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Abstract
Event sequences are widely available across appli-
cation domains and there is a long history of mod-
els for representing and analyzing such datasets.
Summary Markov models are a recent addition to
the literature that help identify the subset of event
types that influence event types of interest to a
user. In this paper, we introduce logical sum-
mary Markov models, which are a family of models
for event sequences that enable interpretable pre-
dictions through logical rules that relate historical
predicates to the probability of observing an event
type at any arbitrary position in the sequence. We
illustrate their connection to prior parametric sum-
mary Markov models as well as probabilistic logic
programs, and propose new models from this fam-
ily along with efficient greedy search algorithms
for learning them from data. The proposed mod-
els outperform relevant baselines on most datasets
in an empirical investigation on a probabilistic pre-
diction task. We also compare the number of influ-
encers that various logical summary Markov mod-
els learn on real-world datasets, and conduct a brief
exploratory qualitative study to gauge the promise
of such symbolic models around guiding large lan-
guage models for predicting societal events.

1 Introduction & Related Work
Applications concerning sequences of events are ubiquitous
in today’s world where data is increasingly accessible, e.g.,
primary care doctors often now enter information from a pa-
tient’s visit in real-time directly into their computer records
rather than through using many file cabinets to hold records
maintained by other staff. The prevalence of such event se-
quences give possibility to new modeling methods that can
offer new insights. For example, selecting the best treatment
for diabetes patients is often done by trial and error based on
physical reactions with no general consensus among a wide
array of medicine options [Grant et al., 2007]. Data-driven
rules from event sequence data could help guide doctors to
better outcomes or even identify reasons for poor outcomes.

In this work, we are primarily concerned with learning
from datasets involving sequences of various types of events

without meaningful timestamps, i.e. either the time is un-
available or too noisy to be useful. Such datasets arise in
many areas, such as medicine, advertising, product recom-
mendations, social networks, or possibly curated from un-
structured textual sources through natural language process-
ing. For example, a diabetic patient may undergo a sequence
of events involving insulin dosage, exercise, meal ingestion,
blood glucose level changes and negative side effects such as
rash occurrences. We are interested in learning probabilis-
tic logical rules that: 1) identify a subset of event types that
influence user-specified event types of interest, and 2) relate
their historical summaries to the occurrence of the event types
of interest. For instance, one may learn in this example that
only insulin dosage events affect rash occurrences, and that
observing a rash is quite likely after a patient’s first injection
but much less likely after a subsequent injection.

There is a wealth of literature on event sequence analy-
sis, particularly on data mining approaches such as frequent
episode mining, sequence mining and association rule min-
ing [Mannila et al., 1997; Weiss and Hirsh, 1998; Fournier-
Viger et al., 2011; Rudin et al., 2012; Letham et al., 2013].
Much of this research has centered around the challenge of
efficiently identifying application-specific patterns from large
input sequences, which are then used to derive rules over the
identified patterns. There is also a long history of work on
Markov models for sequences [Raftery, 1985; Rabiner, 1989;
Begleiter et al., 2004; Bhattacharjya et al., 2022] as well as
more application-driven data mining related work that is con-
cerned with learning rules from sequences, including specifi-
cation mining in software engineering [Lemieux et al., 2015]
and declarative process mining in information systems [Di
Ciccio et al., 2018]. Temporal rule induction is also of in-
terest in communities where datasets involve events that have
time-stamps, both for interval-based events [Tran and Davis,
2008; Brendel et al., 2011] and point events modeled by tem-
poral point processes [Li et al., 2021].

A key concern with event models in general is around ex-
plainability; rather than simply offering a distribution over
events that may occur next, it may be important in many ap-
plications to justify or explain the prediction. As noted in
[Miller, 2019], one is often interested in a small subset of the
possible explanations for an event. Recent work explores this
idea in the context of event sequences in the form of summary
Markov models [Bhattacharjya et al., 2022], which seek to
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find influencing sets, defined as a subset of event types that
explain predictions for event types of interest. Here we in-
troduce logical summary Markov models, which provide
probabilistic logical rules that depend on predicates involving
the influencing set. We propose new predicates for summa-
rizing history and more expressive models which bring along
the additional benefits of a logical representation while retain-
ing the key feature of influencing sets. While it is clearly not
always the case that simple explanations offer the best pre-
dictions, we propose greedy algorithms that are designed to
search for explanations that grow in complexity if required.

