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Abstract
We study formal languages which are capable of
fully expressing quantitative probabilistic reason-
ing and do-calculus reasoning for causal effects,
from a computational complexity perspective. We
focus on satisfiability problems whose instance for-
mulas allow expressing many tasks in probabilis-
tic and causal inference. The main contribution of
this work is establishing the exact computational
complexity of these satisfiability problems. We
introduce a new natural complexity class, named
succ∃R, which can be viewed as a succinct variant
of the well-studied class ∃R, and show that these
problems are complete for succ∃R. Our results
imply even stronger limitations on the use of algo-
rithmic methods for reasoning about probabilities
and causality than previous state-of-the-art results
that rely only on the NP- or ∃R-completeness of
the satisfiability problems for some restricted lan-
guages.

1 Introduction
Satisfiability problems play a key role in a broad range of re-
search fields, including AI, since many real-life tasks can be
reduced in a natural and efficient way to instances of satisfi-
ability expressed in a suitable formal language. A prominent
example is the Boolean satisfiability problem (SAT) whose in-
stances represent Boolean formulas of propositional logic and
ask whether there exists an assignment that satisfies a given
formula. It is well known that any decision problem in the
complexity class NP can be reduced in polynomial time to the
SAT problem, see [Garey and Johnson, 1979].

In this work, we investigate satisfiability problems (and
their validity counterparts) whose instance formulas allow
expressing many tasks in probabilistic and causal inference.
The formulas are specified in languages commonly used in
pure probabilistic and interventional reasoning. In particular,
the probabilistic language, called in Pearl’s Causal Hierar-
chy1 the associational one, consists of Boolean combinations
of (in)equalities involving pure probabilities as, e.g., P(y|x)

1See [Pearl and Mackenzie, 2018] for a first-time introduction to
the topic.

which2 can ask how likely is Y = y given that observing
X = x? An example formula in this language is the follow-
ing single equality∑

u,x,z,y

(P(u, x, z, y)− P(u)P(x|u)P(z|x)P(y|z, u))2 = 0

(1)

which expresses the fact that the joint distribution can be fac-
torized as P(u, x, z, y) = P(u)P(x|u)P(z|x)P(y|z, u), for all
values u, x, z, y. The causal language extends the probabilis-
tic language by allowing additionally to use terms involving
Pearl’s do-operator [Pearl, 2009] as, e.g., P(y|do(x)) which
can ask hypothetical questions such as how likely would
Y = y be given an intervention setting X to x? An example
formula in this language is the single equality

P(y|do(x)) =
∑

z P(z|x)
∑

x′ P(y|x′, z)P(x′) (2)

which allows estimating the (total) causal effect of the inter-
vention X = x on outcome variable Y = y via the promi-
nent front-door adjustment [Pearl, 1995]. It is well known
that this formalism enables inference of properties that are
impossible to reason about from correlational data using a
purely probabilistic framework [Shpitser and Pearl, 2008;
Bareinboim et al., 2022].

Similarly as in the classical SAT, both languages allow
natural, polynomial-time reductions of many tasks in prob-
abilistic and causal inference to the satisfiability (or validity)
problems. Prominent examples can be establishing proper-
ties of structural causal models [Glymour et al., 2014; Pearl,
2009; Koller and Friedman, 2009; Elwert, 2013] which en-
dow researchers with graphical structures (also called causal
Bayesian networks) to encode conditional independences and
causal assumptions as a directed acyclic graph (DAG). For
instance, the problem to decide, for a given DAG G and
variables X,Y, Z, whether in every structural causal model
compatible with the structure G, the causal effect of X on
Y can be inferred via front-door adjustment (2) can be re-
duced in polynomial time to the validity problem. Indeed, for
any G, X, Y, Z , one can compute a formula φ whose size is
bounded by a polynomial in the number of nodes of G, such
that the front-door adjustment is applicable, if and only if, φ
is valid. E.g., for the DAG G:

2In our paper, by P(y|x), P(y|do(x)), etc., we mean
P(Y=y|X=x), P(Y=y|do(X=x)), etc.
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the formula φ looks as follows (ψ1 ∧ ψ2) ⇒ φfda, where
φfda is the equality (2) representing the front-door adjustment,
ψ1 is the equality (1) encoding the probability factorization,
and ψ2 is a conjunction of equalities, whose conjuncts encode
edge orientations. E.g., X → Z can be expressed as∑

x,z(P(x|do(z))− P(x))2 = 0. (3)

The correctness of this reduction follows from the fact, that a
structural causal model overX,Y, Z, U is supplemented with
the above DAG G if ψ1 ∧ ψ2 encodes G. Interestingly, using
do-calculus, one can prove that the front-door adjustment is
applicable for the discussed instance which means that the
formula (ψ1 ∧ ψ2) ⇒ φfda is valid.

1.1 Our Contribution
Despite its importance, computational complexity aspects of
the satisfiability problems for the general probabilistic and
causal languages remain unexplored. In our work, we in-
vestigate these issues and establish, for the first time, the ex-
act computational complexity of the satisfiability problem for
probabilistic languages, denoted as SATprob, and for the inter-
ventional level of the causal hierarchy, denoted as SATinterven.
They simultaneously indicate the complexity of the validity
problems for these languages.

