
Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang1 , Giuseppe Marra1 , Gavin Rens2 and Luc De Raedt1,3
1Leuven AI, KU Leuven, Belgium

2Stellenbosch University, South Africa
3Centre for Applied Autonomous Sensor Systems, Örebro University, Sweden
{wenchi.yang, giuseppe.marra, luc.deradet}@kuleuven.be, gavinrens@sun.ac.za

Abstract
Safe Reinforcement learning (Safe RL) aims at
learning optimal policies while staying safe. A
popular solution to Safe RL is shielding, which
uses a logical safety specification to prevent an RL
agent from taking unsafe actions. However, tra-
ditional shielding techniques are difficult to inte-
grate with continuous, end-to-end deep RL meth-
ods. To this end, we introduce Probabilistic Logic
Policy Gradient (PLPG). PLPG is a model-based
Safe RL technique that uses probabilistic logic pro-
gramming to model logical safety constraints as
differentiable functions. Therefore, PLPG can be
seamlessly applied to any policy gradient algorithm
while still providing the same convergence guar-
antees. In our experiments, we show that PLPG
learns safer and more rewarding policies compared
to other state-of-the-art shielding techniques.

1 Introduction
Shielding is a popular technique in Safe Reinforcement
Learning (Safe RL) that aims to find an optimal policy while
ensuring the learning agent’s safety [Jansen et al., 2020].
It relies on a logical component called a shield to monitor
the agent’s actions and rejects those that violate the given
safety constraints. These rejection-based shields typically
use formal verification, offering stronger safety guarantees
than other safe exploration techniques [Garcı́a and Fernández,
2015]. While early shielding techniques operate completely
on symbolic state spaces [Jansen et al., 2020; Alshiekh et
al., 2018; Bastani et al., 2018], more recent approaches
have incorporated neural policy learners to handle continu-
ous state spaces [Hunt et al., 2021; Anderson et al., 2020;
Harris and Schaub, 2020]. In this paper, we will also focus
on integrating shielding with neural policy learners.

In current shielding approaches, the shields are determin-
istic, assuming that an action is either safe or unsafe in a par-
ticular state. However, this is an unrealistic assumption as
the world is inherently uncertain, and safety is often a mat-
ter of degree rather than an absolute concept. For example,
consider the scenario depicted in Fig. 1 where a car must de-
tect obstacles from visual input, but the sensor readings are
noisy. Such uncertainty arising from noisy sensors cannot be

directly handled by rejection-based shields, as they often as-
sume that agents have perfect sensors [Giacobbe et al., 2021;
Hunt et al., 2021], which is unrealistic. Therefore, by work-
ing with probabilistic shields, we will be able to better cope
with such uncertainties and risks.

Additionally, rejection-based shielding approaches may
fail to learn an optimal policy even when provided with
perfect safety information in all states [Ray et al., 2019;
Hunt et al., 2021; Anderson et al., 2020]. This is because
the learning agent does not consider the rejected actions
while updating its policy, assuming that all safe actions were
sampled directly from its safety-agnostic policy instead of
through the shield. By eliminating the mismatch between the
shield and the policy, we will be able to ensure convergence
towards an optimal policy if one exists.

We introduce probabilistic shields as an alternative to de-
terministic rejection-based shields. They produce a safer
policy by incorporating noisy sensor readings into the orig-
inal policy, as shown in Fig. 3 (right). By explicitly linking
noisy sensor readings to probabilistic semantics, probabilistic
shields can adjust the policy in proportion to the probabilistic
safety. This approach also allows for shielding to be applied
at the level of the policy instead of at the level of individual
actions, which is typically done in the literature [Hunt et al.,
2021; Jansen et al., 2020].

We propose the concept of Probabilistic Logic Shields
(PLS) and its implementation in probabilistic logic programs.
Probabilistic logic shields are probabilistic shields that model
safety using logic. The safety specification is expressed as
background knowledge, and its interaction with the learn-
ing agent and the noisy sensors is encoded in a probabilistic
logic program, which is an elegant and effective way of defin-
ing a shield. Furthermore, probabilistic logic shields can be
automatically compiled into a differentiable structure, allow-
ing for the optimization of a single loss function through the
shield, enforcing safety directly in the policy. Probabilistic
logic shields have several benefits:

• Realistic Safety Function. Probabilistic logic shields
use a probabilistic evaluation of safety, allowing for risk
control.

• Simpler Model. Probabilistic logic shields use a simpler
safety model that only represents internal safety-related
properties, which is less demanding than many model-
based approaches that require the full MDP [Jansen et

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5739

Figure 1: A motivating example of Probabilistic Logic Shields. We encode the interaction between the base policy π, the noisy sensors H
and the safety specification BK using a ProbLog program T . This provides a uniform language to express many aspects of the shielding
process. The shielded policy π+(s) decreases the probability of unsafe actions, e.g. acceleration, and increases the likelihood of being safe.

al., 2020; Hunt et al., 2021; Carr et al., 2022].
• End-to-end Deep RL. Probabilistic logic shields are dif-

ferentiable and can be seamlessly applied to any model-
free RL agent such as PPO [Schulman et al., 2016],
TRPO [Schulman et al., 2015], A2C [Mnih et al., 2016],
etc.

• Convergence. Probabilistic logic shields in deep RL
provide convergence guarantees unlike rejection-based
shields. More details can be found in Section 5.

2 Preliminaries
2.1 Probabilistic Logic Programming
We will introduce probabilistic logic programming (PLP) us-
ing the ProbLog syntax [De Raedt and Kimmig, 2015]. An
atom is a predicate symbol followed by a tuple of logical vari-
ables and/or constants. A ProbLog theory (or program) T
consists of a finite set of probabilistic facts F and a finite
set of clauses BK. A fact fi is an expression denoting an
atomic event. A probabilistic fact is an expression pi :: fi
where pi ∈ [0, 1] denotes the probability of fi being true,
e.g. 0.8 :: obstc(front) states that the probability of hav-
ing an obstacle in front is 0.8. It is assumed that facts are
independent of one another and the dependencies are speci-
fied by clauses (or rules). A clause is a universally quantified
expression h :−b1, ..., bn where h is an atom and b1, ..., bn is
a conjunction of atoms or negated atoms, stating that h is true
if all bi are true. The clause defining safe in Fig. 1 states that
it is safe when there is no crash. Each truth value assignment
of all probabilistic facts F ⊆ T , denoted by Fk, induces a
possible world wk where all ground facts in wk are true and
all that are not in wk are false. Formally, the probability of a
possible world wk is defined as follows.

