
Approximate Inference in Logical Credal Networks

Radu Marinescu1 , Haifeng Qian2 , Alexander Gray1 , Debarun Bhattacharjya1 , Francisco
Barahona1 , Tian Gao1 and Ryan Riegel1

1IBM Research
2AWS AI Labs

radu.marinescu@ie.ibm.com

Abstract
Logical Credal Networks or LCNs is a recent prob-
abilistic logic designed for effective aggregation
and reasoning over multiple sources of imprecise
knowledge. An LCN specifies a set of probability
distributions over all interpretations of a set of log-
ical formulas for which marginal and conditional
probability bounds on their truth values are known.
Inference in LCNs involves the exact solution of
a non-convex non-linear program defined over an
exponentially large number of non-negative real
valued variables and, therefore, is limited to rel-
atively small problems. In this paper, we present
ARIEL – a novel iterative message-passing scheme
for approximate inference in LCNs. Inspired by
classical belief propagation for graphical models,
our method propagates messages that involve solv-
ing considerably smaller local non-linear programs.
Experiments on several classes of LCNs demon-
strate clearly that ARIEL yields high quality solu-
tions compared with exact inference and scales to
much larger problems than previously considered.

1 Introduction
Many real-world applications require efficient handling of un-
certainty and compact representations of a wide variety of
knowledge. Graphical models such as Bayesian networks
[Pearl, 1988] or Markov networks [Koller and Friedman,
2009] provide a powerful framework for reasoning about un-
certainty while classical (first-order) logic can naturally be
used to represent compactly complex concepts and relation-
ships that comprise expert knowledge. Therefore, probabilis-
tic logic which combines probability and logic in a principled
manner has emerged over the years as a unified framework
to deal effectively with these complex applications [Nils-
son, 1986; Fagin et al., 1990; Heinsohn, 1994; Jaeger, 1994;
Andersen and Hooker, 1994; Chandru and Hooker, 1999;
Dürig and Studer, 2005; Richardson and Domingos, 2006;
Getoor and Taskar, 2007; De Raedt et al., 2008]. While
some of these logics (e.g., [Richardson and Domingos, 2006;
Getoor and Taskar, 2007; De Raedt et al., 2008]) associate
a single real value to the logical formulas to represent the
uncertainty around their truth values, others (e.g., [Nilsson,

1986; Fagin et al., 1990]) relax this requirement and allow
specifying lower and upper probability bounds on logical for-
mulas.

In practice, it is often the case that multiple sources of
imprecise knowledge need to be combined to solve a prob-
lem more effectively. For example, in a realistic credit card
fraud detection application, a statistical model capturing the
uncertainty around historical transaction data can be com-
bined with probabilistic logic rules expressing imprecise ex-
pert knowledge about the domain in order to predict future
fraudulent transactions more accurately [Li et al., 2020].
Similarly, in chemo-informatics, a more effective structural
analysis of molecular materials can leverage a combination
of machine learning models based on molecular fingerprint-
ing data and expert knowledge about certain structural prop-
erties of molecules represented by probabilistic logic rules.

Logical Credal Networks or LCNs [Marinescu et al., 2022]
are a recent probabilistic logic specifically designed for ef-
fective aggregation and reasoning over multiple sources of
imprecise knowledge. An LCN specifies a set of probability
distributions over the interpretations of a set of logical formu-
las (propositional or first-order) for which marginal and con-
ditional probability bounds on their truth values are known.
Although the model is quite expressive and requires very few
restrictions, inference in LCNs is intractable as it involves the
exact solution of a non-convex non-linear constraint program
defined over an exponentially large number of non-negative
real valued variables. This is a serious limitation allowing to
solve only relatively small problems with up to 10 atoms.

Contribution. In this paper, we present a novel iterative
message-passing algorithm called ARIEL that addresses the
limitation of exact inference and thus enables efficient ap-
proximate inference in LCNs. Our approach is inspired by
the classical belief propagation for graphical models [Pearl,
1988; Koller and Friedman, 2009] and propagates messages
in an iterative manner between the nodes of a factor graph
associated with the LCN. The key novelty of our scheme is
that the messages contain both lower and upper bounds on
the marginal probability of the LCN’s variables (i.e., atoms)
and these bounds are tightened iteratively. Importantly, these
messages solve considerably smaller local non-linear con-
straint programs as compared with those in exact inference.
In addition, we show that ARIEL retains an important prop-
erty of classical belief propagation, namely it yields exact re-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5694

sults on singly-connected LCNs. We experiment and evaluate
our proposed algorithm on several classes of LCNs including
random as well as more realistic problem instances. Our re-
sults are quite promising and demonstrate conclusively that
ARIEL is able to produce high quality solutions compared
with the exact inference approach. Furthermore, we show that
ARIEL scales to much larger problems than previously con-
sidered while maintaining solution quality. This is important
because it allows us to tackle practical problems involving
many thousands of variables.

2 Background
We review next basic concepts about Logical Credal Net-
works and exact inference methods for these models.

2.1 Logical Credal Networks
A Logical Credal Network (LCN) [Marinescu et al., 2022] L
is defined by a set of two types of probability sentences:

lq ≤P (q) ≤ uq (1)
lq|r ≤P (q | r) ≤ uq|r (2)

where q and r can be arbitrary propositional or first-order
logic formulas1 and 0 ≤ lq ≤ uq ≤ 1, 0 ≤ lq|r ≤ uq|r ≤ 1.
Each sentence in L is further associated with a Boolean pa-
rameter τ indicating dependence between the atoms of q.