Our results are based on a novel extension of the well-
studied complexity class ∃R which, loosely speaking, con-
sists of problems that are polynomial time reducible to decid-
ing whether a system of polynomial (in)equalities over real
unknowns has a solution. The class ∃R includes, in an obvi-
ous way, NP and, what is highly nontrivial, it is contained
in PSPACE [Grigoriev and Vorobjov, 1988; Canny, 1988;
Schaefer, 2009]. However, none of the inclusions NP ⊆ ∃R ⊆
PSPACE are known to be strict. Our new complexity class,
named succ∃R, can be viewed as a succinct variant of ∃R
and it is an intermediate class between the exponential ver-
sions of NP and PSPACE:

NEXPTIME ⊆ succ∃R ⊆ EXPSPACE. (4)

The main contribution of this paper is to show that deciding
the satisfiability of both probabilistic reasoning and reasoning
about causal interventions is complete for succ∃R:
Theorem 1.1 (Main). The satisfiability problems SATprob and
SATinterven are succ∃R-complete.

Since succ∃R contains all problems decidable in non-
deterministic exponential time, this shows a significant jump
in complexity compared to the classic SAT problem for
propositional logic which is known to be NP-complete.

1.2 The Existential Theory of the Reals
The Existential Theory of the Reals (ETR) asks, given a
Boolean combination of (in)equalities of multivariate polyno-
mials, called a sentence, whether there exists an assignment
of real numbers to the variables of the polynomials that satis-
fies the combination of (in)equalities? The example

∃x∃y x2 − y = 0 ∧ x3 − x = 0 ∧ (x > 0 ∨ y ≤ −1)

illustrates a yes instance of ETR because (x, y) = (1, 1) is a
solution of the sentence. The theory forms its own complex-
ity class ∃R which is defined as the closure of the ETR un-
der polynomial time many-one reductions. The importance of
∃R is underlined by the fact, that many meaningful problems
including algebraic, geometric, graph- and game-theory, ma-
chine learning, and continuous constraint satisfaction prob-
lems, have been classified as complete for ∃R, see e.g.
[Schaefer and Štefankovič, 2017; Abrahamsen et al., 2018;
Garg et al., 2018; Abrahamsen et al., 2021; Miltzow and
Schmiermann, 2022]. Moreover, assuming NP ̸= ∃R which
is widely believed, the ∃R-completeness of a problem reflects
the limitation on the use of algorithmic approaches to solve
the problem, as, e.g., dynamic programming, divide and con-
quer, tree-width based algorithms, or SAT-solver approaches
which are applicable for instances of NP-complete prob-
lems. The succ∃R-completeness of SATprob and SATinterven
(Theorem 1.1) imply even stronger algorithmic limitations
than could be deduced from the ∃R-completeness results of
[Mossé et al., 2022] (discussed below) which concerns, how-
ever, some restricted variants of the languages.

1.3 Previous Work on the Hardness of
Satisfiability Problems

In the past decades, several research groups have studied the
computational complexity aspects of satisfiability problems
for some limited languages of probabilistic and causal infer-
ence. In their pioneering work, Fagin et al. [1990] consider a
language for reasoning about pure probabilities, which con-
sists of Boolean combinations of linear (in)equalities over
probabilities, like P(X=1 ∨ X=2) + 2P(Y=1) ≤ 1/3 ∧
P(Y=1) ≥ 2/3. The authors provide a complete axiomati-
zation for the logic and show that the problem of deciding
satisfiability is NP-complete which, surprisingly, is no worse
than that of propositional logic. Later on, further studies ex-
plored the complexity aspects of probability logics [Abadi
and Halpern, 1994; Speranski, 2013] and reasoning about
causal models [Halpern, 2000; Eiter and Lukasiewicz, 2002;
Aleksandrowicz et al., 2017].

Most germane to our work are the recent studies of Ibel-
ing and Icard [2020] and Mossé et al. [2022] which extended
the formalism of [Fagin et al., 1990], providing the more ex-
pressive languages for the second (interventional) and third
(counterfactual) level of Pearl’s Causal Hierarchy. The lan-
guages consist of Boolean combinations of polynomial
(in)equalities over pure probabilities or over probabilities in-
volving the do-operator, respectively. In particular, they al-
low to express conditioning, as, e.g., P(y|x) = P(y, x)/P(x).
But the languages limit the use of marginalization since the
summation operator Σ over the domain of random variables,
as used, e.g., in Eq. (1)–(3), is not allowed. Consequently,
to express the marginal distribution of a variable Y over
a subset of variables {Z1, . . . , Zm} ⊆ {X1, . . . , Xn}, as∑

z1,...,zm
P(y, z1, . . . , zm), in the language without summa-

tion requires an extension P(y, Z1=0, . . . , Zm=0) + . . . +
P(y, Z1=1, . . . , Zm=1) of exponential size in m. (In the
expression, we assume that the Zi are binary variables).
Similarly, P(y|do(x)) =

∑
z P(y|x, z)P(z) is expressed

equivalently as P(y|do(x)) = P(y|x, Z=0)P(Z=0) +
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P(y|x, Z=1)P(Z=1). While this might be acceptable for
one variable Z, the expansion of the sums grows exponen-
tially when we have several variables. Therefore, having an
explicit summation operator is highly desirable.

