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Abstract
Structural causal models provide a formalism to ex-
press causal relations between variables of interest.
Models and variables can represent a system at dif-
ferent levels of abstraction, whereby relations may
be coarsened and refined according to the need of
a modeller. However, switching between different
levels of abstraction requires evaluating a trade-off
between the consistency and the information loss
among different models. In this paper we intro-
duce a family of interventional measures that an
agent may use to evaluate such a trade-off. We
consider four measures suited for different tasks,
analyze their properties, and propose algorithms to
evaluate and learn causal abstractions. Finally, we
illustrate the flexibility of our setup by empirically
showing how different measures and algorithmic
choices may lead to different abstractions.

1 Introduction
In his IJCAI 2022 keynote talk, Judea Pearl argued that rea-
soning with causality is among the biggest challenges of mod-
ern AI. Structural causal models (SCM) [Pearl, 2009] were
introduced to address this challenge as a rigorous graph-based
formalism explicitly encoding causal relations between vari-
ables. Analyzing causes and effects, however, implicitly re-
quires the assumption of a given level of abstraction (LA)
at which variables are observed. The same system may in-
deed be modelled at different LAs depending on the resolu-
tion a modeller or a decision-making agent are considering.
Choosing the appropriate scale for modelling, analyzing and
controlling a system is a fundamental challenge in science
and decision-making, with instances ranging from ecologi-
cal multi-scale modelling [Levin, 1992] to neural population
coarse-graining [Schmutz et al., 2020].

Within the context of causal models, evaluating which ab-
straction is the “correct” one is a nontrivial challenge in itself.
A few approaches have been proposed in the literature to ex-
press relationships of abstraction between SCMs [Rubenstein
et al., 2017; Beckers and Halpern, 2019; Rischel, 2020], with
some of them offering quantitative ways to assess the de-
gree of approximation (or error) introduced by an abstraction
in terms of interventional consistency (IC) [Rischel, 2020;

Rischel and Weichwald, 2021]. However, understanding
which LA is the optimal one requires balancing potentially
conflicting properties. For instance, while assessing among
different candidate abstractions, an agent may well be con-
cerned with information loss when probability distributions
over fine-grained random variables are compressed to fit
coarser variables. Although abstractions are a key part of
causal reasoning, we still lack a theoretical framework spec-
ifying flexible measures of approximation and how to use
them to learn optimal abstractions.

Contributions. In this paper we bridge the gap in the lit-
erature by introducing and analyzing measures of abstraction
approximation that capture consistency and information loss
in causal abstraction. Concretely: (i) we define a family of in-
terventional measures of abstraction approximation (of which
IC is a particular case) and analyze their properties; (ii) we
introduce algorithms for evaluating and learning causal ab-
stractions based on our properties; (iii) we illustrate how our
measures are sensitive to their parameters and how they can
capture different aspects of an abstraction. All in all, we pro-
vide a grounded set of measures that can be used for abstrac-
tion learning according to the specific aims at hand.

Related Literature. Abstraction is a fundamental compo-
nent for general intelligence [Mitchell, 2021] and an impor-
tant strategy for managing complexity and allowing artifi-
cial agents to achieve superhuman performance in challeng-
ing games [Kroer and Sandholm, 2018; Sandholm, 2015].
Coarsening of Bayesian networks or learning structures with
bounded complexity in order to improve computational effi-
ciency and representation has been studied, for instance, in
[Chang and Fung, 1990; Elidan and Gould, 2008].

In causal reasoning, the problem of abstraction between
SCMs was first introduced by [Rubenstein et al., 2017]; the
original framework was then further developed by [Beckers
and Halpern, 2019; Beckers et al., 2020], and it has recently
found application for interpretability [Geiger et al., 2021].
Our work builds on the results of [Rischel, 2020], who pro-
vides a framework for evaluating IC grounded in category
theory [Spivak, 2014]. The problem of learning abstractions
within this framework has been practically studied in [Zen-
naro et al., 2023] on synthetic and real-world data. Here, we
generalise the IC approach across multiple dimensions and
study it both analytically and algorithmically.
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Work on evaluating abstraction naturally connects to work
on causal representation learning [Chalupka et al., 2017] and
work on defining and measuring emergence [Hoel, 2017;
Eberhardt and Lee, 2022], too; these deal with causal systems
at different LAs without the formalism of SCMs.

Paper Structure. In Sec. 2 we introduce mathematical pre-
liminaries for our framework. In Sec. 3 we provide measures
for abstraction approximation, and in Sec. 4 we study their
properties. We rely on these properties to discuss how to learn
abstractions in Sec. 5. Finally, we illustrate our contributions
empirically in Sec. 6 and conclude in Sec. 7.