An LCN represents the set of probability distributions (i.e.,
models) over all interpretations that satisfy a set of constraints
given explicitly by sentences (1) and (2) together with a set of
implied independence constraints between the LCN’s atoms.
We say that an LCN is consistent if it has at least one model.
Otherwise, it is inconsistent.

The primal graph of an LCN L is a directed graph G that
contains formula nodes associated with the formulas q and r
in L’s sentences and atomic nodes associated with the atoms
involved in those formulas, respectively. If a formula con-
sists of a single atom then G contains a single atomic node
for that formula. For type (1) sentences, there is a directed
edge from each of formula q’s atomic nodes to q’s formula
node, while in case of type (2) sentences, G contains directed
edges from formula r’s atomic nodes to r’s formula node, a
directed edge from formula node r to formula node q, and
directed edges from q’s formula node to its corresponding
atomic nodes. In addition, for all sentences with τ = True,
G contains directed edges from the atomic nodes correspond-
ing to q’s atoms to the formula node q.

Given an LCN L and its primal graph G, the parents of an
atomic node x, denoted by parents(x), is the set of atomic
nodes y such that there exists a directed path (y → z1 →
· · · → zk → x) from y to x in G such that all intermediate
nodes zi (if any) are formula nodes. Similarly, the descen-
dants of an atomic node x, denoted by descendants(x), is
the set of atomic nodes y such that there exists a directed path
(x → z1 → · · · → zk → y) from x to y in G such that none
of the intermediate nodes xi (if any) is in parents(x).

1For simplicity, we assume that the first-order logic formulas are
universally quantified, do not contain functions and their variables
have finite domains of values.

Figure 1: The primal graph of the LCN from Example 1

The Markov condition associated with an LCN L allows
us to make additional independence assumptions between its
atoms. Namely, given a model M of L, every atom x in L
is conditional independent of its non-descendant non-parent
atoms given its parents in L’s primal graph.
Example 1. Consider the following propositional LCN which
was inspired by the Earthquake example from [Pearl, 1988].
The sentences below state that: burglaries (b) are more com-
mon than earthquakes (e) (Eq. 3 and 4); the house alarm (a)
can be triggered by a burglary or an earthquake (Eq. 5); in
case of an alarm, either both Charles (c) and Dan (d) call the
emergency services or neither does (Eq. 6); the alarm can
also be triggered accidentally (Eq. 7).

0.1 ≤ P (b) ≤ 0.2 (3)
0.05 ≤ P (e) ≤ 0.1 (4)
0.8 ≤ P (a|b ∨ e) ≤ 0.9 (5)
0.7 ≤ P (¬(c⊕ d)|a) ≤ 0.8 (6)
0.01 ≤ P (a) ≤ 0.08 (7)

Figure 1 depicts the factor graph of the LCN where the round
shaded nodes represent atomic nodes and the rectangular
hollow nodes correspond to the formula nodes, respectively.
In this case, we assume that the τ flag associated with the
sentences is True. Therefore, we have that b and e are inde-
pendent, c is conditionally independent of {b, e} given {a, d}
and d is conditionally independent of {b, e} given {a, c}.

2.2 Exact Inference in LCNs
Given an LCN L and a query formula ρ, the marginal in-
ference task computes lower and upper bounds on the poste-
rior marginal probability P (ρ), denoted by P (ρ) and P (ρ),
respectively. The task entails solving a non-linear program
defined over a set of variables representing the probabil-
ities of L’s interpretations and comprising of linear con-
straints derived from L’s sentences, non-linear constraints
corresponding to the independence assumptions derived from
L’s Markov condition and a linear objective function corre-
sponding to the query P (ρ) which is subsequently minimized
and maximized to yield the desired bounds.

Let p⃗ = (p1, . . . , pN) be the vector representing the prob-
abilities of the N = 2n interpretations of an LCN L with n

atoms, and let A⃗α = (aα1 , . . . , a
α
N) be a binary vector, called

an indicator vector, such that aαj is 1 if formula α is true in
the j-th interpretation and 0 otherwise. Since the probability

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5695

of a formula α is the sum of the probabilities of the interpre-
tations in which α is true, we can write P (α) as A⃗α⊙ p⃗ where
⊙ is the dot-product of two vectors. Therefore, we solve:

N∑
i=1

pi = 1 (8)

pi ≥ 0, ∀i = 1, . . . , N (9)

lq ≤ A⃗q ⊙ p⃗ ≤ uq (10)

lq|r · A⃗r ⊙ p⃗ ≤ A⃗q∧r ⊙ p⃗ ≤ uq|r · A⃗r ⊙ p⃗ (11)

(A⃗α ⊙ p⃗) · (A⃗β ⊙ p⃗)− (A⃗γ ⊙ p⃗) · (A⃗δ · p⃗) = 0 (12)

minimize/maximize A⃗ρ ⊙ p⃗

where xi is an atomic formula, Si = {si1, . . . , sik} and
Ti = {ti1, . . . , til} are xi’s parents and non-descendants
in the primal graph, A⃗q and A⃗q∧r are the indicator vec-
tors for formulas q and q ∧ r, and A⃗α, A⃗β , A⃗γ and A⃗δ

are the indicator vectors corresponding to the formulas α =
(xi ∧ si1 ∧ · · · ∧ sik ∧ ti1 ∧ · · · ∧ til), β = (si1 ∧ · · · ∧ sik),
γ = (xi∧si1∧· · ·∧sik), and δ = (si1∧· · ·∧sik∧ti1∧· · ·∧til).

