
On the Complexity of Counterfactual Reasoning

Yunqiu Han , Yizuo Chen , Adnan Darwiche
University of California, Los Angeles

yunqiu21@g.ucla.edu, yizuo.chen@ucla.edu, darwiche@cs.ucla.edu

Abstract
We study the computational complexity of coun-
terfactual reasoning in relation to the complexity
of associational and interventional reasoning on
structural causal models (SCMs). We show that
counterfactual reasoning is no harder than associ-
ational or interventional reasoning on fully spec-
ified SCMs in the context of two computational
frameworks. The first framework is based on the
notion of treewidth and includes the classical vari-
able elimination and jointree algorithms. The sec-
ond framework is based on the more recent and re-
fined notion of causal treewidth which is directed
towards models with functional dependencies such
as SCMs. Our results are constructive and based on
bounding the (causal) treewidth of twin networks—
used in standard counterfactual reasoning that con-
templates two worlds, real and imaginary—to the
(causal) treewidth of the underlying SCM struc-
ture. In particular, we show that the latter (causal)
treewidth is no more than twice the former plus one.
Hence, if associational or interventional reasoning
is tractable on a fully specified SCM then coun-
terfactual reasoning is tractable too. We extend
our results to general counterfactual reasoning that
requires contemplating more than two worlds and
discuss applications of our results to counterfac-
tual reasoning with partially specified SCMs that
are coupled with data. We finally present empiri-
cal results that measure the gap between the com-
plexities of counterfactual reasoning and associa-
tional/interventional reasoning on random SCMs.

1 Introduction
A theory of causality has emerged over the last few decades
based on two parallel hierarchies, an information hierarchy
and a reasoning hierarchy, often called the causal hierar-
chy [Pearl and Mackenzie, 2018]. On the reasoning side,
this theory has crystallized three levels of reasoning with in-
creased sophistication and proximity to human reasoning: as-
sociational, interventional and counterfactual, which are ex-
emplified by the following canonical probabilities. Asso-
ciational Pr(y|x): probability of y given that x was ob-

Figure 1: A structural causal model from [Bareinboim et al., 2021]
and its twin network. Endogenous variables represent treatment
(X), the outcome of (Y ), and the presence of (Z), hypertension.
Exogenous variables represent natural resistance to disease (Ur) and
sources of variation affecting endogenous variables (Ux, Uy, Uz).

served. Example: probability that a patient has a flu given
they have a fever. Interventional Pr(yx): probability of y
given that x was established by an intervention. This is dif-
ferent from Pr(y|x). Example: seeing the barometer fall
tells us about the weather but moving the barometer needle
won’t bring rain. Counterfactual Pr(yx|ȳ, x̄): probability of
y if we were to establish x by an intervention given that nei-
ther x nor y are true. Example: probability that a patient
who did not take a vaccine and died would have recovered
had they been vaccinated. On the information side, these
forms of reasoning were shown to require different levels of
knowledge, encoded as (1) associational models, (2) causal
models and (3) functional (mechanistic) models, respec-
tively, with each class of models containing more informa-
tion than the preceding one. In the framework of probabilistic
graphical models [Koller and Friedman, 2009], this informa-
tion is encoded by (1) Bayesian networks [Darwiche, 2009;
Pearl, 1988], (2) causal Bayesian networks [Pearl, 2009;
Peters et al., 2017; Spirtes et al., 2000], and (3) functional
Bayesian networks [Balke and Pearl, 1995; Pearl, 2009].

Counterfactual reasoning has received much interest as it
inspires both introspection and contemplating scenarios that
have not been seen before, and is therefore viewed by many
as a hallmark of human intelligence. Figure 1 depicts a func-
tional Bayesian network, also known as a structural causal
model (SCM) [Galles and Pearl, 1998; Halpern, 2000], which
can be used to answer counterfactual queries. Variables with-
out causes are called exogenous or root and variables with
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causes are called endogenous or internal. The only uncer-
tainty in SCMs concerns the states of exogenous variables
and this uncertainty is quantified using distributions over
these variables. Endogenous variables are assumed to be
functional: they are functionally determined by their causes
where the functional relationships, also known as causal
mechanisms, are specified by structural equations.1 These
equations and the distributions over exogenous variables de-
fine the parameters of the causal graph, leading to a fully
specified SCM which can be used to evaluate associational,
interventional and counterfactual queries. For example, the
SCM in Figure 1 has enough information to evaluate the
counterfactual query Pr(yx|x̄, ȳ): the probability that a pa-
tient who did not take the treatment and died would have been
alive had they been given the treatment (2.17%). A causal
Bayesian network contains less information than a functional
one (SCM) as it does not require endogenous variables to be
functional, but it is sufficient to compute associational and in-
terventional probabilities. A Bayesian network contains even
less information as it does not require network edges to have a
causal interpretation, only that the conditional independences
encoded by the network are correct, so it can only compute
associational probabilities.