2 Preliminaries
We define here SCMs, interventions, and abstractions.

Definition 1 (SCM [Pearl, 2009]). A structural causal model
(SCM)M is a tuple 〈X ,U ,F , P (U)〉 with an underlying di-
rected acyclic graph (DAG) GM where:

• X is a finite set of N endogenous random variables
Xi; each variable Xi is associated with a finite set
M[Xi] = {x1, ..., xM} of outcomes; sets of variables
are associated with the Cartesian product of the sets.

• U is a finite set of exogenous random variables.

• F is a finite set of N measurable structural functions
fi, one for each endogenous variable Xi; a structural
function fi : M[Pa(Xi)] × M[U ] → M[Xi], where
Pa(Xi) ⊆ X denotes parents, defines deterministically
the value of the random variable Xi.

• P (U) is a distribution over the exogenous variables.

Following [Rischel, 2020], we assume we have a finite
number of endogenous variables, each one with a finite do-
main. Our definition implies that we are working with semi-
Markovian SCMs. Notice, also, that the DAG structure im-
plies a partial ordering Xi ≺ Xj of the endogenous variables
according to reachability. SCMs allow us to study causality
via interventions:

Definition 2 (Intervention [Pearl, 2009]). Given a SCMM,
a variable-value pair (X,x) such that for each Xi in the set
X ⊆ X there is a xi ∈ M[Xi] in the set x, an intervention
ι : do(X = x) is an operator that generates a new SCMMι

by replacing the structural functions fi with the constants xi.

Let us now consider a base (low-level) model M and an
abstracted (high-level) modelM′ and define abstraction:

Definition 3 (Abstraction [Rischel, 2020]). An abstraction α
from SCMM to SCMM′ is a tuple 〈R, a, αi〉 where:

• R ⊆ X defines a subset of relevant variables inM;

• a : R → X ′ is a surjective function mapping relevant
variables R inM to variables inM′;

• αi : M[a−1(X ′i)] → M′[X ′i] is a collection of sur-
jective functions, one for each variable inM′, mapping
the outcomes of variable(s) a−1(X ′i) onto the outcomes
of variable X ′i .

Example 1. Consider two laboratories, Lab A and Lab B,
having defined two models of lung cancer: the model in Fig.

Sm Tar LC

(a)

Sm’ Hea’

(b)

Env”

Gen”

LC”

(c)

*

(d)

Figure 1: DAGs of four SCMs modelling causal relationships be-
tween smoking (Sm), tar deposits (Tar), genetic factors (Gen), envi-
ronmental factors (Env), health index (Hea), and lung cancer (LC).

1a and the model in Fig. 1b, respectively. A formal ab-
straction α from the model of Lab A to the model of Lab B
may be defined by choosing R = {Sm,LC}, a : {Sm 7→
Sm′, LC 7→ Hea′}, and setting αSm′ , αHea′ to identities. A
complete definition of the SCMs and the abstraction is pro-
vided in App. ??.

A first measure to assess quantitatively an abstraction was
suggested in [Rischel, 2020] in the form of IC between results
obtained on the low-level and high-level.
Definition 4 (IC error wrt an intervention [Rischel, 2020]).
Given an abstraction α from M to M′, and given two dis-
joint sets X′,Y′ ∈ X ′, we define the IC error wrt the inter-
ventional distribution P (Y′|do(X′)) by considering the fol-
lowing diagram:

M[a−1(X′)] M[a−1(Y′)]

M′[X′] M′[Y′]

µdo(a−1(X′))

νdo(X′)

αX′ αY′

where µdo(), νdo() are the stochastic functions computed in
the respective interventional models, and by evaluating:

EIC(α,X
′,Y′) = DJSD(αY′◦µdo(a−1(X′)), νdo(X′)◦αX′),

(1)
where DJSD is the Jensen-Shannon distance (JSD) and ◦ de-
notes function composition.

The definition of JSD is recalled in App. ??. This diagram
evaluates the discrepancy between performing first an inter-
vention on the low level and then abstracting, or abstracting
first and then performing an intervention on the high level.
Beyond a causal reading, the diagram has an algebraic and
categorical reading. Algebraically, every node is associated
with the set of outcomes of the given variable(s), while the
stochastic functions and abstractions on the arrows can be ex-
pressed as matrices; this means that arrow composition can
be efficiently computed by matrix multiplication; see App. ??
for further details. Categorically, the diagram has a rigorous
meaning in the category FinStoch enriched in Met [Rischel,
2020; Fritz, 2020].

