plex problem can be
solved with time polynomial in |V | but exponential in d(G).
Because empirically d(G) is much smaller than the vertex
number, this result can partially demonstrate the superior per-
formance of their algorithm. However, this is not enough
because d(G) can still reach hundreds in many graphs, e.g.,
the degeneracy of soc-livejournal graph is 213 while the gap
gk(G) is only 1 when k = 2.

In this paper, we continue pursuing faster algorithm for the
maximum k-plex problem that is parameterized by empiri-
cally small parameters. We observed that, although the de-
generacy is not always small, the degeneracy bound of max-
imum k-plex, d(G) + k, is tight in many real-world graphs.
That means, the gap between d(G) + k and the size of maxi-
mum k-plex ωk(G), is usually small. Indeed, this gap is usu-
ally bounded by O(log |V |). Therefore, it is natural to ask,
”Is it possible to design an algorithm that is parameterized

1http://dimacs.rutgers.edu/archive/Challenges/
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by this gap?”
In this paper, we will answer this question positively. No-

tice that for MCP, the special maximum k-plex problem with
k = 1, Walteros and Buchanan [2020] designed an algorithm
which is parameterized by the gap between d(G) + 1 and
the maximum clique number. However, due to the structural
complexity of k-plexes, their algorithm cannot be simply ex-
tended to the maximum k-plex problem with k ≥ 2. So in
general, our main contributions are twofold.

• We propose an algorithm for the maximum k-plex prob-
lem with running time O(|V |O(1)(k + 1)gk(G)), where
k ≥ 1 is a fixed value and gk(G) is the gap between the
degeneracy bound d(G) + k and the maximum k-plex
size. So when gk(G) = O(log(|V |)) (which is often
the case empirically), the algorithm runs in polynomial
time. Our main techniques to achieve this result include
degeneracy ordering (and decomposition), subset enu-
meration and a dedicated algorithm for the complemen-
tary d-Bounded-Degree-Deletion (d-BDD) problem.

• We implement the algorithm and show that it is empiri-
cally competitive with the state-of-the-art algorithms for
a wide range of instances. In particular, for the group
of real-world graphs, the algorithm performs better than
existing algorithms with large k values, e.g., k = 15 or
20. This is in consistency with the fact that degeneracy
gap increases slowly or even decreases as k increases.
We further showed that the average branching factor of
our algorithm is much smaller than the theoretical esti-
mation.

Codes and supplementary materials are enclosed at https:
//github.com/joey001/kplex degen gap.

2 Preliminaries
2.1 Basic Notations
Let G = (V,E) be a simple undirected graph with vertex set
V and edge set E. The complement graph of G is defined as
G = (V,E), where E = {(u, v)|u ̸= v ∧ (u, v) /∈ E}. For
any vertex v, we use NG(v) to denote the set of neighbors of
v, i.e., the set of vertices adjacent to v, and N2

G(v) to denote
the 2-hop neighbors of v, i.e., the set of neighbors of vertices
in NG(v) except v and vertices in NG(v) themselves. For
a vertex set S ⊆ V , we use G[S] to denote the subgraph
induced by S, G\S to denote the subgraph induced by V \S,
and ∆G(S) to denote the set of common adjacent vertices of
S in G, i.e., ∩u∈SNG(u).

Let k be a positive integer, a k-plex P is a vertex set such
that for any v ∈ P , |NG(v) ∩ P | ≥ |P | − k. We denote
the size of maximum k-plex in G as ωk(G). There are two
important properties of k-plex. First, any subset of a k-plex
is still a k-plex [Trukhanov et al., 2013]. This property in-
dicates that the graph induced by a k-plex belongs to the
class of hereditary graphs. Second, if P is a k-plex and
|P | ≥ 2k − 1, then G[P ] must be a connected graph and the
length of the shortest path between any two distinct vertices
in G[P ] is bounded by 2, while a k-plex with at most 2k − 2
vertices is probably unconnected [Xiao et al., 2017; Conte et
al., 2018]. In many applications, these trivially small, and

probably unconnected k-plexes are not of interest. Thus, in
the paper, we only investigate the problem of finding the max-
imum k-plex of size at least 2k − 1, as in [Wang et al., 2022;
Chang et al., 2022]. We define the decision version of the
maximum k-plex problem, namely the k-PLEX problem, as
follows.

Problem (k-PLEX). Given a graph G = (V,E), two positive
integers k and p (p ≥ 2k − 1), is there a k-plex of size p in
G?