All three forms of reasoning (and models) involve a di-
rected acyclic graph (DAG) which we call the base network;
see left of Figure 1. Associational and interventional rea-
soning can be implemented by applying classical inference
algorithms to the base network. The time complexity can
be bounded by n · exp(w), where n is the number of net-
work nodes and w is its treewidth (a graph-theoretic measure
of connectivity). Counterfactual reasoning is more sophisti-
cated and is based on a three-step process that involves abduc-
tion, intervention and prediction [Balke and Pearl, 1994b].
When contemplating two worlds, this process can be im-
plemented by applying classical inference algorithms to a
twin network [Balke and Pearl, 1994b], obtained by dupli-
cating endogenous nodes in the base network; see right of
Figure 1. To compute the counterfactual query Pr(yx|ȳ, x̄),
one asserts ȳ, x̄ as an observation on one side of the twin
network (real world) and computes the interventional query
Pr(yx) on the other side of the network (imaginary world).
The time complexity can be bounded by nt · exp(wt), where
nt is the number of nodes in the twin network and wt is its
treewidth. A recent result provides a much tighter bound us-
ing the notion of causal treewidth [Chen and Darwiche, 2022;
Darwiche, 2021], which is no greater than treewidth but ap-
plies only when certain nodes in the base network are func-
tional — in SCMs every endogenous node is functional.

One would expect the more sophisticated counterfactual
reasoning with twin networks to be more expensive than as-
sociational/interventional reasoning with base networks since
the former networks are larger and have more complex
topologies. But the question is: How much more expensive?
For example, can counterfactual reasoning be intractable on
a twin network when associational/interventional reasoning

1These equations can also be specified using conditional prob-
ability tables (CPTs) that are normally used in Bayesian networks,
but the CPTs will contain only deterministic distributions.

is tractable on its base network? We address this question
in the context of reasoning algorithms whose complexity is
exponential only in the (causal) treewidth, such as the join-
tree algorithm [Lauritzen and Spiegelhalter, 1988], the vari-
able elimination algorithm [Zhang and Poole, 1994; Dechter,
1996] and circuit-based algorithms [Darwiche, 2003; Dar-
wiche, 2022]. In particular, we show in Sections 3 & 4 that
the (causal) treewidth of a twin network is at most twice
the (causal) treewidth of its base network plus one. Hence,
the complexity of counterfactual reasoning on fully specified
SCMs is no more than quadratic in the complexity of asso-
ciational and interventional reasoning, so the former must be
tractable if the latter is tractable. We extend our results in Sec-
tion 5 to counterfactual reasoning that requires contemplating
more than two worlds, where we also discuss a class of appli-
cations that require this type of reasoning and for which fully
specified SCMs can be readily available. Our results apply
directly to counterfactual reasoning on fully specified SCMs
but we also discuss in Section 6 how they can sometimes be
used in the context of counterfactual reasoning on data and a
partially specified SCM. We finally present empirical results
in Section 7 which reveal that, on average, the complexity
gap between counterfactual and associational/interventional
reasoning on fully specified SCMs can be smaller than what
our worst-case bounds may suggest.

2 Technical Preliminaries
We next review the notions of treewidth [Robertson and Sey-
mour, 1986] and causal treewidth [Chen and Darwiche, 2022;
Darwiche, 2021; Darwiche, 2020] which we use to character-
ize the computational complexity of counterfactual reasoning
on fully specified SCMs. We also review the notions of elim-
ination orders, jointrees and thinned jointrees which are the
basis for defining (causal) treewidth and act as data struc-
tures that characterize the computational complexity of var-
ious reasoning algorithms. We use these notions extensively
when stating and proving our results (proofs of all results are
in the Appendix found in [Han et al., 2023]). We assume all
variables are discrete. A variable is denoted by an uppercase
letter (e.g. X) and its values by a lowercase letter (e.g. x). A
set of variables is denoted by a bold uppercase letter (e.g. X)
and its instantiations by a bold lowercase letter (e.g. x).