Equations (8) and (9) ensure that p⃗ is a valid probability
distribution, while Equations (10) and (11) encode the sen-
tences of type (1) and (2) in L. Equation 12 encodes the
conditional independencies implied by the Markov condition,
i.e., P (xi|Si, Ti) = P (xi|Si), which must hold for all truth
values of its atoms (see also [Marinescu et al., 2022]).

3 Approximate Inference in LCNs
Since exact inference is not tractable for large LCNs, we in-
troduce a new message-passing algorithm to approximate the
posterior marginals of the atomic formulas in an LCN. The
basic idea is to follow the classical belief propagation scheme
on a factor graph associated with the LCN and propagate mes-
sages between the variable and factor nodes until convergence
[Pearl, 1988; Koller and Friedman, 2009].

3.1 Incompatibility with Belief Propagation
Graphical models such as Bayesian networks [Pearl, 1988] or
credal networks [Cozman, 2000] typically require a unique-
assessment assumption, namely a variable must occur in ei-
ther a marginal distribution (resp. credal set) or a conditional
distribution (resp. conditional credal set) but not both, and for
each conditional distribution or credal set, all possible inter-
pretations of the parent variables must be specified. LCNs do
not require the unique-assessment assumption and, therefore,
the sum-product message-passing based approximate infer-
ence methods (i.e., belief propagation) which were originally
developed for credal networks (i.e., 2U [Fagiuoli and Zaf-
falon, 1998], L2U [Antonucci et al., 2010] or IPE [Ide and
Cozman, 2008]) are not compatible with LCNs. Indeed, con-
sider the following illustrative example:

0.2 ≤ P (a) ≤ 0.3 (13)
0.6 ≤ P (b | a) ≤ 0.7 (14)
0.1 ≤ P (b | ¬a) ≤ 0.2 (15)
0.3 ≤ P (b) ≤ 0.4 (16)

Figure 2: Factor graph for the LCN in Example 2.

Clearly, this is not a valid credal network because (16) vio-
lates the unique-assessment assumption but is legitimate for
an LCN. If we query P (b), the correct answer is [0.3, 0.35].
However, 2U or L2U yield an incorrect answer of [0.1, 0.26]
even though the underlying graph has a tree-like structure.

3.2 A Novel Message-Passing Scheme
We start with the definition of the factor graph associated with
an LCN that underlies our message-passing scheme.
Definition 3.1 (factor graph). Given an LCN L, the factor
graph F of L is a bipartite graph with variable nodes and
factor nodes, respectively. A variable node corresponds to
an atom in L, while a factor node represents one or more
sentences in L that involve the same set of atoms. A factor
node is connected to a variable node if they share the same
atom.
Example 2. Figure 2 shows the factor graph associated with
the LCN given by (13)-(16). There are 2 variable nodes (de-
picted as circles) corresponding to atoms {a, b} and 3 factor
nodes (depicted as squares) f1, f2 and f3 corresponding to
sentences (13), (14)(15) and (16), respectively.

Given a factor graph F , the high-level flow of our proposed
message-passing scheme is similar to that of classical belief
propagation, namely to iteratively pass and update messages
between the variable and factor nodes of F until convergence.
Let v and f denote a variable node and a factor node in F ,
respectively. We use N(·) to denote the neighbors of a node
in F . Two kinds of messages will be propagated along the
edges of F , as follows:
The variable-to-factor message. The message sent by a
variable node v to a neighboring factor node f is an inter-
val [lv→f , uv→f], where 0 ≤ lv→f ≤ uv→f ≤ 1. If node v
has only one neighbor, then the message [lv→f , uv→f] is just
[0, 1]. Otherwise, the message [lv→f , uv→f] is defined by:

lv→f = max
f ′∈N(v)\{f}

lf ′→v (17)

uv→f = min
f ′∈N(v)\{f}

uf ′→v (18)

where [lf ′→v, uf ′→v] is the message sent by a neighboring
factor node f ′ ∈ N(v) \ {f}, other than f , to v.
The factor-to-variable message. The message sent by a
factor node f to a neighboring variable node v is also an inter-
val [lf→v, uf→v] obtained by minimizing and, respectively,
maximizing the objective function P (v) subject to (i) a set of
linear constraints encoding f ’s sentences, (ii) a set of linear

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5696

constraints ensuring that, for each variable node other than v
that is connected to f , its marginal probability is within the
bounds given by the corresponding variable-to-factor mes-
sages, namely lv′→f ≤ P (v′) ≤ uv′→f , ∀v′ ∈ N (f) \ {v},
and (iii) a set of non-linear constraints encoding the assump-
tion that f ’s atoms (other than v) are independent of each
other. The latter independence assumption in the local con-
straint program is a mechanism to approximate the Markov
condition, and the same approach is used in classical belief
propagation [Pearl, 1988; Koller and Friedman, 2009].