We can extend the notion of IC error from an intervention
to the abstraction itself:
Definition 5 (Overall IC error [Rischel, 2020]). Given an ab-
straction α fromM toM′, the overall IC error is:

eIC(α) = sup
(X′,Y′)∈J

EIC(α,X
′,Y′), (2)
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where J is the set of all non-empty disjoint pairs (X′,Y′) ∈
P(X ′)×P(X ′), with P() being the powerset.

Example 2. Given the abstraction in Ex. 1, Lab A can mea-
sure the overall IC error eIC(α) ≈ 0.385 wrt the set of pairs
J = {(Sm′, Hea′)}. See App. ?? for the exact computation.

3 Measures of Abstraction Approximation
While IC provides a measure of interventional alignment be-
tween the low- and high-level model, this measure may not
properly capture the priorities of an agent and weight candi-
date abstractions accordingly.

Example 3. Suppose Lab A with its model in Fig. 1a is look-
ing for an abstraction. Since abstraction α to the model of
Fig. 1b has IC error eIC(α) ≈ 0.385 as in Ex. 2, Lab A may
consider an abstraction β to the singleton model in Fig. 1d.
By definition, eIC(β) = 0. However, despite the lower error,
this abstraction may be problematic given that the singleton
model trivially carries no information.

To enrich our understanding of abstraction approximation,
we use the definition of IC as a template for a generalizing
the notion of error wrt an intervention and overall error.

Definition 6 (Error wrt an intervention). Given an abstrac-
tion α fromM toM′, and given two disjoint sets X′,Y′ ∈
X ′, we define the error wrt the interventional distribution
P (Y′|do(X′)) by considering the following diagram:

M[a−1(X′)] M[a−1(Y′)]

M′[X′] M′[Y′]

µdo(a−1(X′))

νdo(X′)

αX′ αY′α+
X′ α+

Y′

where α+
X′ is the pseudo-inverse of αX′ , and by evaluating:

EI(α,X
′,Y′) = D(p, q), (3)

where D is a distance, and p, q are two paths in the above
diagram with the same start and end points (as in Tab. 1).

Definition 7 (Overall error). Given an abstraction α fromM
toM′, the overall interventional error is:

eI(α) = f
(X′,Y′)∈J

EI(α,X
′,Y′), (4)

where f is an aggregation function f : R|J | → R, and J is
an assessment set containing pairs (X′,Y′).

The definitions are generic and depend on five parameters:

• D, the distance measure to assess an individual error
EI(α,X

′,Y′). We rely on JSD which guarantees ab-
straction compositionality for IC [Rischel, 2020] and for
other interventional measures (see Sec. 4). Alterna-
tive measures guaranteeing the same property, such as
p-Wasserstein distances, had already been suggested in
[Rischel, 2020; Rischel and Weichwald, 2021] and could
be used in place of JSD.

p q diagram

IC νdo() ◦ αX′ αY′ ◦ µdo()

IIL µdo() α+
Y′ ◦ νdo() ◦ αX′

ISIL νdo() αY′ ◦ µdo() ◦ α+
X′

ISC α+
Y′ ◦ νdo() µdo() ◦ α+

X′

Table 1: Interventional measures wrt different paths.

• α+
X′ , the pseudo-inverse of αX′ . We will adopt the stan-

dard Moore-Penrose inverse, whose definition and rele-
vant properties are discussed in App. ??.

• p, q, the paths to be considered on the diagram in Defi-
nition 6; possible choices are discussed in Sec. 3.1.

• f , the function aggregating the individual errors
EI(α,X

′,Y′). We adopt a supremum aggregation
function, which provides a robust, worst-case scenario,
evaluation of the error. Other functions may be consid-
ered in different scenarios, such as mean or weighted av-
erage. Moreover, ensembling theory [Dietterich, 2000;
Rokach, 2019] may help definining desirable properties
for aggregation and analyzing correlations between er-
rors.

• J , the assessment set to evaluate eI(α); we will discuss
possible choices in detail in Sec. 3.2.

We focus on paths and assessment sets as they allow for
the definition of new measures and crucially contribute to the
meaning and the computational complexity of our measures.

3.1 Paths
In the diagram of Definition 6 the two horizontal arrows,
µdo() and νdo(), have a defined directionality; they capture
causal mechanisms, and their inverse would represent anti-
causal relationships, which are of no interest in this context.
The two vertical arrows, however, may be considered in both
directions: it may be desirable to move between a low-level
and a high-level model in both ways. This naturally leads to
the definition of four different measures, listed in Tab. 1, each
one having relevance in light of specific settings and down-
stream tasks an agent may face. We present these measures
by defining the paths p, q and illustrating their use on an ex-
ample using a lung cancer model from [Guyon et al., 2008].