2.1 Elimination Orders and Treewidth
These are total orders of the network variables which drive,
and characterize the complexity of, the classical variable
elimination algorithm when computing associational, inter-
ventional and counterfactual queries. Consider a DAG G
where every node represents a variable. An elimination or-
der π for G is a total ordering of the variables in G, where
π(i) is the ith variable in the order, starting from i = 1. An
elimination order defines an elimination process on the moral
graph of DAG G which is used to define the treewidth of G.
The moral graph Gm is obtained from G by adding an undi-
rected edge between every pair of common parents and then
removing directions from all directed edges. When we elimi-
nate variable π(i) from Gm, we connect every pair of neigh-
bors of π(i) in Gm and remove π(i) from Gm. This elim-
ination process induces a cluster sequence C1,C2, . . . ,Cn,
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Figure 2: A family f appears next to a jointree node i iff f is hosted
by i (i ∈ H(f)). D is functional and red variables are thinned.

(a) half adder

UX Y

A B

S C

(b) base network

UX Y

A B

S C

[A] [B]

[S] [C]

(c) twin network

UX Y

A B

S C

[A] [B]

[S] [C]

(d) mutilated

Figure 3: Internal nodes in the base network (Figure (b)) are func-
tional. Double-circled nodes have evidence.

where Ci is π(i) and its neighbors in Gm just before elimi-
nating π(i). The width of an elimination order is the size of its
largest induced cluster minus 1. The treewidth for DAG G is
the minimum width of any elimination order for G. The vari-
able elimination algorithm computes queries in O(n·exp(w))
time where n is the number of nodes in the (base or twin) net-
work and w is the width of a corresponding elimination order.
Elimination orders are usually constructed using heuristics
that aim to minimize their width. We use the popular min-
fill heuristic [Kjaerulff, 1990] in our experiments while noting
that more effective heuristics may exist as shown in [Kjærulff,
1994; Larrañaga et al., 1997].

2.2 Jointrees and Treewidth
These are data structures that drive, and characterize the com-
plexity of, the classical jointree algorithm; see Figure 2b. Let
the family of variable X in DAG G be the set fX containing
X and its parents in G. A jointree for DAG G is a pair ⟨T ,H⟩
where T is a tree and H is a function that maps each family f
of G into nodes H(f) in T called the hosts of family f . The
requirements are: only nodes with a single neighbor (called
leaves) can be hosts; each leaf node hosts exactly one family;
and each family must be hosted by at least one node.2 This
induces a cluster Ci for each jointree node i and a separator
Sij for each jointree edge (i, j) which are defined as follows.
Separator Sij is the set of variables hosted at both sides of
edge (i, j). If jointree node i is a leaf then cluster Ci is the
family hosted by i; otherwise, Ci is the union of separators
adjacent to node i. The width of a jointree is the size of its

2The standard definition of jointrees allows any node to be a host
of any number of families. Our definition facilitates the upcoming
treatment and does not preclude optimal jointrees.

largest cluster minus 1. The minimum width attained by any
jointree for G corresponds to the treewidth of G. The jointree
algorithm computes queries in O(n · exp(w)) time where n
is the number of nodes and w is the width of a correspond-
ing jointree. Jointrees are usually constructed from elimina-
tion orders, and there are polytime, width-preserving transfor-
mations between elimination orders and jointrees; see [Dar-
wiche, 2009, Ch 9] for details.

2.3 Thinned Jointrees and Causal Treewidth
To thin a jointree is to remove some variables from its separa-
tors (and hence clusters, which are defined in terms of sepa-
rators); see Figure 2c. Thinning can reduce the jointree width
quite significantly, leading to exponential savings in reason-
ing time. Thinning is possible only when some variables in
the network are functional, even without knowing the spe-
cific functional relationships (i.e., structural equations). The
causal treewidth is the minimum width for any thinned join-
tree. Causal treewidth is no greater than treewidth and the
former can be bounded when the latter is not. While this
notion can be applied broadly as in [Darwiche, 2020], it is
particularly relevant to counterfactual reasoning since every
internal node in an SCM is functional so the causal treewidth
for SCMs can be much smaller than their treewidth. There are
alternate definitions of thinned jointrees. The next definition
is based on thinning rules [Chen and Darwiche, 2022].

A thinning rule removes a variable from a separator under
certain conditions. There are two thinning rules which apply
only to functional variables. The first rule removes variable
X from a separator Sij if edge (i, j) is on the path between
two leaf nodes that host the family of X and every separator
on that path contains X . The second rule removes variable
X from a separator Sij if no other separator Sik contains X ,
or no other separator Skj contains X . A thinned jointree is
obtained by applying these rules to exhaustion. Figure 2 de-
picts an optimal, classical jointree and a thinned jointree for
the same DAG (the latter has smaller width).