Ibeling and Icard [2020] and Mossé et al. [2022] give com-
plete axiomatizations of these languages and investigate the
computational complexity of the satisfiability problem for
each language. In particular, they prove that, although the
languages for interventional and counterfactual inference are
more expressive than the ones for probabilistic reasoning, the
computational complexities of the satisfiability problem for
the logics are both ∃R-complete. Combining these results
with ours, we obtain a precise complexity theoretic classifica-
tion of the satisfiability problems for all three levels of Pearl’s
Causal Hierarchy combined with various languages for terms
involving probabilities (proven by †: Fagin et al. [1990], ‡:
Mossé et al. [2022]):

Terms prob. interven. counterfact. Source

lin NP-complete †, ‡

poly ∃R-complete ‡

poly & Σ succ∃R-complete succ∃R-hard Thm. 1.1

While the languages of [Mossé et al., 2022] are capable of
fully expressing quantitative probabilistic reasoning, respec-
tively, do-calculus reasoning for causal effects, as discussed
above, due to the lack of the summation operator Σ, they do
not capture the standard notation used commonly in proba-
bilistic and causal inference. Consequently, to analyze the
computational complexity aspects of the inference, languages
that exploit the standard notation need to be used. Indeed, for
the computational complexity, the key issue is how the in-
stances are represented since the time or space complexities
are functions in the length of the input. For example, if the
language as in [Mossé et al., 2022] would be used (instead
of the succinct one with summation operator), then the time
complexity of many algorithms, including, e.g., the seminal
Shpitser and Pearl [2006] algorithm to estimate the interven-
tional distribution, would jump from polynomial to exponen-
tial. Another problem would also be to construct polynomial
time reductions to the SAT problems since using the succinct
encodings as, e.g., in Eq. (1)–(3), would not be allowed.
Structure of this Paper. The remainder of this work is ded-
icated to proving Theorem 1.1. After providing preliminaries
(Sec. 2 and 3), we introduce the class succ∃R in Sec. 4 and
provide the first complete problems for succ∃R in Sec. 5. In
Sec. 6, we prove the membership of SATprob and SATinterven in
the class succ∃R and their succ∃R-hardness. The omitted
proofs can be found in the appendix of a companion paper
[van der Zander et al., 2023].

2 Preliminaries
2.1 Syntax of Probabilistic and Causal Languages
The syntax used in this paper extends the definitions in [Ibel-
ing and Icard, 2020; Mossé et al., 2022] for the languages
of the first two levels of Pearl’s Causal Hierarchy. We con-
sider discrete distributions and represent the values of the ran-

dom variables as Val = {0, 1,..., c− 1} and denote by X the
set of all (endogenous) random variables. By capital letters
X1, X2,..., we denote the individual variables and assume,
w.l.o.g., that they all share the same domain Val . A value of
Xi is denoted by xi or a natural number.

In order to reason about the (in)equalities of arithmetic
terms involving probability expressions, we need to de-
fine languages describing probabilities, languages describ-
ing arithmetic terms, and languages describing (in)equalities.
The first languages characterize probabilistic and causal
events as Boolean conditions over the values of (endogenous)
random variables:

Lprop ::= X = x | ¬Lprop | Lprop ∧ Lprop

Lint ::= ⊤ | X = x | Lint ∧ Lint

Lpost-int ::= [Lint]Lprop

where X ∈ X, and x is either in Val or is a summation vari-
able as defined below.

To make the notation more convenient for our analysis,
we use [Lint] in the syntax above to describe an interven-
tion on certain variables. The operator [·]δ creates a new
post-intervention model and the assigned propositional for-
mula δ only applies to the new model. Thus, for example,
P([X=x]Y=y), which, using do-notation can be expressed
as P(Y=y|do(X=x)), denotes the probability that the vari-
able Y equals y in the model after the intervention do(X=x).
Since ⊤ means that no intervention has been applied, we can
assume that Lprop ⊆ Lpost-int.

Inserting the primitives into arithmetic expressions, we get
the language T (L), where, for L ∈ {Lprop,Lpost-int}, δ ∈ L,
and δ′ ∈ Lprop, any e ∈ T (L) is formed by the grammar3:

e ::= P(δ|δ′) | e+ e′ | e · e′ |
∑

x e. (5)

The probabilities of the form P(δ) or P(δ|δ′), are called prim-
itives or (atomic) terms.

In the summation operator
∑

x in definition (5), we have a
dummy variable x which ranges over all values 0, 1,..., c−1.
The summation

∑
x e is a purely syntactical concept which

represents the sum e[0/x] + e[1/x] + ... + e[c − 1/x], where,
by e[v/x], we mean the expression in which all occurrences
of x are replaced with value v. E.g., for Val = {0, 1},
the expression4 ∑

x P(Y=1, X=x) semantically represents
P(Y=1, X=0) + P(Y=1, X=1). We note that the dummy
variable x is not a (random) variable in the usual sense and
that its scope is defined in the standard way.