Interventional Consistency (IC)
Discussed above, IC takes p = νdo() ◦ αX′ and q =
αY′ ◦ µdo(). IC considers interventions on the low-level
model and it evaluates the agreement, via abstraction, be-
tween results computed at the low-level and high-level. Low
IC would be relevant when a downstream task depends on
P (αY′(Y)|do(X)), with αY′ expressing a coarsening of
P (Y|do(X)), while an agent wants to rely on the higher-level
distribution P (Y′|do(αX′(X)).
Example 4. Consider the health scenario in Fig. 2, where
Lab A has developed a large lung cancer SCM (black) and
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Figure 2: Base model (black), health model (blue) of Lab B from
Fig. 1b with the corresponding abstraction (dashed blue line), and
lung cancer model (red) of Lab C from Fig. 1c with the correspond-
ing abstraction (dashed red line). Acronyms of variables are ex-
plained in Tab. ??.

Lab B has produced a simpler model (blue). Lab A is
performing a smoking experiment, estimating a health in-
dex from variables in its model, and feeding the result to a
decision-making module to discriminate whether further ex-
ams are necessary. Lab B wants to evaluate patients in its
own model and provide results to the same decision-making
module, concerned for patients to be processed equivalently
in both models. The original downstream task depends on
P (αY′(Y)|do(X)), where Y is a set of variables aggregated
in a health index via αY′ and X is smoking; Lab B will then
be concerned with evaluating IC, thus reducing the discrep-
ancy between P (αY′(Y)|do(X)) and P (Y′|do(αX′(X)).
The lower the IC, the more accurate the results (if the down-
stream decision-making module had been tuned on the low-
level model) and the fairer the output (if we are concerned
with the same proportions of patients being forwarded to fur-
ther analysis by Lab A and Lab B).

It is worth remarking that, in this context we deal with in-
terventional fairness, and not counterfactual fairness [Kusner
et al., 2017]; that is, fairness holds on the distributional level
(models at different LAs produce the same interventional dis-
tributions), not the individual level (outcomes for an individ-
ual are not necessarily identical on different LAs).

Interventional Information Loss (IIL)
IIL takes p = µdo() and q = α+

Y′ ◦ νdo() ◦ αX′ . IIL also con-
siders interventions on the low-level model and it evaluates
the information lost by working through the high-level model.
Low IIL would be relevant when a downstream task depends
on P (Y|do(X)) but, because of constraints, an agent can not
compute this quantity directly on the low-level model but it
has to rely on coarser estimations obtained through the high-
level model, thus ending to use P (α+

Y′(Y
′)|do(αX′(X)). In

algebraic terms, IIL evaluates how well a low-level mecha-
nisms may be decomposed into two abstractions and a high-
level mechanism.

Example 5. Consider the same health scenario as in Ex.
4. Lab A is performing a smoking experiment, estimating
a health index, and predicting the probability of car acci-
dents. The downstream task can be described as depend-
ing on P (Y|do(X)), with Y being a set of variables for
a health index and X smoking. Since estimating Y in its
model is (in the relative terms of the example) computation-
ally expensive, Lab A decides to rely on the model of Lab
B. As the result will be re-used by Lab A for further com-
putations, Lab A wants to estimate IIL, thus assessing the
discrepancy between the expensive-to-compute P (Y|do(X))
and the cheaper P (α+

Y′(Y
′)|do(αX′(X)). This will guaran-

tee that replacing some computations in the low-level model
with higher-level model computations will produce results
analogous to performing the whole computation at low-level.

Like fairness, replaceability between the original base
model and the base model with a sub-part replaced holds only
in an interventional, not counterfactual, sense.

Interventional Superresolution Information Loss (ISIL)
ISIL takes p = νdo() and q = αY′ ◦ µdo() ◦ α+

X′ .
ISIL considers interventions on the high-level and it evalu-
ates the information mismatch by working on the low-level
model. Low ISIL would be relevant when a downstream
task depends on P (Y′|do(X′)) but, because of constraints,
an agent is requested to compute this quantity with higher
precision on the low-level model, thus ending to rely on
P (αY′(Y)|do(α+

X′(X
′)). In a way complementary to IIL,

ISIL evaluates how well a high-level mechanisms may be fac-
tored into two abstractions and a low-level mechanism.

Example 6. Consider the lung cancer scenario in Fig.
2, where Lab A has developed a large lung cancer SCM
(black) and now Lab C has produced a simpler model (red).
Lab C is performing environmental manipulation, and us-
ing the result to evaluate other high-level statistics that de-
pend on P (Y′|do(X′)), with Y′ being lung cancer and
X′ environment. Given the sensitivity of the evaluation,
Lab C wants to match the more detailed model of Lab A
by optimizing for ISIL, thus minimizing the discrepancy be-
tween its approximate P (Y′|do(X′)) and the finer-grained
P (αY′(Y)|do(α+

X′(X
′)).