Specifically, if f involves at most k atoms, namely N(f) =
{v1, . . . , vk}, then the message [lf→v, uf→v] is computed by
solving the following local constraint program:

K∑
i=1

pi = 1 (19)

pi ≥ 0, ∀i = 1, . . . ,K (20)

lq ≤ A⃗q · p⃗ ≤ uq (21)

lq|rA⃗r ⊙ p⃗ ≤ A⃗q∧r ⊙ p⃗ ≤ uq|rA⃗r ⊙ p⃗ (22)

lv′→f ≤ A⃗v′ ⊙ p⃗ ≤ uv′→f , ∀v′ ∈ Nf (23)

A⃗v′∧v′′ ⊙ p⃗ = (A⃗v′ ⊙ p⃗) · (A⃗v′′ ⊙ p⃗), ∀v′ ̸= v′′ ∈ Nf (24)

minimize/maximize A⃗v ⊙ p⃗

where p⃗ = (p1, . . . , pK) is the vector representing the prob-
abilities of the K = 2k interpretations, Nf = N(f) \ {v}
denotes f ’s neighbors other than v and [lv′→f , uv′→f] is the
message sent by a neighboring variable node v′ ∈ Nf to f ,
respectively. Equations (21) and (22) encode sentences of
type (1) and (2) in f , Equation (23) ensures that v’s marginal
probability is within the required bounds, while Equation (24)
encodes the independence assumption between f ’s atoms.

Example 3. Consider the LCN defined by the following sen-
tence 0.3 ≤ P (c ∧ (d ∨ e)) ≤ 0.4. The factor graph has one
factor node f corresponding to the sentence and three vari-
able nodes for the atoms {c, d, e}, respectively. The factor-
to-variable message [lf→d, uf→d] is obtained by minimizing
and maximizing the following non-linear program:

0.3 ≤ P (c ∧ (d ∨ e)) ≤ 0.4

lc→f ≤ P (c) ≤ uc→f

le→f ≤ P (e) ≤ ue→f

P (c ∧ e) = P (c) · P (e)

minimize/maximize P (d)

Algorithm 1 which we denote hereafter by ARIEL sum-
marizes our message-passing scheme for approximate infer-
ence in LCNs. All messages along the edges of the factor
graph are first initialized with [0, 1] intervals. Subsequently,
the variable-to-factor and factor-to-variable messages are up-
dated in an iterative manner until convergence (i.e., either a
fixed number of iterations is exceeded or the average change
in messages from one iteration to the next is below a given
threshold). Finally, for each variable node v, the lower and
upper bounds of the posterior marginal interval are obtained
by maximizing and, respectively, minimizing the lower and

Algorithm 1 AppRoximate InfErence for LCNs (ARIEL)

Require: LCN L
1: Create factor graph F
2: for all edges (v, f) ∈ F do
3: Set [lv→f , uv→f] = [lf→v, uf→v] = [0, 1]
4: end for
5: repeat
6: ▷ Update the variable-to-factor messages
7: for all edges (v, f) ∈ F do
8: if |N(v)| = 1 then
9: l = 0, u = 1

10: else
11: l = maxf ′∈N(v)\{f} lf ′→v

12: u = minf ′∈N(v)\{f} uf ′→v

13: end if
14: Update [lv→f , uv→f] = [l, u]
15: end for
16: ▷ Update the factor-to-variable messages
17: for all edges (v, f) ∈ F do
18: l = minP (v) subject to constraints (19)–(24)
19: u = maxP (v) subject to constraints (19)–(24)
20: Update [lf→v, uf→v] = [l, u]
21: end for
22: until convergence
23: for all variable nodes v do
24: P (v) = maxf∈N(v) lf→v

25: P (v) = minf∈N(v) uf→v

26: end for
27: return [P (v), P (v)] for each atom v ∈ L

upper bounds of the incoming factor-to-variable messages to
v (lines 16–18), namely:

P (v) = max
f∈N(v)

lf→v and P (v) = min
f∈N(v)

uf→v

Example 4. Continuing our example LCN defined by (13)-
(16), the message [lf2→b, uf2→b] is obtained by solving:

0.6 ≤ P (b | a) ≤ 0.7

0.1 ≤ P (b | ¬a) ≤ 0.2

la→f2 ≤ P (a) ≤ ua→f2

minimize/maximize P (b)

The following messages are obtained upon convergence:
lf1→a = 0.2 , uf1→a = 0.3

la→f1 = 0.2 , ua→f1 = 0.6

la→f2 = 0.2 , ua→f2 = 0.3

lf2→a = 0.2 , uf2→a = 0.6

lf2→b = 0.2 , uf2→b = 0.35

lb→f2 = 0.3 , ub→f2 = 0.4

lb→f3 = 0.2 , ub→f3 = 0.35

lf3→b = 0.3 , uf3→b = 0.4

Finally, the lower and upper bounds for P (b) are given by:
P (b) = max (lf2→b, lf3→b) = max (0.2, 0.3) = 0.3

P (b) = min (uf2→b, uf3→b) = min (0.35, 0.4) = 0.35

which match the results of exact inference in this case.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5697

3.3 Properties
We show next that ARIEL computes exact posterior marginal
probability intervals for singly-connected LCNs.
Definition 3.2. Let L be an LCN with primal graph G. We
call L singly-connected if G does not contain directed cycles.
Theorem 1 (correctness). Given a singly-connected LCN
with n atoms denoted by V = {v1, . . . , vn}, ARIEL computes
exact posterior marginal lower and upper bounds P (vi) and
P (vi), for each atom vi ∈ V .