The effectiveness of thinning rules depends on the number
of jointree nodes that host a family f , |H(f)|, and the location
of these nodes in the jointree. One can enable more thinnings
by increasing the number of jointree nodes that host each fam-
ily f . This process is called replication where |H(f)| is called
the number of replicas for family f . Replication comes at the
expense of increasing the number of jointree nodes so the def-
inition of causal treewidth limits this growth by requiring the
jointree size to be a polynomial in the number of nodes in the
underlying DAG; see [Chen and Darwiche, 2022] for details.3

3 The Treewidth of Twin Networks
Consider Figure 3a which depicts a 2-bit half adder. Suppose
the binary inputs A and B are randomly sampled from some

3Thinning rules will not trigger if families are not replicated
(|H(f)| = 1 for all f ). Replication usually increases the width
of a jointree from w to wr with the goal of having thinning rules
reduce width wr to width wt < w ≤ wr . The replication strat-
egy may sometimes not be effective on certain networks, leading to
w < wt ≤ wr . We use the strategy in [Chen and Darwiche, 2022]
which exhibits this behavior on certain networks.
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distribution and the gates may not be functioning properly.
This circuit can be modeled using the network in Figure 3b.
Variables A,B, S,C represent the inputs and outputs of the
circuit; X,Y represent the health of the XOR gate and the
AND gate; and U represents an unknown external random
sampler that decides the state of inputs A and B. Suppose
that currently input A is high, input B is low, yet both out-
puts C and S are low which is an abnormal circuit behavior.
We wish to know whether the half adder would still behave
correctly when we turn both inputs A and B on. This question
can be formulated using the following counterfactual query:
Pr((c, s̄)a,b|a, b̄, c̄, s̄). This query can be answered using a
twin network as shown in Figure 3c, where each non-root
variable V has a duplicate [V ]. The current evidence a, b̄, c̄, s̄
is asserted on the variables A,B,C, S representing the real
world and the interventional query Pr((c, s̄)a,b) is computed
on the duplicate variables [A], [B], [C], [S] representing the
imaginary world. This is done by removing the edges incom-
ing into the intervened upon variables [A], [B], asserting evi-
dence [a], [b] and finally computing the probability of [c], [s̄]
as shown in Figure 3d; see [Pearl, 2009] for an elaborate dis-
cussion of these steps. This basically illustrates how a coun-
terfactual query can be computed using algorithms for asso-
ciational queries, like variable elimination, but on a mutilated
twin network instead of the base network.

We next show that the treewidth of a twin network is at
most twice the treewidth of its base network plus one, which
allows us to relate the complexities of assocational, interven-
tional and counterfactual reasoning on fully specified SCMs.
We first recall the definition of twin networks as proposed
by [Balke and Pearl, 1994b].

Definition 1. Given a base network G, its twin network Gt

is constructed as follows. For each internal variable X in G,
add a new variable labeled [X]. For each parent P of X , if P
is an internal variable, make [P ] a parent of [X]; otherwise,
make P a parent of [X]. We will call X a base variable and
[X] a duplicate variable.

For convenience, we use [U ] = U when U is root. For
variables X, we use [X] to denote {[X]|X ∈ X}. Figure 3c
depicts the twin network for the base network in Figure 3b.

3.1 Twin Elimination Orders
Our result on the treewidth of twin networks is based on con-
verting every elimination order for the base network into an
elimination order for its twin network while providing a guar-
antee on the width of the latter in terms of the width of the
former. We provide a similar result for jointrees that we use
when discussing the causal treewidth of twin networks.

Definition 2. Consider an elimination order π for a base
network G. The twin elimination order πt is an elimination
order for its twin network Gt constructed by replacing each
non-root variable X in π by X, [X].

Consider the base network in Figure 3b and its elimination
order π = A, B, X , Y , S, C, U . The twin elimination or-
der will be πt = A, [A], B, [B], X , Y , S, [S], C, [C], U .
Recall that eliminating variables π(i), . . . , π(n) from a base
network G induces a cluster sequence C1, . . . ,Cn. We use

(a) base jointree (b) twin jointree using Algorithm 1

Figure 4: A family f appears next to a jointree node i iff the family
is hosted by that node (i ∈ H(f)).

C(X) to denote the cluster of eliminated variable X . Simi-
larly, eliminating variables from a twin network Gt induces a
cluster sequence and we use Ct(X) to denote the cluster of
eliminated variable X and Ct([X]) to denote the cluster of
its eliminated duplicate [X].
Theorem 1. Suppose we are eliminating variables from base
network G using an elimination order π and eliminating vari-
ables from its twin network Gt using the twin elimination
order πt. For every variable X in G, we have Ct(X) ⊆
C(X) ∪ [C(X)] and Ct([X]) ⊆ C(X) ∪ [C(X)].