Notice that, because of the properties of the Moore-Penrose
inverse, for an intervention do(X′ = x′), α+

X′ entails a uni-
form distribution of probability mass over all do(X = x)
such that a(X) = X′ and αX′(x) = x′. This uniform so-
lution may be physically meaningless, and in [Rischel and
Weichwald, 2021] an abstraction is indeed enriched with an
additional explicit map between high-level interventions and
low-level interventions.

Interventional Superresolution Consistency (ISC)
ISC takes p = α+

Y′ ◦νdo() and q = µdo()◦α+
X′ . ISC considers

interventions on the high-level and it evaluates the agreement,
via abstraction, between results computed at high-level and
low-level. Lower ISC would be relevant when a downstream
task depends on P (α+

Y′(Y
′)|do(X′)), with α+

Y′ expressing
a refinement of P (Y′|do(X′)), and an agent is required to
work with P (Y|do(α+

X′(X
′)).
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Original task Abstraction task
IC P (αY′(Y)|do(X)) P (Y′|do(αX′(X))
IIL P (Y|do(X)) P (α+

Y′(Y
′)|do(αX′(X))

ISIL P (Y′|do(X′)) P (αY′(Y)|do(α+
X′(X

′))
ISC P (α+

Y′(Y
′)|do(X′)) P (Y|do(α+

X′(X
′))

Table 2: Relation between interventional measures of abstraction ap-
proximation and downstream tasks. Original task specifies on which
distribution an original downstream task depends; Abstraction task
denotes on which distribution of a higher LA the task may depend.

Example 7. Consider the same lung cancer scenario as in
Ex. 6. Lab C is performing environmental manipulation, es-
timating the probability of lung cancer, and using a decision-
making module to recommend further treatment. As patients
are undergoing a similar experiment in the more sophisti-
cated model of Lab A, it is required that outcomes between
the two models are aligned. The downstream task depends on
P (α+

Y′(Y
′)|do(X′)), where Y′ is lung cancer refined in the

low-level model via α+
Y′ and X′ is environment. Lab C will

then evaluate ISC, which allows it to measure the discrepancy
between P (α+

Y′(Y
′)|do(X′)) and P (Y|do(α+

X′(X
′)).

Tab. 2 summarizes the four interventional measures.

3.2 Assessment Set
The definition of an assessment set is crucial in the compu-
tation of an interventional measure of abstraction approxima-
tion. We discuss a few representative options, highlighting
again their differences wrt potential downstream tasks.

The choice to consider non-empty disjoint pairs of sets pre-
vents us from considering observational distributions such as
P (X′) = P (X′|do(∅)) corresponding to the pair (∅,X′).
This increases the robustness of the measure to differences
in the marginal distributions of the root-nodes, providing a
degree of insensitivity to root covariate shift.

Example 8. Let Lab A and Lab B work with two SCMs hav-
ing the same DAG as in Fig. 1b, and let us assume an identity
abstraction between them. As long as they specify the same
mechanism Sm′ → Hea′, then eIC(α) = 0 independently
from the marginal distributions on Sm′.

However, robustness to differences in observational
marginal or to anti-causal quantities is only partial.

Example 9. Let us take the same setup as in Ex. 8, and as-
sume Lab B wants to consider the error wrt the disjoint pair
(Hea′, Sm′). This would correspond to evaluating error wrt
the interventional quantity P (Sm′|do(Hea′)). This presents
two problems: (i) the stochastic matrix capturing this distri-
bution would have an anti-causal meaning; and (ii) because
of the form of the DAG, P (Sm′|do(Hea′)) = P (Sm′), lead-
ing us to account for an observational quantity.

To avoid the error being affected by anti-causal quantities,
we can define a causal assessment set:

Definition 8 (Causal Assessment Set). Given an abstraction
α fromM toM′, let Jc be the set of all non-empty disjoint
pairs (X′,Y′) ∈ P(X ′) ×P(X ′), such that ∀Y ′ ∈ Y′,
∃X ′ ≺ Y ′ inM′do(X′).

Assessment set Downstream task dependes on...
Complete J any possible causal or anti-causal

intervention P (Y′|do(X′))
Causal Jc any possible causal intervention

P (Y′|do(X′)), potentially affected
by root covariate shift

Parental Jp causal intervention P (Y′|do(X′))
dependent only on causal

mechanisms
Custom Ju user-specific set of interventions

P (Y′|do(X′))

Table 3: Relation between assessment sets and downstream tasks.