Finally, we define the languages of Boolean combinations
of inequalities, following the grammar, where e, e′ are ex-
pressions in T (Lprop) for prob and T (Lpost-int) for causal, re-
spectively:

Lprob ::= e ≤ e′ | ¬Lprob | Lprob ∧ Lprob

Linterven ::= e ≤ e′ | ¬Linterven | Linterven ∧ Linterven.

Together with conjunctions, the comparisons yield an
equality relation. Moreover, for the atomic formula X=x in

3This is a recursive definition where, e.g., e + e′ means, for
e, e′ ∈ T (L), the expression e+ e′ is also in T (L).

4As usually, P(Y=1, X=x), etc., means P(Y=1 ∧X=x), etc.
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probabilities as, e. g. P(X=x), we use a common abbrevia-
tion P(x) if this does not lead to confusion. Thus, for exam-
ple, Eq. (1) builds the correct formula in the language Lprob
and Eq. (2) and (3) are the correct formulas in Linterven.

Although the language and its operations can appear rather
restricted, all the usual elements of probabilistic and causal
formulas can be encoded. Namely, equality is encoded as
greater-or-equal in both directions, e.g. P(x) = P(y) means
P(x) ≥ P(y) ∧ P(y) ≥ P(x). Subtraction or divisions can
be encoded by moving a term to the other side of the equa-
tion, e.g., P(x) − P(y) = P(z) means P(x) = P(z) + P(y),
and P(x)/P(y) = P(z) means P(x) = P(z)P(y). Any pos-
itive integer can be encoded from the fact P(⊤) ≡ 1, e.g.
4 ≡ (1 + 1)(1 + 1) ≡ (P(⊤) + P(⊤))(P(⊤) + P(⊤)). The
number 0 can be encoded as inconsistent probability, i.e.,
P(X=1 ∧ X=2). Note that these encodings barely change
the size of the expressions, so allowing or disallowing these
additional operators does not affect any complexity results in-
volving these expressions.

2.2 Semantics
We define a structural causal model (SCM) as in [Pearl, 2009,
Sec. 3.2]. An SCM is a tuple M = (F , P, U,X), such that
V = U ∪ X is a set of variables partitioned into exoge-
nous (unobserved) variables U = {U1, U2,...} and endoge-
nous variables X. The tuple F = {F1,..., Fn} consists of
functions such that function Fi calculates the value of vari-
able Xi from the values (x,u) of other variables in V as
Fi(xi1 ,..., xik , ui)

5. P specifies a probability distribution
of all exogenous variables U. Since variables X depend de-
terministically on the exogenous variables via functions Fi,
F and P define the obvious joint probability distribution of
X.

For any atomic Lint-formula Xi=xi (which, in our nota-
tion, means do(Xi=xi)), we denote by FXi=xi the functions
obtained from F by replacing Fi with the constant function
Fi(v) := xi. We generalize this definition for any interven-
tions specified by α ∈ Lint in a natural way and denote as Fα

the resulting functions.
For any φ ∈ Lprop, we write F ,u |= φ if φ is satisfied

for values of X calculated from the values u. For [α]φ ∈
Lpost-int, we write F ,u |= [α]φ if Fα,u |= φ. Finally, for
ψ ∈ Lpost-int, let SM(ψ) = {u | F ,u |= ψ}. We assume,
as is standard, the measurability of M which guarantees that
SM(ψ) is always measurable.

We define JeKM recursively in a natural way, starting
with atomic terms as follows: JP(ψ)KM = P (SM(ψ)),
resp. JP([α]φ|φ′)KM = P (SM([α](φ∧φ′)))/P (SM([α]φ′)).
For two expressions e1 and e2, we define M |= e1 ≤ e2, if
and only if, Je1KM ≤ Je2KM. The semantics for negation and
conjunction are defined in the usual way, giving the semantics
for M |= φ for any formula.

2.3 Complexity Notation
We use the well-known complexity classes NP, PSPACE,
NEXPTIME, EXPSPACE, and ∃R [Arora and Barak, 2009]. For

5We consider recursive models, that is, we assume the endoge-
nous variables are ordered such that variable Xi (i.e. function Fi) is
not affected by any Xj with j > i.

two computational problems A,B, we will write A ≤p B if
A can be reduced to B in polynomial time, which means A
is not harder to solve than B. A problem A is complete for
a complexity class C, if A ∈ C and, for every other problem
B ∈ C, it holds B ≤p A. By co-C we denote the class of all
problems A such that its complements A belong to C.

3 Satisfiability Problems
The decision problems SATinterven and SATprob takes as input
a formula φ in language Linterven and in Lprob, respectively,
and asks whether there exists a model M such that M |= φ.
Analogously, we define the validity problems for languages
Linterven and Lprob of deciding whether, for a given φ, M |= φ
holds for all models M. From the definitions, it is obvious
that causal variants of the problems are at least as hard as the
prob counterparts.