Note that Theorem 1 holds even if the LCN contains ad-
ditional marginal probability sentences that break the unique-
assessment assumption. However, in general, LCNs may con-
tain directed cycles and, in this case, there is no guarantee
on correctness. This is also true for the classical loopy be-
lief propagation algorithms in probabilistic graphical models
[Pearl, 1988; Koller and Friedman, 2009].
Theorem 2 (complexity). Let L be an LCN such that its fac-
tor graph has n variable nodes (atoms) and m factor nodes.
Assuming a fixed number of iterations i, the complexity of Al-
gorithm 1 is O(i·n·m·Q), where Q bounds the complexity of
solving the local non-linear programs at factor nodes. Each
of these non-linear programs involves 2t variables, where t
bounds the number of atoms in a factor node.

3.4 Comparison with Other Algorithms
The bound tightening operation at variable nodes is conceptu-
ally similar to a recent inference algorithm for Logical Neural
Networks [Riegel et al., 2020]. The message computation at
factor nodes bears some similarity to the 2U and L2U algo-
rithms for credal networks which make similar independence
assumption to approximate the Markov condition [Ide and
Cozman, 2008]. ARIEL is also related with the IPE algorithm
for credal networks [Ide and Cozman, 2008] which selects the
tightest bounds over a number of polytree subgraphs.

3.5 Handling Complex Query Formulas
Let ρ be a non-atomic query formula and let {v1, . . . , vk} be
its atoms. In this case, following the message propagation
outlined by Algorithm 1, the marginal P (ρ) can be approxi-
mated by solving the non-linear constraint program:

K∑
i=1

pi = 1 (25)

pi ≥ 0, ∀i = 1, . . . ,K (26)

lv′→f ′ ≤ A⃗v′ ⊙ p⃗ ≤ uv′→f ′ , ∀v′ ∈ N(f ′) (27)

A⃗v′∧v′′ ⊙ p⃗ = (A⃗v′ ⊙ p⃗) · (A⃗v′′ ⊙ p⃗), ∀v′ ̸= v′′ ∈ N(f ′)
(28)

minimize/maximize A⃗ρ ⊙ p⃗

where f ′ is an auxiliary factor node corresponding to ρ,
N(f ′) = {v1, . . . , vk} and A⃗ρ is ρ’s indicator vector.

4 Experiments
We evaluate empirically our ARIEL scheme for approxi-
mate inference and compare it with exact inference on sev-

size CPU time (sec) Errors
n, e Exact ARIEL MAEl MAEu

polytree
5, 2 0.38 1.69 0.0001±0.00 0.0000±0.00
6, 2 0.76 1.99 0.0000±0.00 0.0000±0.00
7, 2 4.94 2.45 0.0000±0.00 0.0000±0.00
8, 2 64.96 2.92 0.0000±0.00 0.0000±0.00
9, 2 837.52 3.29 0.0000±0.00 0.0000±0.00
10, 2 4252.04 3.79 0.0000±0.00 0.0000±0.00

dag
5, 2 9.12 1.79 0.0425±0.06 0.0949±0.11
6, 2 5.63 2.06 0.0332±0.05 0.0395±0.04
7, 2 193.07 3.13 0.0551±0.07 0.0555±0.06
8, 2 3625.37 3.71 0.0339±0.05 0.0506±0.08
9, 2 7251.62 4.07 0.0586±0.08 0.0658±0.09
10, 2 17195.05 4.33 0.1071±0.14 0.0640±0.09

random
5, 2 9.48 1.87 0.0431±0.05 0.0386±0.05
6, 2 3.98 2.29 0.0466±0.06 0.0372±0.06
7, 2 567.05 3.54 0.0428±0.07 0.0356±0.06
8, 2 3235.67 3.98 0.0567±0.08 0.0348±0.06
9, 2 6263.68 5.23 0.0647±0.08 0.0509±0.07
10, 2 11310.88 5.85 0.1053±0.12 0.0938±0.12

Table 1: Results obtained on polytree, dag, and random LCNs.
Average CPU time in seconds and MAEs for the posterior marginal
lower and upper bounds on each variable. Time limit is 24 hours.

eral classes of LCNs. The competing algorithms were im-
plemented in Python 3.8 and used the ipopt 3.12 solver
[Wächter and Biegler, 2006] with default settings to handle
the non-linear constraint programs. We ran all experiments
on a 2.2GHz Intel Core processor with 32GB of RAM.

Measure of Performance. In all experiments we report the
average CPU time in seconds and the mean absolute error
(MAE) for the posterior marginal lower and upper bounds
obtained for each propositional variable. More specifically,
for each problem instance, we define the errors as:

MAEl =
1

n
·

n∑
i=1

|P ∗(xi)− P (xi)|

MAEu =
1

n
·

n∑
i=1

|P ∗
(xi)− P (xi)|

where n is the number of variables, P ∗(xi) and P
∗
(xi)

are the exact posterior marginal lower bounds on P (xi) for
each variable xi, while P (xi) and P (xi) are the approximate
marginal bounds computed by ARIEL.