The ordering relation guarantees that every node in the out-
come Y′ is affected by X′. An equivalent definition in terms
of independence is offered in App. ??.

Moreover, the evaluation is not, in general, robust to root
covariate shift, as contributions from marginal distributions
may always enter the evaluation if paths from the root nodes
are not blocked.

Example 10. Let Lab C work with an abstracted model
as in Fig. 1c, and assume it wants to consider the er-
ror wrt the disjoint pair (Env′′, LC ′′). This would cor-
respond to evaluating error wrt the interventional quan-
tity P (LC ′′|do(Env′′)). In the model, this corresponds to∑
Gen′′ P (LC

′′|Env′′, Gen′′)P (Gen′′), revealing the con-
tribution of the marginal P (Gen′′).

This sensitivity may be desirable in certain cases, for in-
stance when the contribution of marginals can not be sup-
pressed or when deemed informative. However, if we were
interested in assessing abstraction error robustly wrt covari-
ate shift, that is, only wrt the actual causal mechanisms, we
could consider a parental assessment set.

Definition 9 (Parental Assessment Set). Given an abstraction
α fromM toM′, let Jp be the set of all non-empty disjoint
pairs (X′,Y′) ∈P(X ′)×P(X ′), such that X′ = Pa(Y′).

Lastly, it may be worth pointing out that custom assess-
ment sets Ju may always be defined by an agent, if it is in-
terested in the abstraction only of specific sub-parts of a base
model. Tab. 3 summarizes the assessment sets we considered,
and the type of relevant downstream tasks of interest.

4 Properties of Abstraction Approximation
All interventional measures of abstraction approximation
share common properties, relevant for learning abstractions.
Complete proofs are provided in App. ?? and ??.

4.1 Properties of Error
Let us consider two generic abstractions: α from M to
M′, and β from M′ to M′′. Thanks to JSD, a key prop-
erty is (E1) triangle inequality, that is, EI(βα,X′′,Y′′) ≤
EI(α,X

′,Y′) + EI(β,X
′′,Y′′), which is grounded in hor-

izontal compositionality (or composition of abstractions)
[Rischel, 2020]. Two other forms of compositionality in-
stead do not hold: (NE1) vertical non-compositionality
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(or stochastic function non-composition); and (NE2) prod-
uct non-compositionality. These negative properties fol-
low from stochastic functions being computed from differ-
ent post-interventional models (see App. ?? for a more
precise discussion). From (E1) we immediately derive
(E2) non-monotonicity, stating that it is not guaranteed that
EI(βα,X

′′,Y′′) ≥ EI(α,X
′,Y′). From the definition we

can identify extrema of the error: (E3) zero at identity, when
the abstracted model is an identity; (E4) zero at singleton,
only for IC, when the abstracted model is a singleton.

Finally, we have properties concerning relationships and
identities (see App. ??) between interventional measures.

Proposition 1 (Relationship between measures). We have
a partial ordering among the interventional measures as:
EIIL(α,X

′,Y′) ≥ EIC(α,X
′,Y′), EIIL(α,X′,Y′) ≥

EISC(α,X
′,Y′), EIC(α,X′,Y′) ≥ EISIL(α,X

′,Y′),
EISC(α,X

′,Y′) ≥ EISIL(α,X′,Y′).
Proof sketch. All relations can be proved by applying the

property of shortness of JSD and the right inverse property of
the Moore-Penrose inverse. �

4.2 Properties of Overall Error
Properties of the error may immediately extend to the over-
all error according to the chosen aggregation function f . In
the case of the supremum, the overall error inherits the prop-
erties of: (O1) triangle inequality; (O2) non-monotonicity;
(O3) zero at identity; and (O4) zero at singleton. Also, ex-
tension of Proposition 1 hold; however, notice that, despite
this extension, two interventional measures of abstraction ap-
proximation may reach their minima for different abstrac-
tions. For instance, given two abstractions α and β fromM
to M′, such that eIIL(α) ≤ eIIL(β), while it holds that
eIIL(α) ≥ eIC(α) and eIIL(β) ≥ eIC(β), it does not fol-
low that eIC(α) ≤ eIC(β); so different abstractions between
the same two SCMsM andM′ may minimize different in-
terventional measures.

A necessary condition for any error measure to be finite is:

Proposition 2 (Finiteness of the overall error). eI(α) < ∞
if a is order-preserving.