Our work is closely related to the area of probabilis-
tic inductive logic programming (PILP) where probabilis-
tic logical rules are learned from data [Raedt et al., 2008;
Riguzzi, 2018]. While probabilistic logic programs (PLPs)
were defined long ago, e.g. [Ng and Subrahmanian, 1992;
Poole, 1993], unlike inductive logic programming (ILP),
probabilistic versions of ILP have received less attention un-
til recently, as noted in [Riguzzi et al., 2014] and [Cropper et
al., 2020]. From the lens of PILP, our learning approach can
be viewed as incorporating both structure learning – identi-
fying the influencing set and the associated rules of the logic
program, as well as parameter learning – estimating an oc-
currence distribution over event types of interest in the head
of the logical rules. This is inspired more broadly by learning
algorithms for probabilistic graphical models [Pearl, 1988;
Chickering, 2002]. We show connections to logic pro-
grams with annotated disjunctions (LPADs) [Vennekens et
al., 2004] which also utilize probabilistic rules, albeit with
more restrictive structure. Importantly, as our work learns
rules from event sequences, we consider sequence-specific
predicates and a broader class of logical operations than typ-
ically considered in PILP frameworks. Thus our approach
can be viewed as one that adopts greedy search for proba-
bilistic rule learning, e.g. [De Raedt et al., 2015], in a set-
ting involving complex dynamics, e.g. [Thon et al., 2011].
Note that logical rules learned via ILP/PILP systems are
of great interest to reasoning tasks [Yang and Song, 2020;
Jedwabny et al., 2021] where one can leverage (probabilistic)
rules in accordance with a knowledge base to answer queries.

Contributions. In this paper:
• We introduce a family of interpretable models for event se-

quences where history is summarized by temporal logical
rules – logical summary Markov models – and illustrate
their connection to prior parametric summary Markov mod-
els as well as probabilistic logic programs.

• We propose new predicates for practical problems, result-
ing in novel logical summary Markov models, i.e. with new
forms of temporal logical rules. These include a model that
leverages historical counts and one that allows different his-
torical orders to share parameters.

• We describe efficient greedy search algorithms for learning
that make tackling the inherent combinatorial optimization
problem practically feasible.

• We empirically demonstrate the benefits of the new pro-
posed models over related prior work on a probabilistic
prediction task involving real-world datasets, and compare
influencing set sizes on these datasets.

• We conduct an initial investigation around guiding the out-
put of large language models for predicting societal events
using logical summary Markov models.

2 Background
2.1 Basic Notation
An event sequence dataset is a multi-set of sequences of dif-
ferent types of events, D = {Dk}Kk=1, where Dk = [li]

Nk
i=1

and event label (or type) li at index i in the sequence is from
a known label set L with cardinality M . There are K se-
quences of events in the dataset with a total of N =

∑K
k=1 Nk

instances of events.
For modeling sequence dynamics, we consider the poten-

tial effect of prior events as determined by the history at po-
sition i in an event sequence, hi = {(j, lj)}i−1

j=1. The re-
stricted history with respect to some label set Z ⊂ L at
position i only includes prior occurrences of labels from Z,
i.e. hZ

i = {(j, lj) : j < i, lj ∈ Z}. Throughout the paper, we
will remove subscript i when referring to a generic position.

In the next section, we describe several predicates pertain-
ing to any (restricted) history. Since a history may be arbi-
trarily long and complex, some simplifications may be ap-
propriate in practice. For some of the predicates, we use a
look-back period parameter κ to restrict the history hi to la-
bels in up to κ positions before sequence position i. Also,
whenever we are concerned with the historical order of a set
of event labels, we use a masking function ϕ(·) which takes
an event sequence s = {(j, lj)} as input and returns a sub-
sequence where no label is repeated, s′ = {(k, lk) ∈ s : lk ̸=
lm for k ̸= m} [Bhattacharjya et al., 2020]. In the spirit of
Markov models, in this paper we consider a ϕ(·) which only
retains the most recent (i.e. last) occurrence of an event la-
bel, but we note that other masking approaches may also be
applicable in practice.
Example 1. Figure 1 presents an illustrative event sequence
dataset over 5 event labels for a diabetic patient. The history
at position 8 is h8 ={(1, RD), (2, LM), (3, RD), (4, RE), (5,
LM), (6, HM), (7, RD)}. The history at this position restricted
to label set Z ={RD, LM} is hZ

8 ={(1, RD), (2, LM), (3, RD),
(5, LM), (7, RD)} (HM and RE are excluded). If we restrict
the history even further at this position to within a look-back
period κ = 5, then the relevant restricted history is hZ

8 (κ =
5) ={(3, RD), (5, LM), (7, RD)}. Applying masking function
ϕ(·) where only the most recent occurrence of each event type
is maintained to hZ

8 (without the look-back restriction) results
in the following sub-sequence: {(5, LM), (7, RD)} yielding
the order [LM, RD]. The same order is obtained on applying
this masking function to hZ

8 (κ = 5).