4.1 Random LCNs
For our purpose, we generated several classes of random
LCNs with n propositional variables {x1, . . . xn}, called
polytree, dag, and random, respectively, having m sen-
tences of the following types:

(a) l ≤ P (xi) ≤ u

(b) l ≤ P (xi|xj) ≤ u, xi ̸= xj

(c) l ≤ P (xi|xj ∧ xk) ≤ u xi ̸= xj ̸= xk

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5698

Specifically, for polytree LCNs, there are m = n sen-
tences of types (a), (b) and (c) generated randomly such that
the corresponding primal graph is a polytree (i.e., there are no
directed cycles). The dag instances contain m = n randomly
generated sentences of types (a), (b) and (c) such that the
primal graph is a directed acyclic graph (DAG). For random
LCNs we also have m = n sentences of types (a), (b) and (c)
generated randomly without the acyclicity requirement. In all
cases, we added e additional sentences of type (a).

We note that for type (a) we generate only one sen-
tence P (xi) while for types (b) and (c) we generate sen-
tences for all truth values of xj and xk, namely P (xi|xj),
P (xi|¬xj), P (xi|xj ∧xk), P (xi|xj ∧¬xk), P (xi|¬xj ∧xk)
and P (xi|¬xj ∧ ¬xk), respectively. We selected the proba-
bility bounds l and u of the sentences uniformly at random
between 0 and 1 such that u − l ≤ 0.6. Furthermore, we
ensured that all problem instances generated were consistent.

Table 1 summarizes the results obtained on polytree,
dag and random instances of varying sizes with n ∈
{5, 6, . . . , 10} and e = 2. Each data point in the table rep-
resents an average over 10 random instances generated for
that particular problem size. The second and third columns
report the running times of the exact and approximate infer-
ence algorithms, while the fourth and fifth columns give the
errors MAEl and MAEu on the posterior marginal bounds
computed by ARIEL using a maximum of 10 iterations and a
10−6 threshold for convergence (whichever comes first).

When looking at the solution quality, especially on the
polytree problems, we can see that the absolute errors
are very small (close to zero) thus verifying the correctness
of ARIEL on singly-connected LCNs (the discrepancies are
caused by the numerical precision for representing real num-
bers as well as the default tolerances used by the ipopt
solver). For dag and random problems, the errors are also
small and suggest that the approximate posterior marginals
are fairly close to the exact ones. In terms of running time, we
can see that, as expected, ARIEL scales much better to larger
problems compared with the exact algorithm. For example,
on dag and random problems of size 10, the algorithm is
already almost 4 orders of magnitude faster while producing
relatively good quality solutions.

Furthermore, Table 2 reports results obtained on much
larger random LCNs with up to 100,000 propositional vari-
ables. We can see that ARIEL was able to solve all these
problem instances while the exact algorithm could not go be-
yond the smallest problem size. Specifically, it exceeded the
30 hour time limit for the n = 100 case and ran out of mem-
ory while building the non-linear program for n > 1000, re-
spectively. This demonstrates clearly that ARIEL overcomes
the major limitation of exact inference for LCNs and thus al-
lows us to tackle efficiently much larger problems possibly
involving many thousands of variables.

In Figure 3 we plot the mean absolute errors MAEl and
MAEu as a function of the number of iterations used by
ARIEL for solving the polytree and dag benchmarks of
size n = 6, respectively. ARIEL’s convergence threshold was
set to 0. We can see that the algorithm is able to converge to
relatively small errors after less than 10 iterations. A similar
pattern was also observed on the other benchmarks.

size CPU time (sec)
n Exact ARIEL
10 11422.28 5.86
100 - 82.02
1,000 na 820.73
10,000 na 8509.23
100,000 na 89668.61

Table 2: CPU time in seconds obtained on large random LCNs.

Figure 3: Mean absolute errors MAEl and MAEu vs number of it-
erations used by ARIEL for the polytree (top) and dag (bottom)
benchmarks of size n = 6.

LCN CPU time (sec) Errors
Exact ARIEL MAEl MAEu

Toy 0.14 0.98 0.0000±0.00 0.0000±0.00
Earth 0.32 1.31 0.0000±0.00 0.0000±0.00
Cancer 0.33 1.93 0.0014±0.00 0.0036±0.01
Asia 52.23 2.69 0.0005±0.00 0.0162±0.04
Credit 4334.66 2.96 0.0336±0.03 0.0490±0.09
Engine 14006.99 3.07 0.0737±0.08 0.0259±0.04
Suicide 5850.50 3.47 0.0318±0.07 0.0191±0.04
Tank 11415.05 4.16 0.0234±0.04 0.0355±0.02
Alarm 10783.91 2.77 0.0421±0.06 0.0578±0.09
Hepatitis 11178.05 5.16 0.0177±0.03 0.0574±0.06

Table 3: Results obtained on real-world LCNs. CPU time in seconds
and MAEs for the posterior marginal lower and upper bounds on
each variable. Time limit is 24 hours.