P (wk) =
∏

fi∈wk

pi
∏

fi ̸∈wk

(1− pi)

An annotated disjunction (AD) is a clause with multiple
heads p1 :: h1; · · · ; pm :: hm where each head hi is mutu-
ally exclusive to one another, meaning that exactly one
head is true when the body is true. The choice of
the head is governed by a probability distribution and∑m

i=1 pi ≤ 1 [De Raedt and Kimmig, 2015; Fierens et
al., 2015]. E.g., {0.1 :: act(nothing); 0.5 :: act(accel);
0.1 :: act(brake); 0.1 :: act(left); 0.2 :: act(right)} is

an AD (with no conditions), stating the probability distribu-
tion of selecting an action. In ProbLog’s inference, ADs are
internally converted to a set of probabilistic facts and clauses.
The success probability of an atom q is the sum of the prob-
abilities of all possible worlds that entail q. Formally, it is
defined as P (q) :=

∑
wk|=q P (wk). Given a set of atoms

E as evidence, the conditional probability of a query q is
P (q|E) = P (q,E)

P (E) . For instance, in Fig. 1, the probability
of being safe in the next state given that the agent accelerates
is P (safe|act(accel)) = 0.14

0.5 = 0.28.

2.2 Markov Decision Process
A Markov decision process (MDP) is a tuple M =
⟨S,A, T,R, γ⟩ where S and A are a set of states and actions,
respectively. T (s, a, s′) = P (s′|s, a) defines the probability
of being in s′ after executing a in s. R(s, a, s′) defines the im-
mediate reward of executing a in s resulting in s′. γ ∈ [0, 1]
is the discount factor. A policy π : S × A → [0, 1] defines
the probability of taking an action in a state. π(a|s) denotes
the probability of taking action a in state s under policy π and
π(s) denotes the probability distribution over all actions in s.

2.3 Shielding
A shield is a reactive system that guarantees the safety of the
learning agent by constraining its exploration, allowing it to
only take actions that satisfy the given safety specification at
run time [Jansen et al., 2020]. A safety specification is usu-
ally defined by a Markov model and a temporal logic formula.
For instance, when there is a car driving in front and the agent
proposes to accelerate, a rejection-based shield (Fig. 3, left)
will predict a crash and reject the action.

2.4 Policy Gradient
The objective of a RL agent is to find a policy πθ (parameter-
ized by θ) that maximizes the total expected return along the
trajectory, formally,

J(θ) = Eπθ
[
∞∑
t=0

γtR(st, at, st+1)]

J(θ) is assumed to be finite for all policies. An important
class of RL algorithms, particularly relevant in the setting of
shielding, is based on policy gradients, which maximize J(θ)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5740

by repeatedly estimating the gradient ∇θJ(θ). The general
form of policy gradient methods is:

∇θJ(θ) = Eπθ
[
∞∑
t=0

Ψt∇θ log πθ(st, at)] (1)

where Ψt is an empirical expectation of the return [Schulman
et al., 2016]. The expected value is usually computed using
Monte Carlo methods, requiring efficient sampling from πθ.

3 Probabilistic Shields
We assume that a probabilistic safety model is given to com-
pute the probability that executing action a in state s is safe,
i.e. P(safe|a, s). We use bold P to distinguish it from the
underlying probability distributions P (s′|s, a) of the MDP.
The probabilistic safety model P(·) needs to internally repre-
sent the safe-relevant dynamics, but it does not require the full
representation of the MDP. Therefore, it is limited to safety-
related properties and cannot be used to predict the next state
s′. Rejection-based shields implement a special case of P
that assumes that executing an action is either safe or unsafe,
i.e. P(safe|s, a) ∈ {0, 1}.

By marginalizing out actions based on their probabilities
under π, the probability model Pπ measures the likelihood of
taking a safe action in s according to π.

Pπ(safe|s) =
∑
a∈A

P(safe|s, a)π(a|s) (2)

Definition 3.1. Probabilistic Shielding Given a base policy
π and a probabilistic safety model P(safe|s, a), the shielded
policy is

π+(a|s) = Pπ(a|s, safe) =
P(safe|s, a)
Pπ(safe|s)

π(a|s) (3)

Intuitively, a shielded policy π+ re-normalizes the base
policy π by increasing (resp. decreasing) the probabilities
of the actions that are safer (resp. less safe) than average.
Proposition 1. A shielded policy is always safer than its base
policy in all states, i.e. Pπ+(safe|s) ≥ Pπ(safe|s) for all s
and π.

Proof.

Pπ+(safe|s) ▷ Eq. (2)

=
∑
a∈A

π+(a|s)P(safe|s, a) ▷ Eq. (3)

=
1

Pπ(safe|s)
[
∑
a∈A

π(a|s)P(safe|s, a)2]

▷ Jensen’s inequality

≥ 1

Pπ(safe|s)
[
∑
a∈A

π(a|s)P(safe|s, a)]2 ▷ Eq. (2)

=Pπ(safe|s)

The inequality comes from Jensen’s inequality [Pishro-Nik,
2014], which states that E[g(X)] ≥ g(E[X]) for any convex
function g(X). In this proof, g(X) = X2.

4 Probabilistic Logic Shields
In this paper, we focus on probabilistic shields implemented
through probabilistic logic programs. The ProbLog program
defining probabilistic safety consists of three parts, illustrated
by Fig. 1.

The first component of the program is an annotated
disjunction ADs representing the policy π(s) for state s. For
example, in Fig. 1, π(s) is ADs = {0.1 :: act(nothing);
0.5 :: act(accel); 0.1 :: act(brake); 0.1 :: act(left);
0.2 :: act(right)}.

The second component of the program is a set of prob-
abilistic facts Fs representing an abstraction of the current
state s. Such abstraction should contain information needed
to reason about the safety of actions in s, and not a rep-
resentation of the entire state. For example, in Fig. 1, the
abstraction is represented as Fs = { 0.8 :: obstc(front).
0.2 :: obstc(left). 0.5 :: obstc(right).}

The third component of the program is a set of clauses
BK representing safety-related knowledge. For exam-
ple, in Fig. 1, 0.9 :: crash :−obstc(front), act(accel)
states that the probability of having a crash is 0.9 if the
agent accelerates when there is an obstacle in front of it.
safe :−¬crash states that it is safe if no crash occurs.

Therefore, we obtain a ProbLog program T (s) = BK ∪
ADs ∪ F s, inducing a probability measure PT . By query-
ing this program, we can reason about safety of policies and
actions. More specifically, we can use the same identical
ProbLog program T (s) to obtain three distributions:

• action safety in s: P(safe|s, a) = PT (safe|a)
• policy safety in s: Pπ(safe|s) = PT (safe)
• the shielded policy in s: Pπ(a|s, safe) = PT (a|safe)
It is important to note that the safety model in ProbLog

is an abstraction that may use a different representation than
that of the underlying MDP.