2.2 Summary Markov Models
We review some basic terminology pertaining to summary
Markov models [Bhattacharjya et al., 2022], which capture
event sequence dynamics for a user-specified subset of the
event labels X ⊆L. As an example, although an IT system’s
log may register many events in a sequence, the user may be
particularly interested in failure events. A random variable
denoted X is used for modeling the occurrence of label X ∈
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Figure 1: Illustrative event sequence dataset for a single diabetic
patient (K = 1) with N = 10 events over M = 5 labels.

X at any arbitrary position in the sequence. X has a state for
each label in X and a single state for when the label belongs
to L \X, if the set L \X is not empty. The states of X are
denoted x.

The global dynamics of the sequence is assumed to be
governed by a conditionally homogeneous sequential pro-
cess over labels in L, parameterized using probabilities Θ =
{ΘX}, ΘX = {θx|h} s.t.

∑
X∈L θx|h = 1 for all possible

histories h, where θx|h is the probability of event label X oc-
curring at any position in the sequence given history h. Θ̃X is
the sum of probabilities over the label set of interest X ⊆L,
i.e. Θ̃X = {θ̃x|h} where θ̃x|h =

∑
X∈X θx|h.

As a practical matter, particularly from the perspective of
learning with limited data, it is not possible for a sequence
model to have unique parameters for all possible histories;
thus a mechanism for summarizing history is necessary.

Definition 1. A summary function s(·) for some label set Z
maps any restricted history hZ at any position to some sum-
mary state sZ in a range ΣZ. h is said to be consistent with
state sZ if the summary function applied to h restricted to Z
results in sZ, i.e. s(hZ) = sZ.

A summary function summarizes history into a smaller
number of states. The key idea behind summary Markov
models is that a summary of only a subset of all event labels
L is sufficient to predict random variable X. Formally, a la-
bel set U is an influencing set for event labels of interest X
under summary function s(·) if for all sU ∈ ΣU, θ̃x|h = θ̃x|h′

for all h, h′ consistent with sU. U is minimal if the condition
cannot be satisfied after removing any label in U.

Definition 2. A summary Markov model (SuMM) for event
label set X ⊆ L (and corresponding random variable X)
includes a summary function s(·), a set of influencing labels
U and probability parameters θx|sU for each state of X and
each summary state sU ∈ ΣU.

Example 2. Suppose X = {R} (rash) and U = {RD} (regu-
lar dosage) from the event sequence in Figure 1. For a bi-
nary summary function s(·) that determines whether regu-
lar dosage has been taken at least once within a look-back
of κ = 5 positions, there are two summary states, denoted
rd (True) and rd (False). The corresponding SuMM would
have two free parameters: θx|rd and θx|rd. In this example
sequence, note that the summary state at position 8 is True
because hRD

8 (κ = 5) ={(3, RD), (7, RD)}.

3 Logical Summary Markov Models
We introduce a family of models for event sequences where
the dynamics are governed by probabilistic logical rules in-
volving historical predicates that summarize the history re-
stricted to influencing sets. The body of a logical clause/rule
includes predicate terms that are related via logical operators
(∧,∨,¬) whereas the head includes predicates for whether
an event label will occur at a position in the sequence. In this
work, all rules are grounded by specifying the position index
i for the prediction.

3.1 Predicates
A positional occurrence predicate pP (X, i) specifies whether
an event of label X occurs at position i in an event sequence.
We model how such a predicate (used in the head of our
logical rules) entails from those that summarize history, i.e.
events before i. Examples of historical predicates follow:
• Look-back occurrence pL(i,X, κ): Whether an event of la-

bel X occurs at least once in up to κ positions before posi-
tion i in an event sequence.

• Order pO(i, [X1, . . . , XI ], κ, ϕ): Whether distinct event la-
bels X1 through XI appear in that order within up to κ po-
sitions before position i in an event sequence after applying
masking function ϕ to the history.

• Order position pOP (i,X,Z, j, κ, ϕ): Whether an event of
label X appears in the jth position in the order resulting
from applying masking function ϕ over labels Z to up to κ
positions before position i.

• Unique pU (i,Z, c, r ∈ {=, <,>}, κ): Whether the num-
ber of unique occurrences of labels in Z within up to κ
positions before position i in an event sequence satisfy
(in)equality relation r w.r.t constant c.

• Count pC(i,X, c, r ∈ {=, <,>,≤,≥}, κ): Whether the
number of occurrences of label X within up to κ positions
before position i in an event sequence satisfy (in)equality
relation r w.r.t constant c.

To simplify the notation, we omit position index i and occa-
sionally also parameters such as the look-back κ whenever
they are clear from context.