To give a first intuition about the expressive power of the
SATprob problem, we prove the following result which shows
that SATprob can encode any problem in NEXPTIME efficiently.

Proposition 3.1. The SATprob problem is NEXPTIME-hard.

The remaining part of the paper is devoted to proving
the main result (Theorem 1.1) showing that the satisfiability
problems are complete for the new class succ∃R. Since a
formula φ is not valid, if and only if ¬φ is satisfiable and ¬φ
is in Lprob or in Linterven, respectively, we can conclude from
Theorem 1.1:

Corollary 3.2. The validity problems for the languages Lprob
and Linterven are complete for co-succ∃R, which is related to
standard classes as follows: co-NEXPTIME ⊆ co-succ∃R ⊆
EXPSPACE .

4 The Existential Theory of the Reals,
Succinctly

The existential theory of the reals ETR is the set of true sen-
tences of the form

∃x1 . . . ∃xnφ(x1, . . . , xn). (6)

φ is a quantifier-free Boolean formula over the basis
{∨,∧,¬} and a signature consisting of the constants 0 and
1, the functional symbols + and ·, and the relational symbols
<, ≤, and =. The sentence is interpreted over the real num-
bers in the standard way.

All operations have an arity of at most two, so we can rep-
resent φ as a binary tree. The leaves of the tree are labeled
with variables or constants, the inner nodes are labeled with
+, ·, =, <, ≤, ∧, ∨, or ¬. ¬-nodes have in-degree one, and
all other inner nodes have in-degree two.

We now define succinct encodings of instances for ETR.
Succinct encodings have been studied for problems in NP, see
e.g. [Papadimitriou, 1994]. The input is now a Boolean cir-
cuit C computing a function {0, 1}N → {0, 1}M , which en-
codes the input instance. For example, an instance of the
well-known 3-SAT problem is some standard encoding of a
given 3-CNF formula. In the succinct version of 3-SAT, we
are given a circuit C. C encodes a 3-CNF formula ψ in the
following way: C(i) is an encoding of the ith clause of ψ. In
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Figure 1: A tree representing the ETR instance ∃x1 : x2
1 = 1 + 1.

The nodes set is {1, . . . , 7}, which we can represent by bit strings
of length 3. The labels of the nodes are drawn in the circles.

this way, one can encode an exponentially large 3-SAT for-
mula ψ (with up to 2N clauses) . The succinct encoding typi-
cally induces a complexity jump: The succinct version of the
3-SAT problem is NEXPTIME-complete. The same is true for
many other NP-complete problems [Papadimitriou, 1994].

In the case of ETR, the formula φ is now given succinctly
by a Boolean circuit C. The circuit C computes a function
{0, 1}N → {0, 1}M . The input is (an encoding of) a node v
of the formula and the output C(v) contains the label of the
node as well as its parent and its children (encoded as a string
in binary). In this way, we can represent a formula that is
exponentially large in the size of the circuit.
Example 4.1. Consider the formula ∃x1 : x21 = 1 + 1
(“2 has a square root over the reals”). As an instance of
ETR, this formula would be encoded as a binary string in
some standard way. Figure 1 shows the binary tree under-
lying the formula. There are seven nodes, which we can
represent as integers 1, . . . , 7. As a succETR instance, the
formula will be given by a circuit C, computing a function
{1, . . . , 7} → {=,+, ·, 0, 1, x1} × {0, 1, . . . , 7}3 describing
the tree locally. For instance, C(1) = (=, 0, 2, 3), means the
following: the label of the node 1 is =. It has no parent, that
is, it is the root, which is indicated by giving 0 as the par-
ent. The left child is 2 and the right child is 3. In the same
way C(4) = (x1, 2, 0, 0), which means that the node 4 is a
leaf with parent 2 and it is labeled with the variable x1. We
can represent the integers ≤ 7 as bit strings of length N = 3
and the tuples C(i), e.g., (=, 0, 2, 3) or (x1, 2, 0, 0), can be
encoded as bit strings of some length M . Thus, C can be
considered a function C : {0, 1}N → {0, 1}M . Note that we
cannot use more variables than the formula has nodes, thus to
encode the tuple C(i), we need at most M ≤ (3 +N) + 3N
bits: in the first entry, we need 3 + N bits to encode a label
+, ·, =, <, ≤, ∧, ∨, and ¬ or an index j of a variable xj ;
to encode each of the remaining components, N bits suffice.
It is clear that one can construct such a circuit C. When the
formula is large but also structured, then the circuit C can be
much smaller than the formula itself.

Definition 4.2 (succETR). succETR is the set of all
Boolean circuits C that encode a true sentence φ as in (6)
as follows. Assume that C computes a function {0, 1}N →
{0, 1}M . Then {0, 1}N is the node set of the tree underlying
φ and C(i) is the encoding of the description of node i, con-
sisting of the label of i, its parent, and its two children. The
variables in the formula are x1, . . . , x2N .

The number of variables is formally always a power of 2.