Perception Through Neural Predicates We rely on two
neural networks π and H to compute the probabilities ADs

and Fs, which depend on the current state s. These networks
take image input s and output the probabilities of the actions
ADs and the safe-relevant abstraction of the state Fs, respec-
tively. As depicted in Fig. 1, state s is fed into both networks,
and the probabilities are then used as inputs to the ProbLog
program. This feature is closely related to the notion of neu-
ral predicate, which can — for the purposes of this paper
— be regarded as neural networks encapsulated inside logic.
Since ProbLog programs are differentiable with respect to the
probabilities in ADs and Fs, the gradients can be seamlessly
backpropagated to network parameters during learning.

Leveraging Probabilistic Logic Programming Using
ProbLog to implement the shield is convenient since it is
a Turing-complete programming language that extends Pro-
Log. ProbLog programs are differentiable, making them
compatible with neural network optimization. Probabilistic
logic programs can be compiled into arithmetic circuits using
knowledge compilation [Darwiche, 2003]. Although the size
of the circuit is generally exponential to the numbers of facts,
ADs and clauses, once the circuit is obtained, inference is
linear in the size of the circuit [De Raedt and Kimmig, 2015;
Fierens et al., 2015]. Furthermore, the circuits only need to

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5741

Figure 2: A circuit compiled from a program.

be compiled once and then can be reused to compute gradi-
ents for all states. As an example, the following program is
compiled into the circuit in Fig. 2.
0.2::act(dn);
0.6::act(left);
0.2::act(right).
0.8::ghost(left). 0.1::ghost(right).
crash:- act(left), ghost(left).
crash:- act(right), ghost(right).

Although we are using a probabilistic logic programming
language (i.e. ProbLog), we could also have used alternative
representations such as Bayesian networks, or other StarAI
models [De Raedt et al., 2016] to reason about safety. Cur-
rently, ProbLog is limited to discrete actions, but it should
be possible to model continuous actions using extensions in
future work [Nitti et al., 2016].

5 Probabilistic Logic Policy Gradient
This section demonstrates how to use probabilistic logic
shields with a deep reinforcement learning method. We will
focus on real-vector states (such as images), while specifying
the safety constraint symbolically and logically. Our goal is to
maximize a linear combination of Pπ(safe|s) and the total
expected return along the trajectory. We propose a novel safe
policy gradient technique, named Probabilistic Logic Policy
Gradient (PLPG). PLPG integrates probabilistic logic shields
with policy gradients and guarantees convergence to a safe
and optimal policy if one exists.

5.1 PLPG for Probabilistic Shielding
To integrate probabilistic logic shields with policy gradient,
we replace the base policy in Eq. (1) with the shielded policy
obtained in Eq. (3). This gradient is called the shielded policy
gradient.

Eπ+
θ
[

∞∑
t=0

Ψt∇θ log π
+
θ (at|st)] (4)

Replacing π with π+ requires the shield to be dif-
ferentiable, meaning that the derivative of the policy

∇θ log π
+
θ (at|st) with respect to θ exists at every point. We

will later see that rejection-based shields in Eq. (7) are not
differentiable and cannot be applied in Eq. (4). The shielded
policy gradient encourages policies that yield higher rewards,
indicated by a larger Ψ, in the same manner as a standard
policy gradient. It assumes that unsafe actions have been fil-
tered by the shield. However, when the safety specification is
uncertain, unsafe actions may still be taken, and the gradient
may still encourage unsafe actions that were not filtered by
the shield and yielded a high return.

To address this issue, we introduce a safety loss to penalize
unsafe policies. The safety loss is designed such that a safe
policy will have a small loss and a completely safe policy
will have a loss of zero. The loss is expressed by interpreting
the policy safety as the probability that π+ satisfies the safety
constraint, i.e. − logPπ+(safe|s), using the semantic loss
approach in [Xu et al., 2018]. We define the corresponding
safety gradient as:

−Eπ+
θ
[∇θ logPπ+(safe|s)] (5)

Notice that the safety gradient represents a regret and is not
a shielding mechanism. By combining the shielded policy
gradient and the safety gradient, we introduce a new Safe RL
technique.

Definition 5.1. (PLPG) The probabilistic logic policy gradi-
ent ∇θJ(θ) is

E
π+
θ
[

∞∑
t=0

Ψt∇θ log π
+
θ (at|st)− α∇θ logPπ+

θ
(safe|st)] (6)

where α ∈ [0,∞) is a hyperparameter that controls the com-
bination of the two gradients.

The hyperparameter α guides the search towards an opti-
mal and safe policy. Both gradients in PLPG are essential.
The shielded policy gradient ensures that the agent avoids
immediate danger, while the safety gradient penalizes unsafe
behavior. The interaction between shielded and loss-based
gradients is still a relative new topic, but recent advancements
in neuro-symbolic learning have highlighted the importance
of considering both [Ahmed et al., 2022]. Our experiments
will show that relying on one but not the other is practically
insufficient.

5.2 Probabilistic vs Rejection-based Shielding
Finding a policy in the safe policy space cannot be solved by
rejection-based shielding (cf. Fig. 3, left) without assuming
that a state-action pair is either completely safe or unsafe. In
fact, it is often assumed that a set of safe state-action pairs
SAsafe is given by the user. Implementing a rejection-based
shield requires repeatedly sampling from a base policy until
an action is accepted. However, this approach relies on inef-
ficient rejection sampling schemes, which lack a clear link to
probabilistic semantics [Robert et al., 1999].

π+(a|s) =
1[(s,a)∈SAsafe]π(a|s)∑

a′∈A

1[(s,a′)∈SAsafe]π(a
′|s)

(7)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5742

Figure 3: A comparison between a traditional rejection-based shield
SHLD (left) and a Probabilistic Logic Shield PLS (right). Both
shields interact with the same policy π and noisy sensors H to com-
pute a safe action. Left: π must keep sampling actions until a safe
action is accepted by SHLD. This requires an assumption that an ac-
tion is either completely safe or unsafe. Right: We replace SHLD
with PLS that proposes a safer policy π+ on the policy level without
imposing the assumption.

Convergence Under Perfect Safety Information
It is common for existing shielding approaches to combine
policy gradients with a rejection-based shield (i.e. Eq. (7)),
leading to the following form of policy gradient.

∇θJ(θ) = Eπ+
θ
[

∞∑
t=0

Ψt∇θ log πθ(st, at)] (8)

This approach has a known issue of potentially learning
sub-optimal policies, even when given perfect safety informa-
tion [Kalweit et al., 2020; Ray et al., 2019; Hunt et al., 2021;
Anderson et al., 2020]. The issue arises from a policy mis-
match between π+ and π in Eq. (8). Specifically, Eq. (8) is
an off-policy algorithm, where the policy used to explore (i.e.
π+) differs from the policy being updated (i.e. π)1. For any
off-policy policy gradient method to converge to an optimal
policy (even in the tabular case), the behavior policy (used for
exploration) and the target policy (to be updated) must appro-
priately visit the same state-action space, i.e., if π(a|s) > 0
then π+(a|s) > 0 [Sutton and Barto, 2018]. However, this
requirement is violated by Eq. (8).