We note that the temporal information in these pred-
icates is implicit but the rules could also be expressed
using explicit temporal relations. For instance, the or-
der predicate pO(i, [X1, X2]) is equivalent to ∃j, k s.t.
pP (j,X1) ∧ pP (k,X2) ∧ BEFORE(j, k) ∧ BEFORE(k, i),
where BEFORE is a temporal relation between two posi-
tions. Also, some predicates are related to others, e.g., the
count predicate pC is a generalization of look-back predicate
pL. While the aforementioned predicates are by no means
exhaustive, they are sufficiently comprehensive for many ap-
plications as demonstrated in our experiments.
Example 3. Consider the rash occurrence event (R) at posi-
tion 8 in the sequence in Figure 1. The reader can confirm
that the following predicates are true: pL(i = 8,RD, κ = 5),
pO(i = 8, [LM,RD], κ = 5, ϕ), pC(i = 8,RD, c = 2,′ =′

, κ = 5) and pU (i = 8, {RD,LM}, c = 2,′ =′, κ = 5).

3.2 LSuMM Family
A probabilistic logic program is a finite set of logical rules
comprising atoms, conjunctions and disjunctions that are as-
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signed probabilities [Ng and Subrahmanian, 1992]. We de-
fine logical summary Markov models as probabilistic logic
programs specifically intended to model event sequences.
Definition 3. A logical summary Markov model (LSuMM)
for event label set X ⊆ L (and corresponding random vari-
able X) with |X| = J is a probabilistic logic program with a
set of rules, each of the form:

(pP (X1) : θ1) ∨ · · · ∨ (pP (XJ) : θJ)← f (p1, p2, · · · , pn) ,
where the body is a logical formula f(·) (involving conjunc-
tions, disjunctions and negations) of predicates pi that are
either historical predicates or temporal relations that only in-
volve labels from an influencing set U. The head is a disjunc-
tion over positional occurrence predicates pP (Xj) indicating
whether event label Xj ∈ X occurs at any arbitrary position
in an event sequence; these disjunctions are annotated by the
probabilities of their occurrence θj . The probabilities θj in
each rule head sum to 1 if X = L or sum to ≤ 1 if X ⊂L.
Example 4. Consider the following illustrative LSuMM for
predicting social unrest (SU) or peaceful protest (PP) us-
ing look-back occurrence predicates pL on resource shortage
(RS) and police violence (PV):

(pP (SU) : 0.01) ∨ (pP (PP) : 0.02)← ¬pL(RS, 3) ∧ ¬pL(PV, 5)

(pP (SU) : 0.05) ∨ (pP (PP) : 0.05)← pL(RS, 3) ∧ ¬pL(PV, 5)

(pP (SU) : 0.07) ∨ (pP (PP) : 0.03)← ¬pL(RS, 3) ∧ pL(PV, 5)

(pP (SU) : 0.2) ∨ (pP (PP) : 0.1)← pL(RS, 3) ∧ pL(PV, 5)

This program uses predicates with different look-backs (3
and 5) and represents a situation where both RS and PV make
SU and PP more likely, particularly their combination.

The nature of the probabilistic logical rules in an LSuMM
are a slight generalization of logic programs with annotated
disjunctions (LPADs), which are thus named because the
head of each rule is a disjunction that is annotated with proba-
bilities [Vennekens et al., 2004]. In an LSuMM, the rule head
is a disjunction over event labels annotated with the proba-
bilities of their occurrence. Note that the body of rules in an
LSuMM can involve any logical operator, unlike in an LPAD
where they are restricted to Horn clauses, i.e. only involve
a conjunction over predicates. The LSuMM in Example 4
happens to be an LPAD.

LSuMMs are motivated by SuMMs in that they represent
event sequence dynamics via a historical summary, and the
body of each rule is in fact a summary state; we therefore
refer to the formulae f(·) as summary formulae. Impor-
tantly, LSuMMs similarly achieve the objective of identifying
the influencing set for event types of interest, since these can
be inferred from the chosen predicates in the induced logical
rules. This can significantly aid model interpretability and
bring practical value as a knowledge acquisition tool.

Prior work on SuMMs has proposed two specific para-
metric models: binary SuMM (BSuMM) and ordinal SuMM
(OSuMM) [Bhattacharjya et al., 2022]. In the former, prob-
ability parameters depend on whether or not influencers have
been observed within label-specific look-back periods. In the
latter, they depend instead on the order in which influencers
are observed within a single look-back period. Both models
can be defined as LSuMMs.

Definition 4. A BSuMM for event label X ⊆L and influenc-
ing set U with look-backs {κX : ∀X ∈ U} is a logical SuMM
with summary formulae of the form ∧X∈U (tX), where term
tX for each event label X ∈ U is either pL(X,κX) or
¬pL(X,κX). There are 2|U| rules in the program, one for
each combination of truth values for the predicates, i.e., in-
cluding either pL or ¬pL for each X ∈ U.