If we need fewer variables, we simply do not use them in the
formula. We still quantify over all of them, but this is no
problem. In the same way, the number of nodes is always a
power of 2. If we need fewer nodes, we can define a special
value for C(i), which marks node i as unused.

We will always assume that all negations are pushed to the
lowest level of the formula and then they are absorbed in the
arithmetic terms, i.e., ¬(s = t) becomes (s < t) ∨ (t < s),
¬(s < t) becomes t ≤ s and ¬(s ≤ t) becomes t < s.
Furthermore, we can remove the comparisons ≤, since we
can replace s ≤ t by (s < t) ∨ (s = t).
Remark 4.3. In the non-succinct case, eliminating the nega-
tions by pushing them to the bottom is no problem, as it can
be done explicitly. In the succinct case, it seems that we need
to assume that already the given input has this property.

Finally, based on the succETR problem, we define the suc-
cinct version of ∃R as follows:
Definition 4.4. succ∃R is the class of all problems that are
polynomial time reducible to succETR.
succ∃R is related to known complexity classes as follows.

Theorem 4.5. NEXPTIME ⊆ succ∃R ⊆ EXPSPACE.

5 First Complete Problems for succ∃R
In this section, we present the first problems which are com-
plete for succ∃R. The key role plays the problem Σvi-ETR
which we need to prove the membership of SATinterven in the
class succ∃R in Proposition 6.1.

QUAD is the problem to decide whether a given family of
quadratic multivariate polynomials has a common root. Here
the polynomials are given as lists of monomials. The coeffi-
cient is represented as a quotient of two integers. QUAD is
a complete problem for the class ∃R of all problems that are
reducible to ETR [Schaefer and Štefankovič, 2017].

The succinct version succQUAD is defined as follows:
We get a Boolean circuit C as input computing a function
{0, 1}K × {0, 1}N → {0, 1}M . C(x, y) is an encoding of
the yth monomial of the xth equation.

We allow that a monomial appears several times in these
lists and the coefficients all add up, so the final polynomials
are the sum of all monomials in the list.
Lemma 5.1. succETR ≤p succQUAD. Furthermore, the
reduction only creates quadratic polynomials with at most
four monomials and coefficients ±1.

Σvi-ETR is defined like ETR, but we add to the signa-
ture an additional summation operator. This is a unary op-
erator

∑b
xj=a. Consider an arithmetic term given by a tree

with the top gate
∑b

xj=a. Let t(x1, . . . , xn) be the term com-
puted at the child of the top gate. Then the new term com-
putes

∑b
e=a t(x1, . . . , xj−1, e, xj+1, . . . , xn), that is, we re-

place the variable xj by a summation variable e, which then
runs from a to b.

Furthermore, we allow a new form of variable indexing
in Σvi-ETR, namely variables of the form xn(xj1 ,...,xjm ):
This can only be used when variables xj1 , . . . , xjm occur in
the scope of summation operators and are replaced by sum-
mation variables e1, . . . , em with summation range {0, 1}.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5734



xn(xj1
,...,xjm ) is interpreted as the variable with index given

by e1, . . . , em interpreted as a number in binary.
Instances of Σvi-ETR are not given succinctly by a cir-

cuit. However, the ability to write down exponential sums
succinctly makes the problem as hard as succETR. We get
Lemma 5.2. succQUAD ≤p Σvi-ETR ≤p succETR

which yields:
Theorem 5.3. The problems succQUAD and Σvi-ETR are
succ∃R-complete.

6 Proof of the Main Theorem
Equipped with the tools provided in the previous sections, we
are ready to prove our main result (Theorem 1.1) by showing:

SATprob, SATinterven ∈ succ∃R and (7)
SATprob, SATinterven are succ∃R-hard. (8)

We first show the membership of SATprob in the class succ∃R
proving the following reduction:
Proposition 6.1. SATinterven ≤p Σvi-ETR.

Due to the transitivity of ≤p and by Theorem 5.3, we get
that SATinterven ≤p succETR. Moreover, since SATprob ≤p

SATinterven, (7) follows.
For (8), it is sufficient to show the succ∃R-hardness of

SATprob. We prove this in Proposition 6.5. To this aim, we
introduce the problem succETR

1/8,+,×
[−1/8,1/8] and we prove the

succ∃R-hardness of this problem.
Definition 6.2 (Abrahamsen et al., 2017). In the problem
ETRc,+,×, where c ∈ R, we are given a set of real variables
{x1,..., xn} and a set of equations of the form xi = c, xi1 +
xi2 = xi3 , xi1xi2 = xi3 , for i, i1, i2, i3 ∈ [n]. The goal is to
decide whether the system of equations has a solution. The
problem, where we also require that x1,..., xn ∈ [a, b], for
some a, b ∈ R, is denoted by ETRc,+,×

[a,b] .

Lemma 6.3 (Abrahamsen et al., 2017). ETR1,+,× and
ETR

1/8,+,×
[−1/8,1/8] are ∃R-complete.