2.2 The d-Bounded-Degree-Deletion Problem
The k-PLEX problem is closely related to the d-Bounded-
Degree-Deletion (d-BDD) problem. A graph G is called d-
degree-bounded if the maximum degree of G is at most d.

Problem (d-BDD). Given a graph G = (V,E) and a non-
negative integer d, is there a vertex set D of size t such that
G \D is d-degree-bounded?

In a graph G = (V,E), there is a k-plex of size p if and
only if there is a (k − 1)-bdd of size |V | − p in the com-
plementary graph G. In this sense, we say that d-BDD is
the complementary problem of k-PLEX. However, the pa-
rameterized complexities of the two problems are quite dif-
ferent. It is known that d-BDD is fixed-parameter tractable
(FPT) with respect to parameter t, i.e., there exists an al-
gorithm running in time O(|V |O(1)

f(t)) where f is a com-
putable function. In contrast, k-PLEX is W[1]-hard with
repsect to parameter p. In the literature, Nishimura et al.
[2005] presented a O((d + t)t+3t + n(d + t)) algorithm for
d-BDD, followed by improvements in [Moser et al., 2012;
Xiao, 2016]. For d ≥ 3, the d-BDD problem can be solved
in O(|V |O(1)(d + 1)t) [Xiao, 2016]. However, these algo-
rithms are not practical and only of theoretical interest at the
current stage. In our algorithm, we will adopt a simple and
easy-to-implement d-BDD algorithm as a subroutine.

We further emphasize that it is not computationally viable
to apply these FPT algorithms of d-BDD with G directly. In
large real-world graphs, the maximum k-plex size is often
very small, while the vertex number is quite large. As a re-
sult, the parameter t = |V | − p could be rather large, making
the above FPT algorithms of d-BDD inefficient in practice.
Moser et al. [2012] have tried to solve the maximum k-plex
problem in this way but their algorithm is somehow favorable
to dense artificial graphs rather than large real-world graphs.

2.3 The Degeneracy and the Degeneracy Gap
The degeneracy. A graph G = (V,E) is called d-
degenerate if every subgraph has a vertex of degree at most
d. The degeneracy of G, denoted d(G), is the smallest num-
ber d such that G is d-degenerate. If G has degeneracy d(G),
then it has a degeneracy ordering which is a permutation of
V , v1 . . . v|V |, such that for each vertex vi, vi has the min-
imum degree in the induced subgraph G[{vi, ..., v|V |}]. A
degeneracy ordering of G = (V,E) can be computed in time
O(|V |+ |E|) by repeatedly removing a vertex with the min-
imum degree until the graph becomes empty [Matula and
Beck, 1983]. It is known that d(G) ≤

√
|V |+ 2|E| [Epp-

stein and Strash, 2011]. However, this bound is pessimistic
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in large real-world graphs, where d(G) is much smaller than
|V |. Given a degeneracy ordering v1, ..., v|V | of G = (V,E),
we use N+

G (vi) to denote NG(vi) ∩ {vi+1, ..., v|V |} and
N2+

G (vi) to denote N2
G(vi) ∩ {vi+1, ..., v|V |} in the paper.

The degeneracy gap. It is well-known that the degeneracy
bound d(G) + k is an upper bound of ωk(G) in a graph G
[Zhou and Hao, 2017; Conte et al., 2018]. Based on this, we
introduce the parameter k-plex-degeneracy gap gk(G) which
is equal to d(G)+k−ωk(G) for a given graph G. Because the
context is always clear, we simply call gk(G) the degeneracy
gap in the remaining.

By our observation, the degeneracy gap is often bounded
by O(log |V |). When k = 1, the degeneracy gap of some
real-world benchmark graphs like web-NotreDame, web-
BerkStan and web-Google is only 1 [Walteros and Buchanan,
2020]. For most real-world graphs, the degeneracy gap
changes mildly as k increases.

2.4 Related Works
For the maximum k-plex algorithm, the first worst-case run-
ning time guarantee is O(|V |O(1)α

|V |
k ), given by Xiao et al.

[2017]. When k = 1, 2, 3 and 4, αk = 1.618, 1.839, 1.928
and 1.966 respectively. Wang et al. [2022] reduced the expo-
nent from |V | to d(G). Particularly for k = 1, i.e., the max-
imum clique problem (MCP), the best-known running time
is O(|V |O(1)1.1996|V |) [Xiao and Nagamochi, 2017]. How-
ever, this algorithm is not implemented due to the huge gap
between theoretical complexity and real performance. Espe-
cially, Walteros and Buchanan [2020] designed a practical ef-
ficient algorithm with time complexity O(|V |O(1)1.28g1(G))
for MCP, which inspires us to extend the result for the maxi-
mum k-plex problem.