Example 4 illustrated a BSuMM where resource shortage
and police violence were influencers U.
Definition 5. An OSuMM for event label X ⊆ L and
influencing set U with look-back κ and masking function
ϕ(·) is a logical SuMM with summary formulae of the form
pO([X1, · · · , XI ], κ, ϕ(·)), where X1, . . . , XI is a permu-
tation of a subset of U. There are

∑|U|
l=0

|U|!
l! rules in the

program, one for each permutation of each subset of U.
Since an LSuMM captures sequence dynamics, one must

formalize additional restrictions on the probabilistic logic
program to ensure some sense of model completeness. We
do so by ensuring that any possible history can be summa-
rized by the program.
Definition 6. An LSuMM for event label set X ⊆ L (and
corresponding random variable X) is fully determined if, for
any history h, there is exactly one rule in the program where
the summary formula in the body is true. This rule governs
label occurrence distribution at the next sequence position.
Remark 7. BSuMM, OSuMM are fully determined LSuMMs.

In the next section, we describe a Bayesian approach to
handle the case where a program may not be fully determined,
such as through missing rules during learning.

A clear advantage that an LSuMM provides is that the in-
duced probabilistic logic program could potentially be lever-
aged by downstream logical reasoners. The logical interpre-
tation also reveals that prior work on SuMMs uses specific
predicates as well as what are essentially templates for sum-
mary formulae involving those predicates, opening up pos-
sibilities for novel predicates and more expressive formulae
induced by new methods. We propose two such models next.

3.3 Count SuMM
A count SuMM (CSuMM) leverages count predicates,
thereby generalizing BSuMM.
Definition 8. A CSuMM for event label X ⊆ L and influ-
encing set U with look-backs {κX : ∀X ∈ U} and maximum
count parameters {c∗X : ∀X ∈ U} is a logical SuMM with
summary formulae of the form ∧X∈U (pC(X, c, r, κX) where
c is an integer between 0 and c∗X . The relation r is chosen to
be ‘=’ for c ∈ {0, · · · , c∗X − 1} and ‘≥’ when c = c∗X . There
are

∏
X∈U (c∗X + 1) rules in the program, one for each com-

bination of counts in the model’s scope.
In our version of CSuMM, a rule specifies whether the

number of occurrences of an influencing event type X equals
a count up to c∗X − 1 or whether it equals or exceeds c∗X .
This restriction forces the LSuMM to be fully determined.
Choosing c∗X = 1 for all X results in BSuMM. It is possible
to generalize CSuMM further by allowing other relations on
counts but we do not pursue such extensions in this work.
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3.4 Shared Order SuMM
A major limitation of OSuMM is that there are a super-
exponential number of rules and therefore parameters in the
LSuMM. This makes it challenging to learn generalizable
models, particularly when data is limited. To address this
issue, we propose using new predicates and summary for-
mulae in rules that effectively behave like a disjunction of
order predicates. The following example and subsequent def-
initions show how the format for the new formulae enable
parameter sharing across orders, in a manner that is concep-
tually similar to recent work [Bhattacharjya et al., 2021].
Example 5. Consider the following illustrative LSuMM for
predicting failure event C based on influencers U = {A,B}:

pP (C) : 0.01← pU (U, c = 0,′ =′, 5)

pP (C) : 0.02← pU (U, c = 1,′ =′, 5) ∧ (pO([A], 5) ∨ pO([B], 5))

pP (C) : 0.5← pU (U, c = 2,′ =′, 5) ∧ pO([A,B], 5)

pP (C) : 0.05← pU (U, c = 2,′ =′, 5) ∧ pO([B,A], 5)

In the situation modeled by this program, failure event type
C is most likely to occur when both A and B occur, in that
order, within κ = 5 positions. The unique predicate pU (·) in
the rules controls the number of distinct occurrences of A and
B. For example, the second rule conveys that when exactly
one of either A or B occurs, C’s probability is 2%. Thus
the orders [A] and [B] share the same probability parameter.
The summary formula in this rule is equivalent to pU (U, c =
1,′ =′, 5) ∧ True since only either A or B can occur.
Definition 9. A shared order summary formula correspond-
ing to orders of length l is of the form PU (U, l,′ =′, κ) ∧i
(ti) where ti is either True or an order position predicate
pOP (X,U, j, κ, ϕ) or its negation for some integer j between
1 and l for some event X ∈ U. It is feasible if compatible
with at least one permutation of a subset of U.