This theorem has two key corollaries. The first relates the
widths of an elimination order and its twin elimination order.
Corollary 1. Let w be the width of elimination order π for
base network G and let wt be the width of twin elimination
order πt for twin network Gt. We then have wt ≤ 2w + 1.

The above bound is tight as shown in the Appendix. The
next corollary gives us our first major result.
Corollary 2. If w is the treewidth of base network G and wt

is the treewidth of its twin network Gt, then wt ≤ 2w + 1.

3.2 Twin Jointrees
We will now provide a similar result for jointrees. That is,
we will show how to convert a jointree ⟨T ,H⟩ for a base
network G into a jointree ⟨T t,Ht⟩ for its twin network Gt

while providing a guarantee on the width/size of the twin join-
tree in terms of the width/size of the base jointree. This may
seem like a redundant result given Corollary 1 but the pro-
vided conversion will actually be critical for our later result
on bounding the causal treewidth of twin networks. It can also
be significantly more efficient than constructing a jointree by
operating on the (larger) twin network.

Our conversion process operates on a jointree after direct-
ing its edges away from some node r, call it a root. This
defines a single parent for each jointree node i ̸= r, which
is the neighbor of i closest to root r, with all other neighbors
of i being its children. These parent-child relationships are
invariant when running the algorithm. We also use a subrou-
tine for duplicating the jointree nodes rooted at some node
i. This subroutine duplicates node i and its descendant while
also duplicating the edges connecting these nodes. If a dupli-
cated node j hosts a family f , this subroutine will make [j]
host the duplicate family [f ] (so j ∈ H(f) iff [j] ∈ H([f ])).
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Algorithm 1 Jointree to Twin Jointree
1: procedure MAKE-TWIN-JOINTREE(⟨T ,H⟩, r, p)
2: Σ← leaf nodes at or below node r
3: if nodes in Σ only host families for root variables then
4: return
5: if nodes in Σ only host families for internal variables then
6: duplicate the jointree nodes rooted at node r
7: add [r] as a child of p
8: else
9: for each child k of node r do

10: MAKE-TWIN-JOINTREE(⟨T ,H⟩, k, r)

The conversion process is given in Algorithm 1 which
should be called initially with a root r that does not host a
family for an internal DAG node and p = null. The twin join-
tree in Figure 4b was obtained from the base jointree in Fig-
ure 4a by this algorithm which simply adds nodes and edges
to the base jointree. If an edge (i, j) in the base jointree is
duplicated by Algorithm 1, we call (i, j) a duplicated edge
and ([i], [j]) a duplicate edge. Otherwise, we call (i, j) an
invariant edge. In Figure 4b, duplicate edges are shown in
red and invariant edges are shown in green. We now have the
following key result on these twin jointrees.

Theorem 2. If the input jointree to Alg. 1 has separators S
and the output jointree has separators St, then for duplicated
edges (i, j), St

ij = Sij; for duplicate edges ([i], [j]), St
[i][j] =

[Sij ]; and for invariant edges (i, j), St
ij = Sij ∪ [Sij ].

One can verify that the separators in Figure 4 satisfy these
properties. The following result bounds the width and size of
twin jointrees generated by Algorithm 1.

Corollary 3. Let w be the width of a jointree for base net-
work G and let n be the number of jointree nodes. Calling
Algorithm 1 on this jointree will generate a jointree for twin
network Gt whose width is no greater than 2w+1 and whose
number of nodes is no greater than 2n.

The above bound on width is tight as shown in the Ap-
pendix. Since treewidth can be defined in terms of jointree
width, the above result leads to the same guarantee of Corol-
lary 2 on the treewidth of twin networks. However, the main
role of the construction in this section is in bounding the
causal treewidth of twin networks. This is discussed next.

4 The Causal Treewidth of Twin Networks
Recall that causal treewidth is a more refined notion than
treewidth as it uses more information about the network. In
particular, this notion is relevant when we know that some
variables in the network are functional, without needing to
know the specific functions (equations) of these variables. By
exploiting this information, one can construct thinned join-
trees that have smaller separators and clusters compared to
classical jointrees, which can lead to exponential savings in
reasoning time [Chen and Darwiche, 2022; Darwiche, 2021;
Darwiche, 2020]. As mentioned earlier, the causal treewidth
corresponds to the minimum width of any thinned jointree.
This is guaranteed to be no greater than treewidth and can be
bounded when treewidth is not [Darwiche, 2021]. We next

X Y

A B

S C

X Y
A1 B1

S1C1
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B2
S2
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S3
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Figure 5: A base network and its 3-world network.