There also exist a number of practical efficient methods
without running time guarantees. Gao et al. [2018] pro-
posed BnBd and BnBk with several reduction methods and
a dynamic vertex selection mechanism in the pre-processing
and branch-&-bound procedure. Zhou et al. [2021] pro-
posed Maplex with a second-order reduction and introduced
a coloring-based upper bound for pruning. Jiang et al. [2021]
proposed KpLeX with a novel partition-based upper bound
and corresponding branch rules to avoid unnecessary compu-
tation. Chang et al. [2022] proposed kPlexS with an efficient
pre-processing based on k-core and k-truss, and a more com-
prehensive utilization of the second-order reduction. To date,
the last two algorithms are believed to be the most competi-
tive ones in practice.

3 An Algorithm Parameterized by the Degen-
eracy Gap

We present KPLEX in Alg. 1 for solving the k-PLEX prob-
lem. Notably, the algorithm is parameterized by g, where
g = d(G)+k−p. Let us justify its correctness in the follow-
ings.

Because the distance between any two vertices in a k-plex
P (|P | ≥ 2k − 1) is at most 2 in G[P ], the following obser-
vation holds.

Algorithm 1: Our framework for k-PLEX
1 KPLEX(G, k, p)

Input: An input graph G = (V,E), two positive
integers k and p ≥ 2k − 1.

Output: A k-plex of size p or ’NO’ if there is no such
set in G.

2 begin
3 Sort V by degeneracy ordering v1, ..., v|V |
4 for vi from v1 to v|V |−p where |N+

G (vi)| ≥ p− k
do

5 for S ⊆ N2+
G (vi) and |S| ≤ k − 1 do

6 Gs = (Vs, Es)← G[{vi} ∪ S ∪N+
G (vi)]

7 d← k − 1, t← |Vs| − p

8 D∗ ← DBDD(Gs, d, t, N+
G (vi), ∅)

9 if D∗ ̸= ’No’ then
10 return Vs \D∗

11 if |N+
G (v|V |−p+1)| ≥ p− k then

12 return {v|V |−p+1, ..., v|V |}
13 return ’No’

Observation 1. In a graph G = (V,E), let P ⊆ V be an
arbitrary k-plex that |P | ≥ 2k − 1. Denote vi as the first
vertex in P with respect to the degeneracy ordering of G.
Then P can be split into three subsets {vi}, N+

G (vi) ∩ P and
N2+

G (vi) ∩ P , where |N2+
G (vi) ∩ P | ≤ k − 1.

By the above observation, we design the algorithm KPLEX
using the following idea. For each vi, we enumerate all sub-
sets S ⊆ N2+

G (vi) satisfying |S| ≤ k − 1. For one vertex vi
and one subset S, we decide if there is a k-plex of size p that
includes {vi} ∪ S in G[{vi} ∪ S ∪ N+

G (vi)]. If so, then we
find one k-plex of size p.

To be more specific, in lines 11-12, by the property of
degeneracy ordering, for vertices from v|V |−p+1 to v|V |,
KPLEX simply decides if {v|V |−p+1, ..., v|V |} is a k-plex.
For a vertex vi from v1 to v|V |−p and a subset S ⊆ N2+

G (vi),
denote G[{vi} ∪ S ∪N+

G (vi)] as Gs = (Vs, Es). In lines 6-
10, KPLEX decides if there is a k-plex of size p that includes
{vi} ∪ S in Gs. However, in line 8, instead of solving this
decision problem directly, KPLEX calls a subroutine named
DBDD to solve the complementary problem – whether there
is a (k − 1)-bdd of size |Vs| − p from N+

G (vi) in graph Gs.
The details of such a subroutine is given in Alg. 2.

In terms of the input of DBDD, D is a set of growing ver-
tices, i.e., a set that must be a part of the solution. So D is
empty initially. C ⊆ V is the candidate set, i.e. the target d-
bdd set, if exists, must be a subset of C. It is clear that DBDD
is a tree search algorithm. At each node (or each invocation),
DBDD first reduces the input size or decides the solution di-
rectly. When the input cannot be solved or reduced anymore,
it branches, i.e. DBDD calls itself multiple times with dif-
ferent inputs that cover all possibilities [Cygan et al., 2015].
For example, if a vertex u ∈ C is selected as a member of
D, then u should be removed from G and C and meanwhile
t is reduced by 1 in the recursive call; if a vertex u ∈ C is
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Algorithm 2: The d-BDD algorithm
1 DBDD(G, d, t, C,D)

Input: A graph G = (V,E), two non-negative
integers d and t, a candidate vertex set C, a
growing vertex set D that D ∩ V = ∅.