Note that we use a conjunction of order position predicates
to capture order sharing by specifying restrictions on posi-
tions in the order, instead of disjunctions of order predicates
like in Example 5. This is done to be consistent with the
learning algorithm as described in the next section.
Definition 10. A SOSuMM for event label X ⊆L and influ-
encing set U with look-back κ and masking function ϕ(·) is a
logical SuMM with feasible shared order summary formulae
of lengths from l = 0 to |U|. The number of rules depend
on the extent of parameter sharing but the summary formulae
should be mutually exclusive and collectively exhaustive with
respect to possible historical orders.

4 Learning Algorithms
In this section, we briefly describe greedy search probabilis-
tic rule induction algorithms for the proposed LSuMMs. For
simplifying the exposition, we assume that the influencing
set U for labels of interest X ⊆ L are known. It is straight-
forward to embed the proposed algorithms as an inner loop
within an outer loop for finding U; an example involving
forward-backward search is detailed in Appendix A. First we
show how to learn any LSuMM given the rules, and then de-
scribe rule induction for CSuMM and SOSuMM.

Algorithm 1 CSuMM Learner (given influencers)
Input: labels of interest X, influencers U, data D
Hyper-parameters: look-back κ, max. count c∗

1: Initialize cX = 1 ∀X ∈ U, explored set E = ∅.
2: Learn BSuMM as initial opt. model M∗.
3: while opt. score does not increase and E ⊂ U do
4: for all labels not in E do
5: Set cX = c∗ for that label (with cX fixed from M∗

for all other labels).
6: Learn corresponding CSuMM.
7: end for
8: Set model from this round with max. score as M.
9: if M’s score > M∗’s score then

10: M∗ = M, add corr. label toE, opt. score increases.
11: end if
12: end while
13: return CSuMM M∗

4.1 Learning an LSuMM with Known Rules
Recall that a summary formula involving labels U summa-
rizes the history and is thus a summary state, which we denote
s. We can therefore follow prior work for parameter learning
of LSuMMs given rules [Bhattacharjya et al., 2022]. The log
likelihood of an LSuMM with known rules on data D can be
written by modeling how summary states affect the random
variable X corresponding to label set X:

LLX =
∑
x

∑
s

(
N(x; s)log(θx|s)

)
, (1)

where N(x, s) counts the number of times in D where X
is observed to be in state x and summary formula s is true,
based on look-back(s) κ and optionally masking function ϕ(·)
(which are hidden as a notational simplification).

We take a Bayesian approach by estimating probabilities
θ̂x|s with a Dirichelet prior following estimation in SuMMs.
In case there are missing rules, possibly due to a lack of suffi-
cient data, the Bayesian approach ensures a fully determined
LSuMM through default probabilities. We use the Bayesian
information criterion (BIC) as a score to prevent over-fitting
by penalizing complex models as follows:

ScoreX = LL∗
X − γ|P | log (N)

2
, (2)

where γ is a penalty complexity parameter in (0, 1], |P | is the
number of free model parameters, N is the total number of
events in D and LL∗

X is the log likelihood from equation (1)
computed at the probability estimates θ̂x|s.

4.2 Learning CSuMM
The rule induction pseudo-code for CSuMM is provided in
Algorithm 1. The search initializes the program as a BSuMM,
and then greedily explores event labels X in the influencing
set U to check if the score improves when count predicates
with cX = 1 in the program are modified to cX = c∗, which
expands the number of rules and therefore also parameters.
c∗ is a maximum count hyper-parameter for this LSuMM.
Remark 11. CSuMM M∗ from Algo. 1 is fully determined.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5671



Algorithm 2 SOSuMM Learner (given influencers)
Input: labels of interest X, influencers U, data D
Hyper-parameters: look-back κ, masking function ϕ(·)

1: for all integers l from 0 to |U| do
2: Initialize this l model with summary formula F0 =

PU (U, l,′ =′, κ), unvisited formula set F = {F0}.
3: Learn SOSuMM with F0 as initial opt. model M∗

l .
4: while F is not empty do
5: Choose any formula Fc from F.
6: Find all feasible split pairs (F ′, F ′′) from Fc.
7: for all feasible split pairs (F ′, F ′′) do
8: Replace formula Fc with F ′ and F ′′ in program.
9: Learn corresponding SOSuMM.

10: end for
11: Set model from this round with max. score as Ml.
12: if Ml’s score > M∗

l ’s score then
13: M∗

l = Ml, add F ′ and F ′′ to F.
14: end if
15: Remove Fc from F.
16: end while
17: end for
18: return SOSuMM M∗ = {M∗

l : ∀l}.