In contrast, PLPG simplifies to Eq. (4) when given perfect
sensor information. Since Eq. (4) shares the same form as
the standard policy gradient (Eq. (1)), PLPG is guaranteed to
converge to an optimal policy according to the Policy Gradi-
ent Theorem [Sutton et al., 2000].

Proposition 2. PLPG, i.e. Eq. (6), converges to an optimal
policy given perfect safety information in all states.

It is important to note that the base policy πθ learned by
PLPG (cf. Eq. (6)) is generally not equivalent to the one
learned with a rejection-based shield (cf. Eq. (8)), assum-
ing all other factors remain equal. In Eq. (8), the parameters
θ depend on the base policy. However, in Eq. (6), the pa-
rameters θ depend on the shielded policy π+, and the base
policy is learned in a way that optimizes π+ given the safety
constraints imposed by the shield.

Learning From Unsafe Actions
PLPG has a significant advantage over a rejection-based
shield as it learns from not only the actions accepted by the

1A well-known off-policy technique is Q-learning where the be-
havior policy different from the target policy.

shield but all available actions in the current state This means
that safety information about the rejected actions can be in-
corporated without having to execute them. By conditioning
the action probabilities on the safety atom (cf. Eq. (3)),
the probabilistic logic shield implicitly performs planning and
exploits this safety information to update the policy through
backpropagation.

6 Experiments
We conduct an empirical evaluation of PLPG, comparing it
to other baselines in terms of return and safety in a rein-
forcement learning setting. The source code can be found
on https://github.com/wenchiyang/pls.

All experiments are run for a number of episodes until the
agent has taken a total of 600k actions. All episodes starts
with the same initial states and ends when the agent reaches
a goal state or an unsuccessful absorbing state, or at the max-
imum length of an episode. We will measure the return and
and whether the constraint is violated for all episodes. All
agents in all domains are trained using 600k learning steps
and each experiment is repeated five times using different
seeds.

Experimental Setup Experiments are run in three environ-
ments. (1) Stars, where the agent must collect as many stars
as possible without going into a stationary fire; (2) Pacman,
where the agent must collect stars without getting caught by
the fire ghosts moving around, and (3) Car Racing, where
the agent must follow the track without driving into the grass
area. For each domain, we use two configurations. A de-
tailed description of these configurations can be found in Ap-
pendix A.3.

We compare PLPG to three RL baselines.
• PPO: a standard safety-agnostic agent that starts with a

random initial policy [Schulman et al., 2017].
• VSRL: an agent augmented with a deterministic

rejection-based shield [Hunt et al., 2021]. Its structure
is shown in Fig. 3 (left).

• ϵ-VSRL: we introduce a risk-taking variant of VSRL that
has a small ϵ probability of accepting any action, akin to
ϵ-greedy [Fernández and Veloso, 2006]. By simulating
artificial sensor noises, ϵ-VSRL is expected to enhance
the ability of VSRL to handle noisy environments.

To ensure a fair comparison, we equip all safety-aware
agents, including VSRL, ϵ-VSRL and PLPG, with identical
safety sensors. PPO agents do not have any safety sensors. It
should be noted that PLPG does not assume a complete model
of the environment. Hence, we do not compare to shielding
approaches that rely on such models. In our setting, the en-
vironment model is unknown. Instead, we assume a safety
model, which is an abstraction of the underlying model (cf.
Section 4). Further investigation is required to understand the
implications of the relation between of the safety model and
the underlying MDP.

We aim to answer the following questions:
Q1 Does PLPG outperform its competitors in terms of safety

and return?
Q2 What is the effect of the hyperparameters α and ϵ?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5743

https://github.com/wenchiyang/pls

Figure 4: The domains of Stars, Pacman and Car Racing. The fires
in Stars remain stationary and the ones in Pacman move around.

Q3 Does the shielded policy gradient or the safety gradient
have a stronger influence on safety in PLPG?

Q4 What is the computational cost of a multi-step safety
look-ahead in PLPG?

Metrics All agents are compared based on two metrics:
(1) average normalized return, i.e. the per-episode return
averaged over the last 100 episodes and then normalized to
[0, 1]; and (2) cumulative normalized violation, i.e. the total
number of constraint violations normalized to [0, 1]. Detailed
numerical results can be found in Appendix B.

Probabilistic Safety via Noisy Sensors We consider a set
of noisy sensors around the agent that provide local safety
information. For instance, the four fire sensor readings in
Fig. 4 (left) might be {0.6 :: fire(0, 1). 0.1 :: fire(0,−1).
0.1 :: fire(−1, 0). 0.4 :: fire(1, 0).} The PLPG agents can
directly use the noisy sensor readings. However, VSRL
and ϵ-VSRL agents require deterministic sensor readings.
Hence, the readings must be discretized to {0, 1}, result-
ing in {1 :: fire(0, 1). 0 :: fire(0,−1). 0 :: fire(−1, 0).
0 :: fire(1, 0).} In all domains, the noisy sensors are stan-
dard pre-trained neural approximators of an accuracy exceed-
ing 99%. The detailed training procedure can be found in
Appendix B.1. Despite the high accuracy of these sensors,
we will show that discretizing sensor readings is harmful in
terms of safety.

Q1: Lower Violation and Higher Return We evaluate the
safety and return of PLPG compared to the baselines by mea-
suring the total safety violations and the average episodic re-
turns. However, before doing so, we must select appropri-
ate hyperparameters for PLPG and ϵ-VSRL agents. Since our
goal is to find an optimal policy in the safe policy space,
we select values for α and ϵ that result in the lowest viola-
tion in each domain. We consider α ∈ {0, 0.1, 0.5, 1, 5} and
ϵ ∈ {0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0}. These hyperpa-
rameter choices are can be found in Appendix B, and they
will remain fixed for the rest of the experiments, except for
Q2 where we explicitly analyze their effects.

The results are visualized in Fig. 5, where each data point
corresponds to a policy trained for 600k steps. For analysis
purposes, we will report the average return and constraint vi-
olations of all six configurations across all domains.