Let succETRc,+,× and succETRc,+,×
[a,b] denote the succinct

versions of ETRc,+,× and ETRc,+,×
[a,b] , respectively. We as-

sume that their instances are represented as seven Boolean
circuits C0, C1,..., C6 : {0, 1}M → {0, 1}N such that
C0(j) gives the index of the variables in the jth equation of
type xi = 1/8, C1(j), C2(j), C3(j) give the indices of vari-
ables in the jth equation of the type xi1 + xi2 = xi3 , and
C4(j), C5(j), C6(j) give the indices of variables in the jth
equation of the type xi1xi2 = xi3 . Without loss of generality,
we can assume that an instance has the same number 2M of
equations of each type; If not, one of the equations can be
duplicated as many times as needed.

Lemma 6.4. succETR
1/8,+,×
[−1/8,1/8] is succ∃R-complete.

To establish the lemma, we first show that succQUAD ≤p

succETR1,+,× and then prove that succETR1,+,× ≤p

succETR
1/8,+,×
[−1/8,1/8] (see [van der Zander et al., 2023]).

Now we are ready to prove the succ∃R-hardness of
SATprob through the following reduction:

Proposition 6.5. succETR
1/8,+,×
[−1/8,1/8] ≤p SATprob.

Proof. Let us assume that the instance of succETR
1/8,+,×
[−1/8,1/8]

is represented by seven Boolean circuits C0, C1,..., C6 :
{0, 1}M → {0, 1}N as described above. Let the variables
of the instance be indexed as xe1,...,eN , with ei ∈ {0, 1} for
i ∈ [N ]. Below, we often identify the bit sequence b1,..., bL
by an integer j, with 0 ≤ j ≤ 2L − 1, the binary representa-
tion of which is b1...bL and vice versa.

The instance of the problem succETR
1/8,+,×
[−1/8,1/8] is satisfi-

able if and only if:

∃x0,..., x2N−1 ∈ [−1/8, 1/8]

2M−1∑
j=0

(
(xC0(j) − 1/8)2 + (xC1(j) + xC2(j) − xC3(j))

2+

(xC4(j) · xC5(j) − xC6(j))
2
)

= 0. (9)

We construct a system of equations in the language Lprob and
prove that there exists a model which satisfies the equations
if and only if the formula (9) is satisfiable.

Let X0, X1,..., XN be binary random variables. We will
model each real variable xe1,...,eN as a term involving the
conditional probability P(X0=0 | X1=e1,..., XN=eN ) as
follows:

qe1,...,eN := 2/8 · P(X0=0 | X1=e1,..., XN=eN )− 1/8.

This guarantees that qe1,...,eN ∈ [−1/8, 1/8]. In our con-
struction, the existential quantifiers in the formula (9)
correspond to the existence of a probability distribution
P (X0, X1,..., XN ) which determines the values qe1,...,eN .
This means that the formula (9) is satisfiable if and only if
there exists a model for the equation:

2M−1∑
j=0

(
(qC0(j) − 1/8)2 + (qC1(j) + qC2(j) − qC3(j))

2+

(qC4(j) · qC5(j) − qC6(j))
2
)

= 0. (10)

The challenging task which remains to be solved is to ex-
press the terms qCi(j) in the language Lprob. Below we pro-
vide a system of equations that achieves this goal.

To model a Boolean formula encoded by a node of Ci,
with i = 0, 1,..., 6, we use arithmetization to go from log-
ical formulas to polynomials over terms involving probabili-
ties of the form P(δ). We start with input nodes v ∈ {0, 1}
and model them as events δv such that P(δv) = 1 if and
only if v = 1. For every internal node v of Ci, we pro-
ceed as follows. If v is labeled with ¬ and u is a child of
v, then we define an event δv such that P(δv) = 1 − P(δu).
If v is labeled with ∧ and u and w are children of v, then
we specify an event δv such that P(δv) = P(δu)P(δw). Fi-
nally, if v is labeled with ∨ and u and w are children of
v, then P(δv) = 1 − (1 − P(δu))(1 − P(δw)). Thus, if v
is an output node of a circuit Ci, then, for Ci fed with in-
put j = b1...bM ∈ {0, 1}M , we have v = 1 if and only if
P(δv) = 1. We define the events as follows.
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Let ui,1,..., ui,M be the input nodes ofCi and let, for every
node v of Ci, the sequence ℓv1,..., ℓ

v
kv

denotes the indices of
the leaves ui,ℓv1 ,..., ui,ℓvkv

of the sub-circuit with root v. Note
that, for an input ui,k, the index ℓui,k

1 = k and kui,k
= 1. To

define the events, for every node v, we introduce a sequence
of M new binary random variables Xv,1..., Xv,M and pro-
vide an equation that enforces the properties described above.
The probabilities used in the equations involve, for a node
v, only the variables indexed with ℓv1,..., ℓ

v
kv

; The remaining
variables are irrelevant.