show that the causal treewidth of a twin network is also at
most twice the causal treewidth of its base network plus one.
Theorem 3. Consider a twin jointree constructed by Algo-
rithm 1 from a base jointree with thinned separators S. The
following are valid thinned separators for this twin join-
tree: for duplicated edges (i, j), St

ij = Sij; for duplicate
edges ([i], [j]); St

[i][j] = [Sij ]; and for invariant edges (i, j),
St
ij = Sij ∪ [Sij ].
This theorem shows that a thinned, base jointree can be

easily converted into a thinned, twin jointree. This is signif-
icant for two reasons. First, this method avoids the explicit
construction of thinned jointrees for twin networks which
can be quite expensive computationally [Chen and Darwiche,
2022]. Second, we have the following guarantee on the width
of thinned, twin jointrees constructed by Theorem 3.
Corollary 4. Consider the thinned, base and twin jointrees
in Theorem 3. If the thinned, base jointree has width w, then
the thinned, twin jointree has width no greater than 2w + 1.

Due to space constraints, we include a thinned jointree for
the base network and the corresponding thinned, twin jointree
constructed by Algorithm 1 and Theorem 3 in the Appendix.
We can now bound the causal treewidth of twin networks.
Corollary 5. If w and wt are the causal treewidths of a base
network and its twin network, then wt ≤ 2w + 1.

5 Counterfactual Reasoning Beyond Two
Worlds

Standard counterfactual reasoning contemplates two worlds,
one real and another imaginary, while assuming that exoge-
nous variables correspond to causal mechanisms that govern
both worlds. This motivates the notion of a twin network as
it ensures that these causal mechanisms are invariant. We can
think of counterfactual reasoning as a kind of temporal rea-
soning where endogenous variables can change their states
over time. A more general setup arises when we allow some
exogenous variables to change their states over time. For ex-
ample, consider again the half adder in Figure 3a and its base
network in Figure 5. Suppose we set inputs A and B to high
and low and observe outputs S and C to be high and low,
which is a normal behavior. We then set both inputs to low
and observe that the outputs do not change, which is an ab-
normal behavior. We then aim to predict the state of outputs
if we were to set both inputs to high. This scenario involves
three time steps (worlds). Moreover, while the health of gates
X and Y are invariant over time, we do not wish to make the
same assumption about the inputs A and B. We can model
this situation using the network in Figure 5, which is a more
general type of networks that we call N -world networks.
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Definition 3. Consider a base network G and let R be
a subset of its roots and N ≥ 1 be an integer. The
N -world network GN of G is constructed as follows. For
each variable X in G that is not in R, replace it with N dupli-
cates of X , labeled X1, X2, . . . , XN . For each parent P of
X , if P is in R, make P a parent of Xi for all i ∈ 1, 2, . . . , N .
Otherwise, make P i a parent of Xi for all i ∈ 1, 2, . . . , N .

This definition corresponds to the notion of a parallel
worlds model [Avin et al., 2005] when R contains all roots
in the base network. Moreover, twin networks fall as a spe-
cial case when N = 2 and R contains all roots of the base
network. We next bound the (causal) treewidth of N -world
networks by the (causal) treewidth of their base networks.

Theorem 4. If w and wt are the (causal) treewidths of a base
network and its N -world network, then wt ≤ N(w+ 1)− 1.

The class of N -world networks is a subclass of dynamic
Bayesian networks [Dean and Kanazawa, 1989] and is signif-
icant for a number of reasons. First, as illustrated above, it
arises when reasoning about the behavior of systems consist-
ing of function blocks (e.g., gates) [Hamscher et al., 1992].
These kinds of physical systems can be easily modeled us-
ing fully specified SCMs, where the structural equations
correspond to component behaviors and the distributions
over exogenous variables correspond to component reliabil-
ities; see [Darwiche, 2009, Ch 5] for a textbook discussion
and [Mengshoel et al., 2010] for a case study of a real-world
electrical power system. More broadly, N -world networks al-
low counterfactual reasoning that involves conflicting obser-
vations and actions that arise in multiple worlds as in the unit
selection problem [Li and Pearl, 2022]—for example, [Huang
and Darwiche, 2023] used Theorem 4 to obtain bounds on
the complexity of this problem. See also [Avin et al., 2005;
Shpitser and Pearl, 2007; Shpitser and Pearl, 2008] for further
applications of N -world networks in the context of counter-
factual reasoning. The Appendix shows that the treewidth
bound of Theorem 4 holds for a generalization of N -world
networks that permits the duplication of only a subset of base
nodes and allows certain edges that extend between worlds.