Our results show that the PLPG agents achieve the low-
est violation while maintaining a comparable return to the
other agents. When augmented with perfect sensors, the vi-
olation of PLPG is 50.2% lower than PPO and 25.7% lower
than VSRL. When augmented with noisy sensors, the viola-
tion of PLPG is 51.3% lower than PPO, 24.5% lower than

0.0 0.5 1.0
0.0

0.5

Stars

0.0 0.5 1.0
0.0

0.5

1.0

Pac

0.0 0.5 1.0 1.5

0.0

0.5

1.0

CR

CR1 CR2 Pac1 Pac2 Stars1 Stars2

P
e
rf
e
c
t
S
e
n
s
o
rs

0.0 0.5 1.0
0.0

0.5

0.0 0.5 1.0
0.0

0.5

0.0 0.5 1.0
0.0

0.5

1.0

N
o
is
y
S
e
n
s
o
rs

PPO VSRL ε-VSRL PLPG

Figure 5: Trade-off between Violation (x-axis) and Return (y-
axis). Each small data point is an agent’s policy and the large data
points are the average of five seeds. Each domain has two configu-
rations Table 2. An ideal policy should lie in the upper-left corner.

VSRL and 13.5% lower than ϵ-VSRL. Our results also illus-
trates that PLPG achieves a comparable (or slightly higher)
return while having the lowest violation. When augmented
with perfect sensors, the return of PLPG is 0.5% higher than
PPO and 4.8% higher than VSRL. When augmented with
noisy sensors, the return of PLPG is 4.5% higher than PPO,
6.5% higher than VSRL and 6.7% higher than ϵ-VSRL.

Compared to the other domains, the Car Racing domain
has more complex and continuous actions effects, and the
safety sensors do not capture the inertia of the car, which in-
volves the velocity and the underlying physical mechanism
such as friction. Therefore, in CR, relying solely on safety
sensor readings is insufficient for the car to avoid driving
into the grass. In domains where safety sensors are insuffi-
cient, the agent must be able to take slightly unsafe actions
to learn. This is possible for agents like PPO, ϵ-VSRL and
PLPG, whereas VSRL solely relies on sensors. Hence, com-
paring to the safety-agnostic baseline PPO, both ϵ-VSRL and
PLPG significantly reduce violations by 37.8% and 50.2%.
In contrast, VSRL leads to 18% more violations even when
given perfect safety sensors. Note that we measure the actual
violations instead of policy safety Pπ(safe|s). The policy
safety during the learning process is plotted in Appendix B.

Q2: Selection of Hyperparameters α and ϵ We analyze
the hyperparameters α and ϵ to evaluate their impact on the
performance of PLPG and ϵ-VSRL in noisy environments.
We measure the episodic return and constraint violations. The
normalized results are plotted in Fig. 6 and the detailed num-
bers can be found in Appendix B.

The effect of different values of α on PLPG agents is ev-
ident. Increasing α leads to a convex trend in both the re-
turn and the violation counts. For all the domains, the opti-
mal value of α generally falls between 0.1 and 1, where the
constraint violations are minimized and the return is optimal.
This illustrates the benefits of combining the shielded pol-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5744

0 0.005 0.01 0.05 0.1 0.2 0.5 1

ε

0.0

0.5

1.0

0 0.1 0.5 1 5

ɑ

0.0

0.5

1.0

Violation

0 0.005 0.01 0.05 0.1 0.2 0.5 1

ε

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.5 1 5

ɑ

0.0

0.2

0.4

0.6

0.8

1.0

Return

CR1 CR2 Pac1 Pac2 Stars1 Stars2

Figure 6: The episodic return and cumulative constraint violation of
VSRL (left) and PLPG (right) agents in noisy environments. Left:
The effect of ϵ is insignificant. Right: Increasing α leads to a convex
trend in both return and violation.

icy gradient and the safety gradient in PLPG. In contrast, the
effect of ϵ on VSRL agents is insignificant. Increasing ϵ gen-
erally improves return but worsens constraint violations. This
indicates that simply randomizing the policy is not effective
in improving the agent’s ability to handle noisy environments.
Notice that there is no one-to-one mapping between the two
hyperparameters, as α controls the combination of the gradi-
ents and ϵ controls the degree of unsafe exploration. Over-
all, this analysis emphasizes the benefits of directly utilizing
noisy sensor readings as opposed to relying on random explo-
ration.

Q3: PLPG Gradient Analysis We evaluate the interaction
between the shielded policy gradient and the safety gradient
by introducing two ablated agents: one that uses only safety
gradients (cf. Eq. (4)) and the other that uses only shielded
policy gradients (cf. Eq. (5)). The results are plotted in Fig. 7
where each data point corresponds to a policy trained for 600k
steps. For analysis purposes, we will report the average return
and constraint violations of all six configurations across all
domains.

Our results show that combining both gradients results in
a safer learning process compared to using only one gradient.
When augmented with perfect sensors, using both gradients
leads to 24.7% fewer violations than using only safety gra-
dients, and 10.8% fewer violations than using only shielded
policy gradients. When augmented with noisy sensors, us-
ing both gradients leads to 25.5% fewer violations than using
only safety gradients, and 15.5% fewer violations than using
only shielded policy. However, the relative importance of the
two gradients varies across domains. In Stars and Pacman,
using only policy gradients causes leads to fewer violations
compared to using only safety gradients. Conversely, in CR,
using only safety gradients leads to fewer violations, which is
a consequence of the inertia effect, as discussed in Q1.

0.0 0.5
0.0

0.5

Stars

0.0 0.5 1.0
0.0

0.5

1.0

Pac

0.0 0.5 1.0
0.0

0.5

1.0

CR

CR1 CR2 Pac1 Pac2 Stars1 Stars2

P
e
rf
e
c
t
S
e
n
s
o
rs

0.0 0.5
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

0.0 0.5
0.0

0.5

1.0

N
o
is
y
S
e
n
s
o
rs

Only Safety Grad. Only Policy Grad. Both Grad.

Figure 7: Trade-off between Violation (x-axis) and Return (y-
axis). Each data point is an agent’s policy and the big data points are
the average of five seeds. Each domain has two configurations Ta-
ble 2. An ideal policy should lie in the upper-left corner.

Safety horizon 1 step 2 steps 3 steps 4 steps

#sensors 4 12 24 40

Circuit size 116 1073 8246 373676

Compilation (s) 0.29 0.70 1.70 15.94

Evaluation (s) 0.01 0.08 0.66 27.39

Return/Violation 0.81 / 0.82 0.85 / 0.65 0.86 / 0.57 -

Table 1: Multi-step Safety Look-ahead

Q4: Multi-step Safety Look-ahead We analyze the be-
haviour of PLPG when employing probabilistic logic shields
for multi-step safety look-ahead. This approach requires ad-
ditional sensors around the agent to detect potential dangers
over a larger safety horizon. For example, in Pacman, new
sensors are required to detect the presence of a ghost at a dis-
tance of N units where N is the safety horizon. We evaluate
the performance of PLPG in terms of return, violation and
computational cost. The results are shown in Table 1. As
the horizon increases, there is an exponential growth in size
of the compiled circuit and the corresponding inference time.
However, there is a significant improvement in both safety
and return, especially when transitioning from one-step to a
two-step horizon.