4.3 Learning SOSuMM
Algorithm 2 outlines the somewhat more complicated rule
induction pseudo-code for SOSuMM, which learns rules for
historical orders of all possible lengths l from 0 to |U|. Here
the model is initialized through a program with summary for-
mulae involving only unique predicates, i.e. only specify-
ing the length of the order l. Thus the search begins with a
program containing |U| + 1 rules. The algorithm greedily
searches for potential ways to increase the score by splitting
a formula into two formulae. All possible feasible splits for
a formula are obtained by including order position predicates
through conjunction to apply restrictions to all possible posi-
tions in the order. The following example is illustrative.
Example 6. The summary formula in the second rule in Ex-
ample 5 is pU (U, c = 1,′ =′, 5) ∧ True, which specifies that
exactly one label occurs in the (masked) order. There is only
one feasible split here – either A occurs or B occurs, result-
ing in the formula pair pU (U, c = 1,′ =′, 5)∧ pO([A], 5) and
pU (U, c = 1,′ =′, 5) ∧ pO([B], 5).

The greedy algorithm will choose to split a formula and
increase the number of formulae and therefore parameters if
the gain in model fit as deemed by the log likelihood is worth
the additional model complexity. Thus the data controls the
number of shared order formulae in the induced SOSuMM.
Remark 12. SOSuMM M∗ from Algo. 2 is fully determined.

5 Experiments
An empirical investigation involving different tasks is con-
ducted to study the benefits of the newly proposed LSuMMs.

5.1 Prediction
Task. We wish to predict whether a single event label of
interest will occur (or not) next in the sequence, given the

history. Models are learned using a train set (70%) as well as
a dev set (15%) for hyper-parameter tuning, and then evalu-
ated on a test set (15%). Since all models are probabilistic,
we use negative log loss as the evaluation metric, averaged
over labels of interest; this is a popular metric for probabilis-
tic prediction and is equivalent to the logarithmic scoring rule
as well as log likelihood in our case [Bishop, 2006].

Datasets & Baselines. We use the same real-world datasets
and baselines as recent work on SuMMs [Bhattacharjya et al.,
2022]. The first 3 datasets are time-stamped event datasets
where time-stamps are omitted, whereas the last 2 datasets
are sequences curated from unstructured textual corpora:
• Diabetes [Frank and Asuncion, 2010]: Blood glucose level

changes, dosage, and other events for diabetic patients.
• LinkedIn [Xu et al., 2017]: Events that register jobs or role

changes for 1000 LinkedIn users at 10 tech companies.
• Stack Overflow [Grant and Betts, 2013]: Events around

receipt of badges in a question answering website by 1000
users chosen from [Du et al., 2016].

• Beige Books: Event topics in documents published by the
Federal Reserve Board on economic conditions in U.S.A.

• Timelines: Event-related concepts in Wikidata [Vrandecic
and Krötzsch, 2014] extracted from timeline sections of so-
cietal event Wikipedia articles 1.

For baselines, we compare with other interpretable proba-
bilistic sequence models: kth order Markov chains (MC) for
varying k, logistic regression (LR) with a varying look-back
of k positions, and prior SuMMs [Bhattacharjya et al., 2022].
We also consider a simple LSTM [Hochreiter and Schmid-
huber, 1997] as a representative neural model with less in-
terpretability. Further details about datasets and experiments
(including hyper-parameters) are provided in Appendix B.

Results. Table 1 displays results for this task. The pro-
posed models are competitive, performing best among the in-
terpretable models on 2 datasets each; in particular, CSuMM
and SOSuMM improve upon BSuMM and OSuMM respec-
tively. Logistic regression (LR) performs much better than
any other model on LinkedIn; we conjecture that since the
time-stamped version of the dataset is known to be suitably
modeled as a Hawkes process, which can sometimes be re-
duced to weighted LR [Menon and Lee, 2018], LR is able to
adequately fit feature weights based on the recency of events.
While LSTM performs best on Timelines, which has more
event labels than other dataset, CSuMM is a close second.
The results generally show that the proposed LSuMMs im-
prove upon the state-of-the-art in interpretable event sequence
prediction models. They retain the benefit of identifying in-
fluencers like SuMMs but could potentially also be deployed
by reasoners since they induce probabilistic logical rules.