Our complexity bounds thus far apply to any counterfactual
query. For a specific counterfactual query, we can further re-
duce the complexity of inference by pruning nodes and edges
as in [Darwiche, 2009, Ch 6] and merging nodes which leads
to counterfactual graphs as in [Shpitser and Pearl, 2007].

6 Counterfactual Reasoning with Partially
Specified SCMs

The results we presented on N -world networks, which in-
clude twin networks, apply directly to fully specified SCMs.
In particular, in the context of variable elimination and join-
tree algorithms, these results allow us to bound the complex-
ity of computing counterfactual queries in terms of the com-
plexity of computing associational/interventional queries.
Moreover, they provide efficient methods for constructing
elimination orders and jointrees that can be used for com-
puting counterfactual queries based on the ones used for an-
swering associational/interventional queries, while ensuring
that the stated bounds will be realized. Recall again that our

bounds and constructions apply to both traditional treewidth
and the more recent causal treewidth.

Causal reasoning can also be conducted on partially spec-
ified SCMs and data, which is a more common and chal-
lenging task. A partially specified SCM typically includes
the SCM structure and some information about its parame-
ters (i.e., its structural equations and the distributions over its
exogenous variables). For example, we may not know any
of the SCM paramaters, or we may know the structural equa-
tions but not the distributions over exogenous variables as as-
sumed in [Zaffalon et al., 2021]. A central question in this
setup is whether the available information, which includes
data, is sufficient to obtain a point estimate for the causal
query of interest, in which case the query is said to be identi-
fiable. A significant amount of work has focused on charac-
terizing conditions under which causal queries (both counter-
factual and interventional) are identifiable; see, [Pearl, 2009;
Spirtes et al., 2000] for textbook discussions of this subject
and [Shpitser and Pearl, 2008; Correa et al., 2021] for some
results on the identification of counterfactual queries.

When a query is identifiable, the classical approach for es-
timating it is to derive an estimand using techniques such
as the do-calculus for interventional queries [Pearl, 1995;
Tian and Pearl, 2002; Shpitser and Pearl, 2006].4 Some re-
cent approaches take a different direction by first estimating
the SCM parameters to yield a fully specified SCM that is
then used to answer (identifiable) interventional and coun-
terfactual queries using classical inference algorithms [Zaf-
falon et al., 2022; Zaffalon et al., 2021; Darwiche, 2021].
Our results on twin and N -world networks apply directly in
this case as they can be used when conducting inference on
the fully parameterized SCM. For unidentifiable queries, the
classical approach is to derive a closed-form bound on the
query; see, for example, [Balke and Pearl, 1994a; Pearl, 1999;
Tian and Pearl, 2000; Dawid et al., 2017; Rosset et al., 2018;
Evans, 2018; Zhang et al., 2021; Mueller et al., 2022].
Some recent approaches take a different direction for estab-
lishing bounds, such as reducing the problem into one of
polynomial programming [Duarte et al., 2021; Zhang et al.,
2022] or inference on credal networks [Zaffalon et al., 2020;
Cozman, 2000; Mauá and Cozman, 2020]. Another recent
direction is to establish (approximate) bounds by estimat-
ing SCM parameters and then using classical inference al-
gorithms on the fully specified SCM to obtain point esti-
mates [Zaffalon et al., 2021; Zaffalon et al., 2022]. Since the
query is not identifiable, different parametrizations can lead
to different point estimates which are employed to improve
(widen) the computed bounds. Our results can also be used
in this case for computing point estimates based on a partic-
ular parametrization (fully specified SCM) within the overall
process of establishing bounds.

7 Experimental Results
We consider experiments that target random networks whose
structures emulate the structures of SCMs used in counter-

4See [Jung et al., 2021b; Jung et al., 2021a; Jung et al., 2020] for
some recent work on estimating identifiable interventional queries
from finite data.
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factual reasoning. We have a few objectives in mind. First,
we wish to compare the widths of base and twin jointrees,
with and without thinning. These widths do not correspond
to (causal) treewidth since the jointrees are constructed us-
ing heuristics (finding optimal jointrees is NP-hard). Next,
we want to compare the quality of twin jointrees constructed
by Algorithm 1 (TWIN-ALG1), which operates directly on
a base jointree, to the quality of twin jointrees obtained by
applying the minfill heuristic to a twin network (TWIN-MF).
Recall that the former method is more efficient than the lat-
ter method. Finally, we wish to conduct a similar compari-
son between the thinned, twin jointrees constructed accord-
ing to Theorem 3 (TWIN-THM3) and the thinned, twin join-
trees obtained by applying the minfill heuristic and thinning
rules to a twin network (TWIN-MF-RLS). Again, the former
method is more efficient than the latter. The widths of these
jointrees will be compared to the widths of base jointrees con-
structed by minfill (BASE-MF) and thinned, base jointrees
constructed by minfill and thinning rules (BASE-MF-RLS).