Output: A d-bdd D of size t or ’No’ if there is no
such vertex set.

2 begin
3 if t < 0 or ∃u ∈ V \C that |NG(u) \C| > d then
4 return ’No’
5 if t = 0 and ∀u ∈ V, |NG(u)| ≤ d then
6 return D

7 if ∃u ∈ C that NG(u) > d+ t then
8 return

DBDD(G \ {u}, d, t− 1, C \ {u}, D ∪ {u})
9 if ∃u ∈ C that ∀v ∈ {u} ∪NG(u), NG(v) ≤ d

then
10 return DBDD(G, d, t, C \ {u}, D)

11 Pick a vertex up ∈ V of maximum degree in G.
12 Suppose NG(up) ∩ C as v1, ..., vs in arbitrary

ordering, where s← |NG(up) ∩ C|.
13 if up ∈ C then
14 b← d+ 1− |NG(up) \ C|
15 (Br. 1) D1 ←

DBDD(G\{up}, d, t−1, C\{up}, D∪{up})
16 (Br. i ∈ {2, ..., b}) Di ←

DBDD(G \ {vi−1}, d, t− 1, C \
{up, v1, ..., vi−1}, D ∪ {vi−1})

17 (Br. (b+ 1)) Db+1 ←
DBDD(G \ {vb, ..., vs}, d, t− 1− s+ b, C \
{up, v1, ..., vs}, D ∪ {vb, ...vs})

18 else
19 b← d− |NG(up) \ C|
20 (Br. i ∈ {1, ..., b}) Di ← DBDD(G \

{vi}, d, t− 1, C \ {v1, ..., vi}, D ∪ {vi})
21 (Br. (b+ 1)) Db+1 ←

DBDD(G \ {vb+1, ..., vs}, d, t− s+ b, C \
{v1, ..., vs}, D ∪ {vb+1, ...vs})

22 if ∃Di ̸= ’No’ then
23 return Di

24 return ’No’

excluded from being a member of D, u should be removed
from C without changing t. Now, we have Lemma 1 holds.

Lemma 1. Given G = (V,E), a candidate set C ⊆ V and
an integer t ≤ |C|, DBDD(G, d, t, C,D) correctly finds a d-
bdd set D∗ ⊆ C such that |D∗| = t or return ’No’ if no such
set exists.

Proof. Given the input G, d, t, C and a growing set D for
DBDD, we have the following reduction rules.

1. If t < 0 or G \ C is not d-degree-bounded, then there is
no d-bdd set of size t in the current input.

2. If ∃u ∈ C that NG(u) > d + t, then u must be in any
d-bdd set of size t.

3. If ∃u ∈ C that ∀v ∈ {u} ∪ NG(u), NG(v) ≤ d, then u
must be excluded from some d-bdd set of size t.

The first rule holds straightforwardly and the second and third
are from [Moser et al., 2012]. These reduction rules are im-
plemented in lines 3-10 in Alg. 2. When the above reduc-
tions cannot be applied any more, the current input is in a
state that G is not d-degree-bounded and t > 0, so there
must exist a vertex up ∈ V that |NG(up)| > d. By defi-
nition, if there is a solution in the current input, then either
up is in the solution or at least |NG(up)| − d vertices from
NG(up) are in the solution. Assume D∗ ⊆ C is a solution
with |D∗| = t in the current input. For illustration purpose,
denote NG(up) ∩ C = {v1, ..., vs} in arbitrary ordering, s
being the size of NG(up) ∩ C. It is easy to check that the
following cases are disjoint and complete.

• up ∈ C. There are b+1 possibilities where b = d+1−
|NG(up) \ C|.

1. The first possibility, up ∈ D∗.
2. The i-th possibility where i ∈ {2, ..., b},

up, v1..., vi−2 /∈ D∗ and vi−1 ∈ D∗. (In case
i = 2, up /∈ D∗ and v1 ∈ D∗.)

3. The b+1-th possibility up, v1, ..., vb−1 /∈ D∗ and
vb, ..., vs ∈ D∗.

• up /∈ C. There are b + 1 possibilities where b = d −
|NG(up) \ C|.