4.2 Real-World LCNs
Table 3 displays the results obtained on LCNs derived from
real-world Bayesian networks with binary variables [Con-
stantinou et al., 2020]. More specifically, each of these

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5699

LCNs contains sentences of the form l ≤ P (xi) ≤ u and
l ≤ P (xi|πi) ≤ u, respectively, where xi is a variable and
πi = yi1∧· · ·∧yik is the conjunction of the propositional vari-
ables corresponding to a particular configuration of the par-
ents {yi1, . . . yik} of xi in the Bayesian network. The bounds
l and u were selected such that u − l ≤ 0.4, while the num-
bers of variables and sentences ranged between 4 and 10, and
between 6 and 24, respectively. The complete specification of
each of these LCNs is included in the supplementary material.
We can see again that ARIEL outperformed dramatically the
exact inference method in terms of running time while main-
taining a relatively good solution quality. For example, on
the Tank and Hepatitis problem instances, ARIEL is almost
4 orders of magnitude faster than its competitor, while the
corresponding posterior bounds start to differ at the second
decimal point compared with the exact ones.

4.3 Application to Chemistry

We describe next a possible application of LCNs and ap-
proximate inference to the chemistry domain. Specifically,
we consider a binary molecular classification task using im-
precise expert knowledge as well as molecular fingerprinting
data [Fernández de Gortari et al., 2017]. In this case, the class
variable is denoted by y ∈ {0, 1} while the molecule struc-
ture is represented by a set of n binary features (or finger-
prints) F = {f1, . . . , fn} indicating the presence or absence
of certain molecular substructures. The LCN is defined by
the following types of sentences: (a) l0 ≤ P (¬y) ≤ u0 and
l1 ≤ P (y) ≤ u1 representing the class probability, (b) li0 ≤
P (fi|¬y) ≤ ui0 and li1 ≤ P (fi|y) ≤ ui1 representing the
conditional probability of feature fi ∈ F being present given
the class, and (c) l ≤ P (y|F(fi1, fi2, . . . , fik)) ≤ u and
l ≤ P (¬y|F(fi1, fi2, . . . , fik)) ≤ u, where {fi1, . . . , fik}
is a subset of features and F(fi1, . . . , fik) is the conjunc-
tion of their respective values, respectively (e.g., F(f1, f2) =
f1 ∧ ¬f2). The latter represents imprecise knowledge from
one or more domain experts stating that the class can be de-
termined by specific combinations of features.

Given a new molecule for which only a subset of features
{f1, . . . , fk} is observed, the task is to compute the posterior
marginal probability of its class, namely P (y|f1, . . . , fk) and
P (¬y|f1, . . . , fk). For our purpose, we consider a database
containing 1298 molecules with n = 985 features. The corre-
sponding LCN has 986 propositional variables, 2 sentences of
type (a), 985 sentences of type (b) and 6 sentences of type (c),
respectively. The observed features are translated into k addi-
tional constraints of the form P (fj) = 1.0 or P (¬fj) = 1.0
∀j = 1..k, depending on whether fj is absent or present. Ta-
ble 4 summarizes the results obtained for different sizes of the
observed feature subset. Specifically, for each value of k, we
generate 10 configurations of k features selected uniformly
at random from F and report the average running time. As
before, we see that ARIEL was able to solve all problem in-
stances in a little over 5 minutes on average, while the exact
method ran out of memory in all test cases.

In summary, we can conclude that the proposed ap-
proximate inference algorithm ARIEL is the only inference
scheme that can tackle practical larger scale LCNs.

size CPU time (sec)
k Exact ARIEL
10 na 324.51
20 na 322.01
50 na 329.58
100 na 339.47
200 na 362.70
500 na 410.43

Table 4: CPU time in seconds for the chemistry application.

5 Related Work
Nilsson’s probabilistic logic (NL) [Nilsson, 1986; Nilsson,
1994] is perhaps the first system in which the truth val-
ues of logical sentences (or formulas) can range between 0
and 1 and are interpreted as the probability of those sen-
tences being true. The formalism however allows probability
bounds but does not permit specifying independence relations
between propositions which typically leads to overly large
posterior probability intervals. Bayesian logic (BL) [An-
dersen and Hooker, 1994] combines probabilistic logic and
Bayesian networks in order to capture conditional indepen-
dence relations among propositions. Markov Logic Networks
(MLN) [Richardson and Domingos, 2006] apply the ideas of
a Markov network to first-order logic where the weights at-
tached to the logic formulas are used to define a joint prob-
ability distribution over all possible interpretations and thus
enable uncertain inference. Probabilistic Soft Logic (PSL)
[Getoor and Taskar, 2007] combines Markov networks with
soft or real-valued logic (e.g., Lukasiewicz logic). Proba-
bilistic Logic Programs (PLP) [De Raedt et al., 2008] and
Stochastic Logic Programs (SLP) [Cussens, 2000] are logic
programs in which some of the facts are annotated with prob-
abilities. We emphasize that MLN, PSL, PLP, SLP do not al-
low probability bounds on logic formulas, BL constrains the
formulas to a specific structure and NL does not consider in-
dependence assumptions. In contrast, LCNs overcome these
shortcomings.

6 Conclusions
We propose a new iterative message-passing scheme called
ARIEL for approximate inference in LCNs. The algorithm
works by propagating messages between the nodes of a fac-
tor graph representation of the LCN. These messages are
lower and upper bounds on marginal probabilities of the vari-
ables and their computation involves solving considerably
smaller local non-linear programs compared with exact in-
ference. The empirical evaluation on several classes of LCNs
including random and more realistic problem instances shows
promising results, particularly in scaling to much larger prob-
lems while producing good quality solutions.