7 Related Work
Safe RL. Safe RL aims to avoid unsafe consequences
through the use of various safety representations [Garcı́a
and Fernández, 2015]. There are several ways to achieve
this goal. One could constrain the expected cost [Achiam
et al., 2017; Moldovan and Abbeel, 2012], maximize safety
constraint satisfiability through a loss function [Xu et al.,
2018], add a penalty to the agent when the constraint is vi-
olated [Pham et al., 2018; Tessler et al., 2019; Memarian

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5745

et al., 2021], or construct a more complex reward struc-
ture using temporal logic [De Giacomo et al., 2021; Cama-
cho et al., 2019; Jiang et al., 2021; Hasanbeig et al., 2019;
Den Hengst et al., 2022]. These approaches express safety
as a loss, while our method directly prevents the agent from
taking actions that can potentially lead to safety violation.

Probabilistic Shields. Shielding is a safe reinforcement
learning approach that aims to completely avoid unsafe ac-
tions during the learning process [Alshiekh et al., 2018;
Jansen et al., 2020]. Previous shielding approaches have been
limited to symbolic state spaces and are not suitable for noisy
environments [Jansen et al., 2020; Harris and Schaub, 2020;
Hunt et al., 2021; Anderson et al., 2020]. To address uncer-
tainty, some methods incorporate randomization, e.g. sim-
ulating future states in an emulator to estimate risk [Li and
Bastani, 2020; Giacobbe et al., 2021], using ϵ-greedy ex-
ploration that permits unsafe actions [Garcı́a and Fernández,
2019], or randomizing the policy based on the current belief
state [Karkus et al., 2017]. To integrate shielding with neural
policies, one can translate a neural policy to a symbolic one
that can be formally verified [Bastani et al., 2018; Verma et
al., 2019]. However, these methods rely on sampling and do
not have a clear connection to uncertainty present in the envi-
ronment while our method directly exploits such uncertainty
through the use of probabilistic logic programming princi-
ples. Belief states can capture uncertainty but require an envi-
ronment model to keep track of the agent’s belief state, which
is a stronger assumption than our method [Junges et al., 2021;
Carr et al., 2022].

Differentiable layers for neural policies. The use of dif-
ferentiable shields has gain some attention in the field. One
popular approach is to add a differentiable layer to the pol-
icy network to prevent constraint violations. Most of these
methods focus on smooth physical rules [Dalal et al., 2018;
Pham et al., 2018; Cheng et al., 2019] and only a few involve
logical constraints. In [Kimura et al., 2021], an optimization
layer is used to transform a state-value function into a policy
encoded as a logical neural network. [Ahmed et al., 2022]
encode differentiable and hard logical constraints for neural
networks using probabilistic logic programming. While be-
ing similar, this last model focuses on prediction tasks and do
not consider a trade-off between return and constraint satisfi-
ability.

8 Conclusion

We have introduced Probabilistic Logic Policy Gradient, a
novel class of end-to-end differentiable shielding techniques.
Probabilistic Logic Policy Gradient enables efficient training
of safe-by-construction neural policies by incorporating prob-
abilistic logic shields on top of the standard neural policy. It is
a generalization of classical shielding [Hunt et al., 2021] that
allows for both deterministic and probabilistic safety speci-
fications. Future work will be dedicated to extending proba-
bilistic logic shields to be compatible with a larger class of RL
algorithms, including those that employ continuous policies.

Figure 8: Left: A Stars image. Middle: A Stars state (downsampled
from the left). Right: A example to pre-train noisy sensors.

Figure 9: Left: A lap in Car Racing. Middle: A Car Racing image.
We mark the sensors around the agent white but they not visible in
training. Right: A Car Racing state (downsampled from the mid-
dle).

A Environments
All environments in this work are available on GitHub un-
der the MIT license. The source code and the data used
to generate Figs. 5 to 7 can be found on https://github.com/
wenchiyang/pls.

A.1 Stars and Pacman
We build the Stars environments using Berkeley’s Pac-Man
Project 2. Our environment is a 15 by 15 grid world contain-
ing stars and fires, e.g. Fig. 8, where the agent can move
around using five discrete, deterministic actions: stay, up,
down, left, right. Each action costs a negative reward of −0.1.
The task of the agent is to collect as many stars as possible in
an episode. Collecting one star yields a reward of 1. When
the agent finds all stars, the episode ends with a reward of 10.
If the agent crashes into fire or has taken 200 steps (maximum
episode length), the episode ends with no rewards. The same
map is reused for all episodes. Each state is a downsampled,
grayscale image where each pixel is a value between -1 and
1, e.g. Fig. 8 (right).

Pacman is more complicated than the Stars in that the fire
ghosts can move around and their transition models are un-
known. All the other environmental parameters are the same
as Stars.

A.2 Car Racing
We simplify Gym’s Car Racing environment [Brockman et
al., 2016]. Our environment is a randomly generated car
track, e.g. Fig. 9 (left). At the beginning, the agent will be
put on the track, e.g. Fig. 9 (middle). The task of the agent is
to drive around the track (i.e. to finish one lap) within 1000
frames. In each frame, the agent takes a discrete action: do-
nothing, accelerate, brake, turn-left or turn-right. Each ac-

2http://ai.berkeley.edu/project overview.html

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5746

https://github.com/wenchiyang/pls
https://github.com/wenchiyang/pls
http://ai.berkeley.edu/project_overview.html

Description Return Range Violation Range Perfect Sensors Noisy Sensors
α ϵ α

Stars1 Deterministic actions [0, 45] [0, 15k] 0.5 0.005 1

Stars2 Stochastic actions 1 0.01 1

Pacman1 One ghost [0, 40] [0, 7k] 0.1 0.05 0.5

Pacman2 Two ghosts [0, 15k] 0.5 0.005 0.1

Car Racing1 Smoother track [0, 900] [0, 1] 0.5 0.5 1

Car Racing2 Curlier track 0.1 0.5 0.5

Table 2: Summary of configurations.

tion costs a negative reward of −0.1. The agent gets a small
reward if it continues to follow the track. The agent does
not get a penalty for driving on the grass, however, if the car
drives outside of the map (i.e. the black part in Fig. 9, left),
the episode ends with a negative reward of −100. The same
map is reused for all episodes. Each state is a downsampled,
grayscale image where each pixel is a value between −1 and
1, e.g. Fig. 9 (right).