1. The i-th possibility where i ∈ {1, ..., b},
v1, ..., vi−1 /∈ D∗ and vi ∈ D∗. (In case i = 1,
v1 ∈ D∗.)

2. The b+1-th possibility, v1, ..., vb /∈ D∗ and
vb+1, ..., vs ∈ D∗.

Since DBDD exactly covers all the above cases (lines 11-23),
we conclude that DBDD is a complete algorithm.

3.1 Running Time Analysis
The running time of DBDD. As we mentioned, DBDD is
a tree search algorithm. We can measure its running time
by the number of tree nodes multiplying the time taken at
each node itself. Suppose the input of the our algorithm is
DBDD(G = (V,E), d, t, C,D). We can safely assume that
the time taken at each tree node is O(|V |O(1)). (In our imple-
mentation, the time is bounded by O(|V |2)). By the branch-
ing rule, the parameter t decreases at least 1 at each sub-node.
Denote L(t) as the number of leaf nodes in the subtree. We
have
L(t) ≤ L(t− 1) + ...+ L(t− 1)︸ ︷︷ ︸

b times

+L(t−NG(up) + d),

where b = d + 1 − |NG(up) \ C| when up ∈ C and b =
d − |NG(up) \ C| when up /∈ C, and L(1) = 1. In the
worst case, up ∈ C, NG(up) \ C = ∅ and NG(up) = d+ 1,
that is to say, b = d + 1 and NG(up) − d = 1. So, we
obtain L(t) ≤ (d + 2)t and the number of all tree nodes is
O((d + 2)t). Combining the running time of each node, we
conclude the running time TDBDD(G, d, t, C,D) is bounded
by O(|V |2(d+ 2)t).
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The running time of KPLEX. Given KPLEX(G =
(V,E), k, p), the running time of KPLEX TKPLEX(G, k, p)
can be calculated by

TKPLEX(G, k, p) = Tdeg(G)+

|V |−p∑
i=1

∑
S⊆N2+

G
(vi)

|S|≤k−1

(
Tgraph(Gs) + TDBDD(Gs, k − 1, t, N+

G (vi), ∅)
)
,

where Tdeg(G) is the time of degeneracy ordering,
Tgraph(Gs) is the time of building Gs given a vertex vi
and a subset S, and TDBDD(Gs, k − 1, t, N+

G (vi), ∅) is the
time of running DBDD(Gs, k − 1, t, N+

G (vi), ∅). Note that
Gs = (Vs, Es) is the induced subgraph G[{vi}∪S∪N+

G (vi)]
and t = |Vs| − p.

It is known that Tdeg(G) ≤ O(|V | + |E|) by [Batagelj
and Zaversnik, 2003]. Define g = d(G) + k − p. Be-
cause |N+

G (vi)| ≤ d(G) and |S| + 1 ≤ k, we have |Vs| ≤
d(G) + |S| + 1 ≤ d(G) + k and t ≤ d(G) + k − p = g.
Therefore Tgraph(Gs) ≤ (d(G) + k)2 and TDBDD(Gs, k −
1, t, N+

G (vi), ∅) ≤ (d(G) + k)2(k + 1)g . (The first inequal-
ity is obtained by using adjacency matrix to build a graph
and the second inequality is obtained by the above analysis of
DBDD). Therefore,

TKPLEX(G, k, p) = O

(
|V |+ |E|+

|V |−p∑
i=1

∑
S⊆N2+

G
(vi)

|S|≤k−1

(
(d(G) + k)2 + (d(G) + k)2(k + 1)g

))

= O

(
|V |+ |E|+

|V |−p∑
i=1

|V |k−1(d(G) + k)2(k + 1)g
)

= O(|V |+ |E|+ |V |k(d(G) + k)2(k + 1)g).

In summary, we obtained the running time for KPLEX as
follows.

Theorem 1. Given a graph G = (V,E), a fixed integer k ≥
1 and an integer p that p ≥ 2k − 1, KPLEX(G, k, p) solves
the k-PLEX problem in time O(|V |O(1)(k + 1)g), where g =
d(G) + k − p.

It is easy to use KPLEX for solving the maximum k-plex
problem. For each integer p from d(G)+ k to 2k− 1, we call
KPLEX(G, k, p) to decide if there exists a k-plex of size p in
G. If so, then we stop and conclude that ωk(G) is equal to p.
If no for any p value, then we conclude that ωk(G) < 2k− 1,
i.e. the maximum k-plex is trivially small. To sum up, we run
KPLEX at most |V | times, and at each time, g ≤ d(G)+ k−
ωk(G). Thus, we have the time complexity for the maximum
k-plex problem as follows.