Proof sketch. It can be shown that, in absence of order-
preservation, it is impossible to compose the paths required
for computing any error measure. �

This proposition holds for all measures because it is related
to the directionality of the edges representing causal mecha-
nisms. This condition implicitly asserts that an abstraction
can not reverse the directionality of causation, a requirement
explicit in certain abstraction frameworks [Otsuka and Saigo,
2022]. Also, the request of order-preservation has a connec-
tion to the framework of [Rubenstein et al., 2017], where
order-preservation is imposed on a map ω relating low-level
interventions with high-level interventions. Imposing order-
preservation between variables acts at a more basic level and
implies order-preservation among the interventions.

5 Abstraction Evaluation and Learning
A simple algorithm for evaluating abstraction can be derived
from the original specification of IC error in Definition 5 by

Algorithm 1 Overall IC error evaluation
In:M,M′, α = 〈R, a, α〉
Out: eIC(α)

1: Initialize E = {}
2: Let J be the set of all non-empty disjoint pairs (X′,Y′)
3: for (X′,Y′) ∈ J do B O(22|X

′|)
4: Compute EIC(α,X′,Y′) as in Eq. 1 and add to E
5: return supE

Algorithm 2 Abstraction evaluation
In:M,M′, α = 〈R, a, α〉, I ∈ {IC, IIL, ISIL, ISC}, J
Out: eI(α)

1: if a is not order-preserving then B O(|E|)
2: return∞
3: Initialize E = {}
4: for (X′,Y′) ∈ J do B O(|J |)
5: Compute EI(α,X′,Y′) as in Eq. 3 and add to E
6: return supE

computing the error for all pairs (X′,Y′) ∈ J , as in Alg. 1.
Its complexity depends on the loop in step 3: at each itera-
tion, two matrix multiplications and a JSD computation are
performed in order to evaluate EIC(α,X,Y). The overall
complexity then grows as O(|J |), which, in the base case
is given by the product of two powersets, |J | ≈ 22|X

′|.
Computational complexity can then be reduced by exploit-
ing the structure of a SCM and shrinking the set J . A causal
assessment set relies on partial ordering to reduce the size
|Jc| < |J |. Even more, a parental assessment set exploits
parental relationships to set the size |Jp| = |X ′| < |Jc|. Cus-
tom assessment sets Ju may also limit the number of pairs to
be considered. Moreover, Prop. 2 provides an efficient test
to evaluate whether any interventional measure of abstraction
approximation will be finite with complexity O(|E|) propor-
tional to the number of edges in the DAG GM; if not, no
further computation is required. We can then evaluate the
overall error more efficiently as in Alg. 2. The main chal-
lenge in further shrinking the assessment set J follows from
the negative properties (NE1, NE2): without compositional-
ity, it is not possible to reduce the evaluation of composed
interventions to the one of its composing parts.

Beyond evaluating abstractions, an agent may be interested
in improving or learning new abstractions. If given an unsat-
isfactory abstraction α with a high error eI(α), properties
(O1) and (O2) point to the possibility of sequentially improv-
ing the abstraction by searching for a new abstraction β such
eI(βα) < eI(α). If given an incomplete abstraction α for
which one or more elements among M′, R, a, αX′ are not
completely specified, it is possible to learn a complete spec-
ification of the abstraction by minimizing a chosen measure
of abstraction approximation. In this case, properties (O3)
and (O4) highlight minima the optimization may achieve. In
both cases, Alg. 2 can be used as a building block to find
an optimal abstraction by computing the error for each can-
didate abstraction in a set K (see Alg. ?? in App. ??). This
algorithm has a computational complexity of O(|K||J |).
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Opt IC Opt IIL
P̂ (a|do(Sm = 0)) 0.607±0.003 0.413±0.006

P̂ (b|do(αSm′(Sm) = 0)) 0.600±0.003 0.498±0.006
P̂ (a|do(Sm = 1)) 0.797±0.003 0.681±0.005

P̂ (b|do(αSm′(Sm) = 1)) 0.797±0.004 0.799±0.004

Table 4: Comparison between distributions P̂ (αY′(Y)|do(X)) and
P̂ (Y′|do(αX′(X))), where Y′ = Hea′ and X′ = Sm′, when
learning by optimizing for IC or IIL. a,b are placeholders for
αHea′(Hea) = 1 and Hea′ = 1, respectively.

6 Empirical Evaluation
We run empirical simulations for the two scenarios in Fig.
2: (i) in the health scenario we perform abstraction learn-
ing and show how our metrics would produce different re-
sults fit for distinct downstream tasks; and, (ii) in the lung
cancer scenario we run abstraction evaluation to show the
effects of the choice of assessment sets. Base model details
are provided in App. ??. These scenarios are designed to
encompass a variety of configurations such as different struc-
tures in the low- and high-level model (chains, colliders, and
forks), different a-maps among nodes (one-to-one, many-to-
one), different number of variables and domain cardinality in
the high-level model. Empirical distributions are computed
from 104 samples; means and standard deviations are com-
puted out of 10 repetitions. All simulations are available on-
line1.