5.2 Influencing Set Identification
Task, Datasets & Baselines. We compare the sizes of the
influencing sets that are learned for all 4 LSuMMs. All
models are trained on the train set using the same hyper-
parameters: Dirichlet prior α = 0.1, look-back κ = 5 and
penalty complexity γ = 1. For CSuMM, we choose c∗ = 3;

1https://doi.org/10.5281/zenodo.7964471
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Dataset 1-MC 2-MC 3-MC 3-LR 5-LR BSuMM OSuMM CSuMM SOSuMM LSTM

Beige Books -60.91 -40.37 -37.66 -36.85 -36.15 -36.11 -38.07 -36.11 -34.01 -63.65
Diabetes -513.01 -488.42 -473.96 -506.05 -497.92 -497.90 -432.89 -492.48 -429.57 -595.57
LinkedIn -110.58 -112.55 -119.55 -92.23 -93.37 -114.52 -115.63 -114.46 -112.07 -135.92
Stack Overflow -1278.96 -1283.66 -1435.12 -1277.84 -1263.54 -1242.59 -1246.64 -1239.74 -1243.07 -1246.45
Timelines -154.47 -611.78 -1343.52 -160.84 -184.05 -141.42 -142.18 -136.38 -140.13 -135.98

Table 1: Avg. neg. log loss over labels of interest computed on test sets for 5 datasets. kth order Markov chains (MC) lie in k = {1, 2, 3},
and logistic regression (LR) is shown for look-back k = {3, 5}. BSuMM/OSuMM are baselines that are also LSuMMs. Bold and italics are
used for the best and second best performance respectively, among the interpretable models. LSTM acts as a representative neural baseline.

Dataset BSuMM OSuMM CSuMM SOSuMM

Beige Books 3.53 2.73 3.53 5.60
Diabetes 2.31 2.23 2.08 4.46
LinkedIn 1.80 1.50 1.80 3.30
Stack Overflow 2.40 2.00 2.30 5.00
Timelines 1.67 1.47 1.47 2.93

Table 2: Avg. influencing set size over labels of interest for all
LSuMMs on the train sets for 5 datasets.

this was seen to be a reasonable empirical choice. We use the
same 5 real-world datasets as in the previous experiment.

Results. Table 2 shows that SOSuMM learns around double
the number of influencers on average, compared to OSuMM.
OSuMM and CSuMM have more parameters than BSuMM
for the same influencing set size, therefore typically learn
smaller models. While there is no guarantee that SOSuMM
identifies the correct influencers, the robust predictive perfor-
mance from the previous experiment and consistency of the
learning approach provides at least some evidence that the in-
duced influencers are not superfluous. Thus SoSuMM could
be a useful knowledge acquisition tool in practice.

5.3 Guided Text Generation for Timelines
Task & Setup. We conduct a qualitative investigation to ex-
plore the effect of using influencing sets from LSuMMs as
“context” in Large Language Models (LLMs). Our goal is
to use an LSuMM to propose a potential next event label X
(chosen from event-related Wikidata concepts, similar to the
Timelines dataset) and then to guide an LLM to generate its
textual description by providing additional context using the
LSuMM’s influencing set U for X . This is inspired by re-
cent work on context controlled LLMs [Petroni et al., 2020;
Guu et al., 2020; Wei et al., 2022]. In our current setup, we
choose examples where the current event belongs to U and
explore how other influencers might affect the generated text.

Results. We consider a sample from the raw text of
the Timelines dataset around the COVID-19 Pandemic in
Israel and use GPT3 [Brown et al., 2020] to gener-
ate a piece of text about the event type X = protest.
The influencing set generated by BSuMM, OSuMM and
CSuMM (for c∗ = 3) for event type protest is U =
{disease outbreak, protest, protest march}. SOSuMM also
includes {pathogen transmission, testing} as influencers. We
choose disease outbreak ∈ U as the current event type such
that a disease outbreak event leads to a protest event, and

Figure 2: Sample textual output generated by GPT3 based on influ-
encing sets as context from SOSuMM vs. the other 3 LSuMMs.

study the effect of adding other influencing events as context
for next event text generation.

Figure 2 shows the sample textual output for the next event
generated by GPT3 based on the prompt text (including the
current event textual description) and different influencing
event types as additional context. We see that a potential ad-
vantage of SOSuMM’s larger influencing set size is that it
may be able to provide more meaningful context for GPT3 to
generate richer sample text about protest; this additional de-
tail, e.g., demands for more testing, and output variety could
be beneficial for an analyst. Further illustrative examples are
provided in Appendix C.

6 Conclusion

We introduced logical summary Markov models, a family
of event sequence models that enable interpretable predic-
tions in the form of probabilistic logical rules. We proposed
two new models that belong to this family: count SuMM
and shared order SuMM, along with efficient greedy search
algorithms for learning them. Experiments on real-world
datasets show the improved performance of these models for
event prediction compared with relevant baselines, and poten-
tial benefits of larger influencing sets from the shared order
SuMM through guiding text generation for event prediction
using large language models. Future directions will focus
on additional novel models and learning approaches for the
LSuMM family, along with neuro-symbolic reasoning sys-
tems where the combination of learned logical rules and neu-
ral models outperform purely neural or symbolic methods.
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