The original environment has a continuous action space
that consists of three parameters: steering, gas and break
with the minimum values [−1, 0, 0] and the maximum val-
ues [+1,+1,+1]. In this paper, all agents use five discrete
actions: do-nothing ([0, 0, 0]), accelerate ([0, 1, 0]), brake
([0, 0, 0.8]), turn-left ([−1, 0, 0]), turn-right ([1, 0, 0]).

We use the following probabilistic logic shield. The act/1
predicates represent the base policy and the grass/1 predi-
cates represent whether there is grass in front, on the left or
right hand side of the agent. In Fig. 9 (middle), the sensors
may produce {0 :: grass(0), 0 :: grass(1) 0 :: grass(2)}.

A.3 Configurations of Domains
We run two configurations for each domain. The second con-
figuration is more challenging than the first one. Stars1 is a
deterministic environment. Stars2 is a stochastic environment
where the agent has a small probability to enter an unintended
neighboring cell. For example, after performing up, the agent
will enter the intended cell (0, 1) with a probability of 0.9 and
it will enter (−1, 0) and (1, 0) with a probability of 0.05. Pac-
man1 has one moving fire ghost and Pacman2 has two. Car
Racing1 has a smother track and Car Racing2 has a curlier
track, which is more difficult to learn.

All configurations may have different normalization ranges
and hyperparameters. We select the hyperparameters that re-
sult in the lowest violations in each configuration. Table 2
lists a summary of all configurations and all other tables fol-
lows this table if not explicitly specified.

B Extra Experimental Information
Experiments are run on machines that consist of Intel(R)
Xeon(R) E3-1225 CPU cores and 32Gb memory. All agents
are trained using PPO in stable-baselines [Hill et
al., 2018] with batch size=512, n epochs=15, n steps=2048,
clip range=0.1, learning rate=0.0001. All policy networks
and value networks have two hidden layers of size 64.

All the other hyperparameters are set to default as in
stable-baselines [Hill et al., 2018]. We train all
agents in all configurations using 600k learning steps and all
experiments are repeated using five different seeds.

B.1 Approximating Noisy Sensors
We approximate noisy sensors using convolutional neural
networks. In all the environments, we use 4 convolutional
layers with respectively 8, 16, 32, 64 (5x5) filters and relu ac-
tivations. The output is computed by a dense layer with sig-
moid activation function. The number of output neurons de-
pends on the ProbLog program for that experiment (see Ap-
pendix A.1). We pre-train the networks and then we fix them
during the reinforcement learning process. The pre-training
strategy is the following. We generated randomly 3k images
for Stars and Pacman with 30 fires and 30 stars, e.g. Fig. 8
(right), and 2k images for Car Racing, e.g. Fig. 9 (right).
We selected the size of the pre-training datasets in order to
achieve an accuracy higher than 99% on a validation set of
100 examples.

Acknowledgements
This work was supported by the Research Foundation - Flan-
ders under EOS No. 309925744, the Flemish Government
(AI Research Program), the EU Horizon 2020 programme
TAILOR under No. 952215, and the KU Leuven Research
fund. GM has received funding from FWO (1239422N).
LDR is partially funded by the Wallenberg AI, Autonomous
Systems and Software Program.

References
[Achiam et al., 2017] Joshua Achiam, David Held, Aviv

Tamar, and Pieter Abbeel. Constrained policy optimiza-
tion. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page 22–31.
JMLR.org, 2017.

[Ahmed et al., 2022] Kareem Ahmed, Stefano Teso, Kai-
Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic probabilistic layers for neuro-symbolic learning.
In Advances in Neural Information Processing Systems,
2022.

[Alshiekh et al., 2018] Mohammed Alshiekh, Roderick
Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5747

Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. AAAI’18/IAAI’18/EAAI’18. AAAI Press,
2018.

[Anderson et al., 2020] Greg Anderson, Abhinav Verma, Isil
Dillig, and Swarat Chaudhuri. Neurosymbolic reinforce-
ment learning with formally verified exploration. In Pro-
ceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, 2020.

[Bastani et al., 2018] Osbert Bastani, Yewen Pu, and Ar-
mando Solar-Lezama. Verifiable reinforcement learning
via policy extraction. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’18, page 2499–2509. Curran Associates Inc.,
2018.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[Camacho et al., 2019] Alberto Camacho, Rodrigo
Toro Icarte, Toryn Q. Klassen, Richard Valenzano,
and Sheila A. McIlraith. Ltl and beyond: Formal
languages for reward function specification in reinforce-
ment learning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
IJCAI-19, 7 2019.

[Carr et al., 2022] Steven Carr, Nils Jansen, Sebastian
Junges, and Ufuk Topcu. Safe reinforcement learning via
shielding for pomdps. CoRR, abs/2204.00755, 2022.

[Cheng et al., 2019] Richard Cheng, Gábor Orosz,
Richard M. Murray, and Joel W. Burdick. End-
to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks.
AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[Dalal et al., 2018] Gal Dalal, Krishnamurthy Dvijotham,
Matej Vecerı́k, Todd Hester, Cosmin Paduraru, and Yu-
val Tassa. Safe exploration in continuous action spaces.
CoRR, abs/1801.08757, 2018.

[Darwiche, 2003] Adnan Darwiche. A differential ap-
proach to inference in bayesian networks. J. ACM,
50(3):280–305, may 2003.

[De Giacomo et al., 2021] Giuseppe De Giacomo, Luca Ioc-
chi, Marco Favorito, and Fabio Patrizi. Foundations for
restraining bolts: Reinforcement learning with ltlf/ldlf
restraining specifications. Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
29(1):128–136, 2021.

[De Raedt and Kimmig, 2015] Luc De Raedt and Angelika
Kimmig. Probabilistic (logic) programming concepts.
Mach. Learn., 100(1):5–47, 2015.

[De Raedt et al., 2016] Luc De Raedt, Kristian Kersting, Sri-
raam Natarajan, and David Poole. Statistical Relational
Artificial Intelligence: Logic, Probability, and Computa-
tion, volume 32 of Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool, 2016.

[Den Hengst et al., 2022] Floris Den Hengst, Vincent
François-Lavet, Mark Hoogendoorn, and Frank van

Harmelen. Planning for potential: Efficient safe rein-
forcement learning. Mach. Learn., 111(6):2255–2274,
2022.

[Fernández and Veloso, 2006] Fernando Fernández and
Manuela Veloso. Probabilistic policy reuse in a rein-
forcement learning agent. AAMAS ’06. Association for
Computing Machinery, 2006.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted
Boolean formulas. Theory and Practice of Logic Program-
ming, 15:358–401, 5 2015.

[Garcı́a and Fernández, 2015] Javier Garcı́a and Fernando
Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research,
16:1437–1480, 2015.