Health scenario. Let’s consider the health scenario in Fig.
2. The abstracted model (blue) is not fully defined (three can-
didate stochastic matrices for Sm′ → Hea′ have been pro-
posed) and the abstraction itself is defined only in terms of R
and a. Lab B wants to learn the best stochastic matrix and
abstraction, wrt interventions performed by Lab A, in light
of the downstream tasks described in Ex. 4 and 5. Lab B
performs abstraction learning using Alg. ??. Two different
solutions are learned by minimizing either IC or ILL. Defini-
tion of models, abstractions, and solutions are in App. ??.

Considering the downstream task described in Ex. 4, Tab.
4 shows that the closest agreement between the low- and
high-level model in classifying patients for further exam is
achieved by minimizing IC. Instead, considering the down-
stream task described in Ex. 5, Tab. 5 shows that the best
match between the predictive distribution computed in the
low-level model and in the low-level model when replacing
a sub-part of it with a high-level abstraction, is obtained by
minimizing IIL. In conclusion, an agent should choose care-
fully which measure to minimize according to its aim.

Lung cancer scenario. Let’s consider the lung cancer sce-
nario in Fig. 2. All models are completely defined, while the
abstraction is given only in terms of R and a. Lab C wants
to find the best abstraction minimizing ISIL, in light of the
downstream task described in Ex. 6 and while considering
three different assessment sets (causal, parental and custom).
Lab C performs abstraction evaluation using Alg. 2. Three

1https://github.com/FMZennaro/CausalAbstraction/tree/main/
papers/2023-quantifying-consistency-and-infoloss

Sm = 0 Sm = 1

P̂ (CA = 1|do(Sm)) 0.679±0.004 0.766±0.005
P̂IC(CA = 1|do(Sm)) 0.256±0.006 0.341±0.005
P̂IIL(CA = 1|do(Sm)) 0.427±0.005 0.680±0.005

Table 5: Comparison between the empirical distribution computed
only on the low-level model P̂ and distributions using the abstrac-
tion minimizing IC (P̂IC ) or IIL (P̂IC ).

Env′′ = 0 Env′′ = 1 Env′′ = 2

P̂ (a) 0.445±0.003 0.555±0.003 0.655±0.004
P̂Jc(b) 0.194±0.003 0.271±0.005 0.438±0.005
P̂Jp

(b) 0.563±0.005 0.730±0.005 0.807±0.003
P̂Ju

(b) 0.557±0.005 0.730±0.005 0.806±0.004

Table 6: Comparison between the empirical distribution computed
only on the high-level model (P̂ ) and using the abstraction mini-
mizing ISIL wrt causal set (P̂Jc ), parental set (P̂Jp ), or custom
set (P̂Ju ). a,b are placeholders for LC′′ = 1|do(Env′′) and
αLC′′(LC) = 1|do(α+

Env′′(Env
′′)), respectively.

different solutions are learned by minimizing ISIL with the
three assessment sets. Exact definition of models, abstrac-
tions and solutions are provided in App. ??.

Tab. 6 confirms that, if the aim is to predict lung can-
cer under environmental experiments, then the best result
is obtained when minimizing wrt a targeted assessment sets
(Jp,Ju); larger sets require more computation (see Tab. ??),
and end up selecting a solution that, by mediating among
many interventions, underperforms wrt the intervention of in-
terest. This demonstrates the importance for an agent to opti-
mize wrt a set of interventions that is relevant to its aim.

7 Conclusion
We introduced a family of interventional measures of ab-
straction approximation to quantify consistency and informa-
tion loss. Our empirical simulations show that optimizing
such measures lead to learning different optimal abstractions,
which fit different constraints and downstream tasks. The
proposed framework empowers modellers and agents by pro-
viding them with a set of measures that will help them learn
abstractions that better suit their specific needs.

While this work focuses on four key measures (IC, IIL,
ISC, ISIL), the proposed framework can accommodate new
custom measures by modifying one or more of the parameters
discussed in Sec. 3, combinations of existing measures, or
shifting the focus to observational/counterfactual properties.

Future work could consider enhancing our learning algo-
rithm. In one direction, we want to exploit the structure of
the SCMs and properties of graph morphisms to reduce the
size of assessment sets J . Formal bounds may also be found
for the tradeoff between the size of J and the error in estimat-
ing EI(α). In another direction, we want to consider the al-
gebraic properties of factoring stochastic matrices and sparse
abstraction matrices in order to simplify the search space.
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