Theorem 2. Given a graph G = (V,E) and a fixed integer
k ≥ 1, the maximum k-plex problem can be solved in time
O(|V |O(1)(k+1)gk(G)), where gk(G) = d(G)+k−ωk(G).

Remarks We observed that in real-world graphs, gk(G) is
often small. If we assume gk(G) is bounded by O(log |V |))
(which is often the case), we can solve the maximum k-plex

problem in polynomial time. Moreover, we observe that the
branching factor of our tree search, k + 1, is very pessimistic
in practice. For example, for the consph graph with k = 20,
the average branching factor can be as small as 1.84 in the
experiments.

4 An Efficient Implementation
In this section, we introduce some important techniques for
an efficient implementation of KPLEX.

4.1 Graph Reduction
In KPLEX, we need to build Gs for each vi and S ⊆
N2+

G (vi). Here, we introduce some reduction rules to reduce
the size of Gs or even identify that the computation of Gs is
unnecessary.

Reduction 1 (First- and Second-order Reduction [Zhou et al.,
2021]). Given a graph G = (V,E) and a vertex u ∈ V ,
if |NG(u)| < p − k, then u is not in any k-plex of size p.
Furthermore, for any two distinct vertices u and v of G,

1. if (u, v) ∈ E and |∆G({u, v})| < p− 2k, then u and v
are not in any k-plex of size p at the same time.

2. if (u, v) /∈ E and |∆G({u, v})| < p − 2k + 2, then u
and v are not in any k-plex of size p at the same time.

The first-order reduction is a default configuration in al-
most all algorithms. The second-order reduction recently ap-
peared in [Zhou et al., 2021; Jiang et al., 2021; Chang et al.,
2022]. We generalize them to the following rule, namely the
higher-order reduction rule.

Reduction 2 (Higher-order Reduction). Given a graph G =
(V,E) and an arbitrary vertex set P ⊆ V , denoting n = |P |
and λ = |E(G[P ])|, if |∆G(P )| < p− nk + n(n− 1)− 2λ,
then P is not a subset of any k-plex of size p.

The higher-order reduction can help avoid unnecessary
computation in KPLEX. For each vertex vi and subset S, let
P = {vi} ∪ S, n = |S| + 1 and λ = |E(Gs[{vi} ∪ S])|.
With the high-order reduction, we can save the invocation of
DBDD when |∆Gs

({vi}∪S)| < p−nk+n(n−1)−2λ. If the
invocation to DBDD is unavoidable, the size of Gs can still
be reduced by this rule. We leave the details of this reduction
algorithm in the appendix.

4.2 Branch-&-Bound
We implement KPLEX in the branch-&-bound [Jiang et al.,
2021; Chang et al., 2022] framework for solving the max-
imum k-plex algorithm. (This is somehow different to our
theoretical analysis that maximum k-plex can be solved by
multiple invocations of KPLEX). The branch-&-bound main-
tains a lower bound p and branches to either prove that p is
the optimal size or update p when a better solution is found.

Initial lower bound. The initial lower bound is computed
by an extension of the degeneracy ordering. As a degeneracy
ordering can be computed by repeatedly removing a vertex
with minimum degree. So, at some time, the set of remaining
vertices becomes a k-plex. We take this remaining set as a
lower bound solution.
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Bounding procedure. Bounding is used to early certify
that some tree nodes are unfruitful. That is, given an input
instance DBDD(G, d, t, C,D), we estimate a lower bound
of the size of the d-bdd before branching. If this bound is
larger than t, we can drop the current tree node without fur-
ther branching. To find such a tight lower bound, we use the
most recent bounding technique in [Jiang et al., 2021].

5 Experiments
In this section, we evaluate our algorithm empirically. Our
algorithm is written in C++11 and compiled by G++ ver-
sion 9.3.0 with -Ofast flag. All experiments are conducted
on a machine with an Intel(R) Xeon(R) Gold 6130 CPU
@ 2.1GHz and a Ubuntu 22.04 operating system. Hyper-
threading and turbo techniques are disabled for steady clock
frequency.

We mainly compare our algorithm with two recent algo-
rithms, KpLeX [Jiang et al., 2021] 2 and kPlexS [Chang et
al., 2022] 3. To the best of our knowledge, KpLeX and
KPlexS are state-of-the-art algorithms and dominate earlier
algorithms in experiments. Note that, we adapt KpLeX such
that it searches for a maximum k-plex of size at least 2k − 1.