[Garcı́a and Fernández, 2019] Javier Garcı́a and Fernando
Fernández. Probabilistic policy reuse for safe reinforce-
ment learning. ACM Trans. Auton. Adapt. Syst., 13(3),
2019.

[Giacobbe et al., 2021] Mirco Giacobbe, Mohammadhosein
Hasanbeig, Daniel Kroening, and Hjalmar Wijk. Shielding
atari games with bounded prescience. In Proceedings of
the 20th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’21, 2021.

[Harris and Schaub, 2020] Andrew Harris and Hanspeter
Schaub. Spacecraft command and control with safety guar-
antees using shielded deep reinforcement learning. AIAA
Scitech 2020 Forum, 1 PartF, 2020.

[Hasanbeig et al., 2019] M. Hasanbeig, Y. Kantaros,
A. Abate, D. Kroening, G. J. Pappas, and I. Lee. Rein-
forcement learning for temporal logic control synthesis
with probabilistic satisfaction guarantees. In 2019 IEEE
58th Conference on Decision and Control (CDC), 2019.

[Hill et al., 2018] Ashley Hill, Antonin Raffin, Maximilian
Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex
Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://
github.com/hill-a/stable-baselines, 2018. Accessed: 2023-
01-18.

[Hunt et al., 2021] Nathan Hunt, Nathan Fulton, Sara Magli-
acane, Trong Nghia Hoang, Subhro Das, and Armando
Solar-Lezama. Verifiably safe exploration for end-to-end
reinforcement learning. In Proceedings of the 24th Inter-
national Conference on Hybrid Systems: Computation and
Control, HSCC ’21, 2021.

[Jansen et al., 2020] Nils Jansen, Bettina Könighofer, Sebas-
tian Junges, Alex Serban, and Roderick Bloem. Safe re-
inforcement learning using probabilistic shields. In 31st
International Conference on Concurrency Theory, CON-
CUR 2020, 2020.

[Jiang et al., 2021] Yuqian Jiang, Suda Bharadwaj, Bo Wu,
Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-logic-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5748

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

based reward shaping for continuing reinforcement learn-
ing tasks. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(9):7995–8003, 2021.

[Junges et al., 2021] Sebastian Junges, Nils Jansen, and San-
jit A. Seshia. Enforcing almost-sure reachability in
pomdps. In Computer Aided Verification. Springer Inter-
national Publishing, 2021.

[Kalweit et al., 2020] Gabriel Kalweit, Maria Huegle,
Moritz Werling, and Joschka Boedecker. Deep inverse
q-learning with constraints. In Advances in Neural
Information Processing Systems, volume 33, pages
14291–14302. Curran Associates, Inc., 2020.

[Karkus et al., 2017] Peter Karkus, David Hsu, and Wee Sun
Lee. Qmdp-net: Deep learning for planning under par-
tial observability. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17. Curran Associates Inc., 2017.

[Kimura et al., 2021] Daiki Kimura, Subhajit Chaudhury,
Akifumi Wachi, Ryosuke Kohita, Asim Munawar, Michi-
aki Tatsubori, and Alexander Gray. Reinforcement Learn-
ing with External Knowledge by using Logical Neural
Networks. 2021.

[Li and Bastani, 2020] Shuo Li and Osbert Bastani. Robust
Model Predictive Shielding for Safe Reinforcement Learn-
ing with Stochastic Dynamics. Proceedings - IEEE Inter-
national Conference on Robotics and Automation, 2020.

[Memarian et al., 2021] Farzan Memarian, Wonjoon Goo,
Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-
supervised online reward shaping in sparse-reward envi-
ronments. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS, pages 2369–2375. IEEE,
2021.

[Mnih et al., 2016] Volodymyr Mnih, Adrià Puigdomènech
Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML, volume 48 of JMLR Workshop and
Conference Proceedings, pages 1928–1937. JMLR.org,
2016.

[Moldovan and Abbeel, 2012] Teodor Mihai Moldovan and
Pieter Abbeel. Safe exploration in markov decision pro-
cesses. In Proceedings of the 29th International Cofer-
ence on International Conference on Machine Learning,
ICML’12. Omnipress, 2012.

[Nitti et al., 2016] Davide Nitti, Tinne De Laet, and Luc
De Raedt. Probabilistic logic programming for hybrid re-
lational domains. Machine Learning, 103:407–449, 2016.

[Pham et al., 2018] Tu-Hoa Pham, Giovanni De Magistris,
and Ryuki Tachibana. Optlayer - practical constrained
optimization for deep reinforcement learning in the real
world. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6236–6243, 2018.

[Pishro-Nik, 2014] H. Pishro-Nik. Introduction to Probabil-
ity, Statistics, and Random Processes. Kappa Research,
LLC, 2014.

[Ray et al., 2019] Alex Ray, Joshua Achiam, and Dario
Amodei. Benchmarking Safe Exploration in Deep Rein-
forcement Learning. arXiv preprint, pages S. 1–6, 2019.

[Robert et al., 1999] Christian P Robert, George Casella, and
George Casella. Monte Carlo statistical methods, vol-
ume 2. Springer, 1999.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd
International Conference on Machine Learning, Proceed-
ings of Machine Learning Research. PMLR, 2015.

[Schulman et al., 2016] John Schulman, Philipp Moritz,
Sergey Levine, Michael I. Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized
advantage estimation. In 4th International Conference on
Learning Representations, ICLR, 2016.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. A Brad-
ford Book, 2018.

[Sutton et al., 2000] Richard S Sutton, David McAllester,
Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approx-
imation. In Advances in Neural Information Processing
Systems, volume 12. MIT Press, 2000.

[Tessler et al., 2019] Chen Tessler, Daniel J. Mankowitz, and
Shie Mannor. Reward constrained policy optimization.
In 7th International Conference on Learning Representa-
tions, ICLR. OpenReview.net, 2019.

[Verma et al., 2019] Abhinav Verma, Hoang M. Le, Yisong
Yue, and Swarat Chaudhuri. Imitation-projected program-
matic reinforcement learning. In Proceedings of the 33rd
International Conference on Neural Information Process-
ing Systems, 2019.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Van den Broeck. A semantic loss func-
tion for deep learning with symbolic knowledge. In Pro-
ceedings of the 35th International Conference on Machine
Learning, ICML’18. PMLR, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5749

	Introduction
	Preliminaries
	Probabilistic Logic Programming
	Markov Decision Process
	Shielding
	Policy Gradient

	Probabilistic Shields
	Probabilistic Logic Shields
	Probabilistic Logic Policy Gradient
	PLPG for Probabilistic Shielding
	Probabilistic vs Rejection-based Shielding

	Experiments
	Related Work
	Conclusion
	Environments
	Stars and Pacman
	Car Racing
	Configurations of Domains

	Extra Experimental Information
	Approximating Noisy Sensors