We generated random networks according to the method
used in [Darwiche, 2020]. Given a number of nodes n and a
maximum number of parents p, the method chooses the par-
ents of node Xi randomly from the set X1, . . . , Xi−1. The
number of parents for node Xi is chosen randomly from the
set 0, . . . ,min(p, i−1). We refer to these networks as rNET.
We then consider each internal node N and add a unique
root R as parent for N . This is meant to emulate the struc-
ture of SCMs as the exogenous variable R can be viewed as
representing the different causal mechanisms for endogenous
variable N . We refer to these modified networks as rSCM.
The twin networks of rSCM are more complex than those
for rNET since more variables are shared between the two
slices representing the real and imaginary worlds (i.e., more
information is shared between the two worlds). We used
n ∈ {50, 75, 100, 125, 150, 200, 250, 300} and p ∈ {3, 5, 7}.
For each combination of n and p, we generated 50 random,
base networks and reported averages of two properties for
the constructed jointrees: width and normalized width. If a
jointree has clusters C1, . . . ,Cn, then normalized width is
log2

∑n
i=1 2

|Ci|. This accounts for all clusters in the jointree
(instead of just the largest one) and the jointree size. The data
we generated occupies significant space so we included it in
the Appendix while providing representative plots in Figure 6
for jointree widths under p = 5. We next discuss patterns ex-
hibited in these plots and the full data in the Appendix, which
also includes experiments using random networks generated
according to the method in [Ide and Cozman, 2002].

First, the widths of twin jointrees are always less than twice
the widths of their base jointrees and often significantly less
than that. This is not guaranteed by our theoretical bounds as
those apply to (causal) treewidth not to the widths of jointrees
produced by heuristics — the latter widths are an upper bound
on the former. Second, constructing a twin jointree by di-
rectly applying Algorithm 1 to a base jointree (TWIN-ALG1)
is relatively comparable to constructing the twin jointree by
operating on the twin network (TWIN-MF), as would nor-
mally be done. This also holds for thinned jointrees (TWIN-
THM3 vs TWIN-MF-RLS) and is encouraging since the for-
mer methods are much more efficient than the latter ones.

(a) classical jointrees (b) thinned jointrees

Figure 6: Width of jointrees (y-axis) against number of base network
nodes (x-axis) for maximum number of parents p = 5.

Third, the employment of thinned jointrees can lead to signif-
icant reduction in width and hence an exponential reduction
in reasoning time. This can be seen by comparing the widths
of twin jointrees TWIN-THM3 and TWIN-ALG1 since the
former is thinned but the latter is not (similarly for TWIN-
MF-RLS and TWIN-MF). Fourth, the twin jointrees of rSCM
have larger widths than those of rNET. Recall that in rSCM,
every endogenous variable has its own exogenous variable as
a parent. Therefore, the distribution over exogenous variables
has a larger space in rSCM compared to rNET. Since this
distribution needs to be shared between the real and imagi-
nary worlds, counterfactual reasoning with rSCM is indeed
expected to be more complex computationally than reason-
ing with rNET. Finally, consider Figure 6b for a bottom-line
comparison between the complexity of counterfactual reason-
ing and the complexity of associational/interventional reason-
ing in practice. Jointrees BASE-MF have the smallest widths
for base networks so these are the jointrees one would use
for associational/interventional reasoning. The best twin join-
trees are TWIN-MF-RLS which are thinned. This is what one
would use for counterfactual reasoning. The widths of latter
jointrees are always less than twice the widths of the former,
and quite often significantly much less.5

8 Conclusion
We studied the complexity of counterfactual reasoning on
fully specified SCMs in relation to the complexity of asso-
ciational and interventional reasoning on these models. Our
basic finding is that in the context of algorithms based on
(causal) treewidth, the former complexity is no greater than
quadratic in the latter when counterfactual reasoning involves
only two worlds. We extended these results to counterfac-
tual reasoning that requires multiple worlds, showing that the
gap in complexity is bounded polynomially by the number
of needed worlds. Our empirical results suggest that for two
types of random SCMs, the complexity of counterfactual rea-
soning is closer to that of associational and interventional rea-
soning than our worst-case theoretical analysis may suggest.
While our results directly target counterfactual reasoning on
fully specified SCMs, we also discussed cases when they can
be applied to counterfactual reasoning on partially specified
SCMs that are coupled with data.

5See footnote 3 for why BASE-MF is better than BASE-MF-RLS
for rSCM.
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