As far as we know, the existing algorithms are only tested
with k values at most 7. However, the performance with even
larger k values should also be an important metric for the
maximum k-plex algorithms. Therefore, we carry out exper-
iments with k = 2, 5, 10, 15, 20 and time limit 1800 seconds.

5.1 Overall Performance
Real-World Graphs. We evaluate the algorithms with two
sets of real-world graphs.

• Network-Repo Graphs. This dataset contains 139 real-
world graphs with up to 5.87 × 107 vertices from the
Network Data Repository 4, including social networks,
biological networks, collaboration networks and so on.

• 10th-DIMACS Graphs. This dataset contains 84
graphs with up to 5.09 × 107 vertices 5, most of them
are real-world graphs.

These graphs have also been used in the literature [Gao et
al., 2018; Zhou et al., 2021; Jiang et al., 2021; Chang et al.,
2022]. Note that many graphs can be solved by kPlexS and
our algorithm in 10 seconds for all these k values while some
graphs cannot be solved by any solver for any k in the time
limit. For convenience of comparison, these extremely easy
or hard graphs are removed so that only 27 in Network-Repo,
and 16 in 10th-DIMACS graphs are left for presentation. In
Fig. 1, we present the number of solved instances within dif-
ferent time frames for k = 2, 10, 15, 20 for these real-world
graphs and the following artificial graphs as well. The k = 5
case is left in the appendix for space reason.

As shown in Fig. 1, in general, our algorithm is com-
petitive with other algorithms for all k values in real-world

2https://github.com/huajiang-ynu/kplex
3https://lijunchang.github.io/Maximum-kPlex
4http://lcs.ios.ac.cn/∼caisw/Resource/realworld%20graphs.tar.

gz
5https://networkrepository.com/dimacs10.php

graphs. Specifically, when k = 2, our algorithm is on par
with kPlexS, but gradually outperforms it when k becomes
larger. When k is 15 and 20, the superiority of our algorithm
is evident. For example, our algorithm solves 25 Network-
Repo graphs when k = 15 in 30 seconds, while kPlexS solves
17 and KpLeX only solves 1. For 10th-DIMACS graphs, our
algorithm remarkably solves 15 over all the 16 graphs in 300
seconds for any k.

Artificial Dense Graphs. We also test the algorithms in the
traditional clique graphs, i.e., the graphs from 2nd-DIMACS
challenge 6.

• 2nd-DIMACS Graphs This dataset contains 80 graphs
with up to 4.00× 103 vertices. Because a large body of
the set are artificial dense graphs, this set is often hard to
be solved [Jiang et al., 2021].

As shown in Fig. 1, the situation is quite different from
real-world graphs. When k = 2, KpLeX performs better than
both kPlexS and our algorithm. And when k = 5, these al-
gorithms compete each other. However, when k becomes 15
and 20, our algorithm clearly outperforms others.

We can roughly conclude that our algorithm is scalable to
large real-world graphs and large k values, as well as kPlexS,
while KpLeX is suitable for artificial dense graphs with rela-
tively small k values.

5.2 Analysis on Key Components
Analysis on Degeneracy Gap. We investigate the degener-
acy gap parameter gk(G) = d(G) + k − ωk(G) in this part.

In Table 1, we present information on six representative
graphs, covering all the aforementioned datasets. We notice
that d(G), the degeneracy of the given graph, is often above
50 and can be as large as 213 in soc-livejournal. In contrast,
gk(G) is much smaller than 50, e.g. gk(G) = 1 when k = 2
in soc-livejournal. A scatter graph in the appendix demon-
strates that, gk(G) is often much smaller than d(G) in most
real-world graphs. It is also interesting to notice that gk(G)
might even decrease as k increases, as it happens in the graph
consph when k increases from 10 to 15. Our statistic result
reveals that gk(G) is likely to be bounded by O(log (|V |)) in
many real-world graphs.

On the flip side, the degeneracy gaps on artificial dense
graphs are relatively large. As shown in Table 1, in C125.9,
gk(G) = 62, 44 and 21 when k = 2, 5, 10, respectively. As a
result, our algorithm cannot solve it in reasonable time. When
k = 15 and 20, gk(G) of C125.9 is 5 and 0, respectively, and
our algorithm can easily solve it in 66 and 0 seconds, respec-
tively. In general, there is a positive correlation between the
practical efficiency of our algorithm and the degeneracy gap.
Nevertheless, we emphasize that the gap parameter only par-
tially explains the practical performance of our algorithm.