Potential future directions include extending to temporal
models, further algorithmic innovations for learning LCNs
from data, and experiments on a wider array of applications.
We also plan to investigate extensions to optimization tasks
such as MAP and Marginal MAP inference in LCNs using
search-based algorithms similar to those developed for graph-
ical models (e.g., [Marinescu et al., 2018]).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5700

References
[Andersen and Hooker, 1994] Kent Andersen and John

Hooker. Bayesian logic. Decision Support Systems,
11(2):191–210, 1994.

[Antonucci et al., 2010] Alessandro Antonucci, Yi Sun, Cas-
sio De Campos, and Marco Zaffalon. Generalized loopy
2U: A new algorithm for approximate inference in credal
networks. International Journal of Approximate Reason-
ing, 51(5):474–484, 2010.

[Chandru and Hooker, 1999] Vijay Chandru and John
Hooker. Optimization Methods for Logical Inference.
John Wiley & Sons, 1999.

[Constantinou et al., 2020] Anthony Constantinou, Yang
Liu, Kiattikun Chobtham, Zhigao Guo, and Neville Kit-
son. The bayesys data and bayesian network repository.
Technical report, Bayesian Artificial Intelligence research
lab, Queen Mary University of London, London, UK,
2020.

[Cozman, 2000] Fabio Cozman. Generalizing variable-
elimination in bayesian networks. In Workshop on Proba-
bilistic reasoning in Bayesian networks at SBIA/Iberamia
2000, pages 21–26, 2000.

[Cussens, 2000] James Cussens. Stochastic logic programs:
Sampling, inference and applications. In Uncertainty in
Artificial Intelligence (UAI), pages 115–122, 2000.

[De Raedt et al., 2008] Luc De Raedt, Paolo Frasconi, Kris-
tian Kersting, and Stephen Muggleton. Probabilistic In-
ductive Logic Programming - Theory and Applications.
Springer, 2008.

[Dürig and Studer, 2005] Michael Dürig and Thomas Studer.
Probabilistic abox reasoning: Preliminary results. In De-
scription Logics, pages 104–111, 2005.

[Fagin et al., 1990] Ronald Fagin, Joseph Halpern, and Nim-
rod Megiddo. A logic for reasoning about probabilities.
Information and Computation, 87(1-2):78–128, 1990.

[Fagiuoli and Zaffalon, 1998] Enrico Fagiuoli and Marco
Zaffalon. 2U: An exact interval propagation algorithm
for polytrees with binary variables. Artificial Intelligence,
106(1):77–107, 1998.

[Fernández de Gortari et al., 2017] Eli Fernández de Gor-
tari, César Garcı́a-Jacas, Karina Martinez-Mayorga, and
José Medina-Franco. Database fingerprint (dfp): an ap-
proach to represent molecular databases. Journal of Chem-
informatics, 9(1):1–9, 2017.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar. In-
troduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). MIT Press, 2007.

[Heinsohn, 1994] Jochen Heinsohn. Probabilistic descrip-
tion logics. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, pages 311–318,
1994.

[Ide and Cozman, 2008] Jaime Ide and Fabio Cozman. Ap-
proximate algorithms for credal networks with binary vari-
ables. International Journal of Approximate Reasoning,
48(1):275–296, 2008.

[Jaeger, 1994] Manfred Jaeger. Probabilistic reasoning in
terminological logics. In Principles of Knowledge Repre-
sentation and Reasoning, pages 305–316. Elsevier, 1994.

[Koller and Friedman, 2009] Daphne Koller and Nir Fried-
man. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[Li et al., 2020] Shuang Li, Lu Wang, Ruizhi Zhang, Xiaofu
Chang, Xuqin Liu, Yao Xie, Yuan Qi, and Le Song. Tem-
poral logic point processes. In International Conference
on Machine Learning, pages 5990–6000. PMLR, 2020.

[Marinescu et al., 2018] Radu Marinescu, Junkyu Lee, Rina
Dechter, and Alexander Ihler. AND/OR search for
marginal MAP. Journal or Artificial Intelligence Research
(JAIR), 63(1):875 – 921, 2018.

[Marinescu et al., 2022] Radu Marinescu, Haifeng Qian,
Alexander Gray, Debarun Bhattacharjya, Francisco Bara-
hona, Tian Gao, Ryan Riegel, and Pravinda Sahu. Logical
credal networks. In 36th Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2022.

[Nilsson, 1986] Nils Nilsson. Probabilistic logic. Artificial
Intelligence, 28(1):71–87, 1986.

[Nilsson, 1994] Nils Nilsson. Probabilistic logic revisited.
Artificial Intelligence, 59(1-2):39–42, 1994.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufmann, 1988.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2):107–136, 2006.

[Riegel et al., 2020] Ryan Riegel, Alexander Gray, Francois
Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Bara-
hona, Udit Sharma, et al. Logical neural networks. arXiv
preprint arXiv:2006.13155, 2020.

[Wächter and Biegler, 2006] Andreas Wächter and Lorenz
Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, 2006.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5701

	Introduction
	Background
	Logical Credal Networks
	Exact Inference in LCNs

	Approximate Inference in LCNs
	Incompatibility with Belief Propagation
	A Novel Message-Passing Scheme
	Properties
	Comparison with Other Algorithms
	Handling Complex Query Formulas

	Experiments
	Random LCNs
	Real-World LCNs
	Application to Chemistry

	Related Work
	Conclusions