For the kth input node ui,k and the variable Xui,k,k, we
require

P(Xui,k,k=0) = 0 and P(Xui,k,k=1) = 1. (11)
For every internal node v of Ci, if v is labeled with ¬ and u
is a child of v, then we define the equation:∑
b1,...,bkv

(
P(Xv,ℓv1

=b1,..., Xv,ℓvkv
=bkv

)−

(1− P(Xu,ℓv1
=b1,..., Xu,ℓvkv

=bkv
))
)2

= 0. (12)

If v has label ∧ and w and z are children of v, then we define∑
b1,...,bkv

(
P(Xv,ℓv1

=b1,..., Xv,ℓvkv
=bkv

) −

P(Xw,ℓw1
=bj1 ,..., Xw,ℓwkw

=bjkw
) ×

P(Xz,ℓz1
=bj′1 ,..., Xz,ℓzkz

=bj′kz
)
)2

= 0, (13)

where the indices jk, j′k′ ∈ {1,...kv} are defined as jk := i
for ℓwk = ℓvi and j′k′ := i for ℓzk′ = ℓvi .

If v is labeled with ∨, we encode it as a negation of ∧ after
negating the children of v.

Let ûi,1,..., ûi,N be the output nodes of Ci. For the kth
output v = ûi,k and for an Ci’s input j = b1...bM , we denote
by oi,k(j) the expression

oi,k(j) := P(Xv,ℓv1
=bℓv1 ,..., Xv,ℓvkv

=bℓvkv
)

which represents the value of the kth output bit of Ci(j) in
such a way that the bit is equal to ek if and only if the proba-
bility oi,k(j) = ek. We illustrate this concept in Example 6.6.

Finally, for i = 0, 1,..., 6 and j = b1...bM ∈ {0, 1}M , let

α(i, j) :=
∑

e1,...,eN∈{0,1}

qe1,...,eN×

N∏
k=1

(oi,k(j)P(E=ek) + (1− oi,k(j))(1− P(E=ek))),

where E is a new binary random variable with P(E=0) = 0
and P(E=1) = 1. The crucial property of this encoding is
that: For all i = 0, 1,..., 6 and j = b1...bM ∈ {0, 1}M , it is
true that α(i, j) = qCi(j).

Now, we replace every term qCi(j) in the Eq. (10) by α(i, j)
and get the following final equation in the language Lprob:
2M−1∑
j=0

(
(α(0, j)− 1/8)2 + (α(1, j) + α(2, j)− α(3, j))2 +

(α(4, j) · α(5, j)− α(6, j))2
)

= 0. (14)

b1

u1

b2

u2

b3

u3

∧v ∨w

∧û

Figure 2: An example Boolean circuit with input nodes u1, u2, u3,
internal nodes v, w, and one output node û.

This completes the proof since it is true that the formula (9)
is satisfiable if and only if there exists a model which sat-
isfies Eq. (11)–(13) and Eq. (14). Obviously, the size of
the resulting system of equations is polynomial in the size
|C0|+ |C1|+ ... + |C6| of the input instance and the system
can be computed in polynomial time.

Example 6.6. Consider a Boolean circuit C with three in-
put nodes u1, u2, u3, internal nodes v, w, and one output
node û as shown in Fig. 2. The relevant variables used
to encode the output bit are: Xu1,1, Xu2,2, Xu3,3, assigned
to the input nodes, as well as Xv,1, Xv,2 and Xw,2, Xw,3

and Xû,1, Xû,2, Xû,3, assigned to v, to w, and û, respec-
tively. Then, assuming the constraints expressed in Eq. (11)–
(13) are satisfied, for any b1, b2, b3 ∈ {0, 1}, the probability
o(j = b1b2b3) := P(Xû,1=b1, Xû,2=b2, Xû,3=b3) can be
estimated as follows:

o(j) = P(Xû,1=b1, Xû,2=b2, Xû,3=b3)

= P(Xv,1=b1, Xv,2=b2) · P(Xw,2=b2, Xw,3=b3)

= P(Xu1,1=b1) · P(Xu2,2=b2)·(
1− (1− P(Xu2,2=b2)) · (1− P(Xu3,3=b3)))

)
= b1 · b2 · (1− (1− b2)(1− b3)),

which is 0 if C(b1, b2, b3) = (b1 ∧ b2)∧ (b2 ∨ b3) = 0, and it
is equal to 1 if C(b1, b2, b3) = 1.

7 Discussion
We have analyzed the complexity of deciding whether a sys-
tem of (in)equalities involving probabilistic and causal for-
mulas is satisfiable using standard languages, allowing for-
mulas with summations. We have shown that the problems
are complete for a new complexity class succ∃R. Using
these results, we could conclude that the complexity of the
validity problem, asking whether a Boolean combination of
(in)equalities involving pure probabilities and interventional
expressions is valid, is complete for the class co-succ∃R.

Any ∃R-complete problem can probably be turned into a
succ∃R-complete one by encoding the input succinctly. Al-
though we do not know other published succ∃R-complete
problems, the situation is similar to the relation of NP and
NEXPTIME. The succinct versions of almost all NP-complete
problems are NEXPTIME-complete. We think that succ∃R is
so natural that further complete problems not coming from
∃R-complete ones will be found in the future.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5736



Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) grant 471183316 (ZA 1244/1-1).

Contribution Statement
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