Analysis on Branching Factor. As the branching factor of
our DBDD subroutine is k+1 in the worst-case, our algorithm
has exponential complexity with base factor k+ 1. However,
experiments show that this estimation is pessimistic. In Ta-
ble 1, the average branching factor γ is also presented. In
general, the average branching factor increases slowly as k

6https://networkrepository.com/dimacs.php
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Figure 1: Number of solved instances for Network-Repo, 10th-DIMACS and 2nd-DIMACS graphs, with k = 2, 10, 15, 20 and time limit
1800 seconds.

increases. Indeed, it is always much smaller than the k + 1.
We observe that when k = 2, the branching factor of con-
sph, tech-as-skitter and soc-livejournal is 1, meaning that an
optimal solution can be found without branching. Even for
C125.9, the branching factor 6.29 is still much smaller than
the worst-case value 16, given k = 15. We notice that the
reduction rules could possibly influence the average branch-
ing factor. For instance, when k = 20, the branching factor
on soc-slashdot graph is 4.12 with reduction rules while it
becomes 7.64 without them.

6 Conclusion

In this paper, we gave rigorous explanation on why
exponential-time maximum k-plex algorithm is efficient in
practice. Specifically, we presented an algorithm that is pa-
rameterized by degeneracy gap gk(G), a parameter which
is the difference between the degeneracy bound of graph G
and the size of maximum k-plex in G. We demonstrated
that in many real-world graphs, the degeneracy gap is very
small, bounded by O(log(|V |)). With experiments, we fur-
ther showed that the algorithm is efficient with real-world
graphs which have small degeneracy gaps. Remarkably, the
algorithm outperforms the state-of-the-art algorithms when k
is large. Our work not only investigates the complexity of
maximum k-plex problem from a new viewpoint, but also
provides novel insights for other graph models, like k-bundle
[Zhou et al., 2022; Hu et al., 2023], k-defective clique [Chen
et al., 2021; Gao et al., 2022] and so on.

Graph k ωk(G) gk(G) γb γ Tb T To

soc-slashdot
|V | = 70068
|E| = 358647
d(G) = 53

2 31 24 1.28 1.34 0.27 0.73 1.59
5 40 18 1.43 1.88 42.18 0.19 1.21

10 51 12 2.31 1.39 335.61 0.06 0.13
15 59 9 OOT 2.66 OOT 1.02 9.47
20 68 5 7.64 4.12 4.76 0.27 0.11

consph
|V | = 79679
|E| = 2963573
d(G) = 41

2 24 19 1.00 1.00 1.77 1.71 1.75
5 26 20 1.76 1.89 82.84 25.14 56.14

10 33 18 2.92 1.25 101.05 9.83 19.27
15 42 14 OOT 1.45 OOT 16.77 437.79
20 45 16 OOT 1.84 OOT 268.64 OOT

sc-pwtk
|V | = 217891
|E| = 5653221
d(G) = 35

2 24 13 2.96 2.00 2.27 2.17 2.31
5 26 14 2.19 1.99 4.34 3.50 4.38

10 33 12 1.79 2.00 15.57 10.51 10.85
15 38 12 OOT 1.64 OOT 18.61 116.60
20 46 9 2.13 1.97 1151.39 6.61 122.78

tech-as-skitter
|V | = 1694616
|E| = 11094209
d(G) = 111

2 69 44 1.00 1.00 1.02 1.03 1.42
5 75 41 1.78 2.31 0.87 0.87 0.90

10 84 37 OOT 2.95 OOT 1.04 4.35
15 95 31 OOT 1.94 OOT 0.91 1.38
20 104 27 OOT 3.42 OOT 1.14 1.82

soc-livejournal
|V | = 4033137
|E| = 27933062
d(G) = 213

2 214 1 1.00 1.00 1.53 1.45 3.63
5 214 4 1.00 1.00 2.17 1.86 2.35

10 217 6 5.29 5.29 2.21 2.87 3.52
15 221 7 1.00 1.00 3.47 3.46 3.46
20 222 11 9.57 1.89 3.62 3.67 3.60

C125.9
|V | = 125
|E| = 6963
d(G) = 102

2 42 62 OOT OOT OOT OOT OOT
5 63 44 OOT OOT OOT OOT OOT

10 91 21 OOT OOT OOT OOT OOT
15 112 5 OOT 6.29 OOT 66.22 158.44
20 122 0 1.00 1.00 0.00 0.00 0.00

Table 1: Properties of six representative graphs and their running
behavior. γ is the average branching factor, T is the running time, γb
and Tb represent the branching factor and running time respectively
that without second- and higher-oder reduction, and To is the shorter
running time between KpLeX and kPlexS.
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