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Abstract
In this paper, we introduce Max Markov Chain
(MMC), a novel model for sequential data with
sparse correlations among the state variables. It
may also be viewed as a special class of ap-
proximate models for High-order Markov Chains
(HMCs). MMC is desirable for domains where the
sparse correlations are long-term and vary in their
temporal stretches. Although generally intractable,
parameter optimization for MMC can be solved an-
alytically. However, based on this result, we derive
an approximate solution that is highly efficient em-
pirically. When compared with HMC and approx-
imate HMC models, MMC combines better sam-
ple efficiency, model parsimony, and an outstand-
ing computational advantage. Such a quality allows
MMC to scale to large domains where the compet-
ing models would struggle to perform. We com-
pare MMC with several baselines with synthetic
and real-world datasets to demonstrate MMC as a
valuable alternative for stochastic modeling.

1 Introduction
Markov Chain (MC) is a simple but powerful tool for stochas-
tic modeling. In a Markov chain, the current state vari-
able is assumed to be conditionally independent of all an-
cestral state variables given a fixed number (a.k.a. the or-
der of the chain) of its immediate parental and ancestral state
variables (referred to as the lags). The simplicity of MC
makes it a desired choice for modeling various stochastic pro-
cesses [Cowles and Carlin, 1996; Elfeki and Dekking, 2001;
Ye et al., 2004; Pentland and Liu, 1999]. For domains with
long-term dependencies, High-order Markov Chains (HMCs)
are often needed. However, HMCs are generally expensive
to maintain due to their space complexity exponential in the
order of the chain, which also makes learning sample in-
efficient. Traditional approaches to addressing this issue,
such as approximate HMCs (e.g., [Raftery and Tavaré, 1994;
Berchtold, 1995; Berchtold and Raftery, 2002]) and variable-
order Markov models (VOMMs) (e.g., [Roucos et al., 1982]),
suffer from excessive computational needs for parameter op-
timization, making them impractical for many real-world ap-
plications.

Figure 1: Graphical representations of, from top to bottom, First-
order Markov Chain (FMC), High-order Markov Chain (HMC), and
Max Markov Chain (MMC) specifications of the library example.
The order is 3 for HMC and MMC. The size of the state space S is
7. In MMC, the transition matrix is parameterized by P (S|S) (see
examples above), which has the same space requirement as FMC.
HMC would require P (S|S, S, S). The subscripts of state variables
(upper-case S) index into time steps and those of states (lower-case
s) index into the state space.

Our aim is a class of models that are more restricted than
HMCs in the types of data they can represent but otherwise
much more efficient. Even though approximate HMCs and
VOMMs are not designed to be limited in the same way, to
achieve parsimony, they often consider the influences from
the lags or subsets of lags independently for generating the
next state. Such an assumption results in undesired modeling
biases that restrict their data representation power. From this
perspective, MMC may also be viewed as a special class of
approximate models for HMCs (more discussion in Sec. 3.2).

In this paper, we introduce Max Markov Chain (MMC)
where sparse and long-term correlations among the state vari-
ables are present. Our focus is on discrete time-homogeneous
Markov models [Parzen, 1999] where the transition matrix,
also referred to as the state-generating matrix in this work,
does not change over time. See Fig. 1 for an illustration of
the differences between MMC, First-order MC (FMC), and
HMC. The first model assumption of MMC is that the next
state is “generated probabilistically” by one and only one pre-
vious lag within the order of the MMC, resulting in skipping
links. It is referred to as a max model since the lags for state
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generation are assumed to compete with each other in a con-
text dependent way: only the lag with the maximum genera-
tion probability is assumed to win, e.g., the red state variable
(S1 = s1) for generating the state value of the blue state vari-
able (S4) in MMC. This is because, in Fig. 1, the maximum
generation probability for s1 is 0.4 given P (S|s1), and for
s2 is 0.3 given P (S|s2). Based on the model assumptions of
MMC, the generation priority of state s1 is higher than that
of s2, which is why the state variable S1 = s1 (instead of
S3 = s2) generated the state value of S4. Note that we pre-
sume in this scenario that both states s1 and s2 have a higher
generation priority than s4 (S2 = s4). These model assump-
tions for MMC simplify the structure of the chain and reduce
overfitting (see Sec. 3.2).

One real-world domain where the MMC model assump-
tions are likely to hold is human behavior modeling where
human behaviors are described as both reactive and delibera-
tive [Schmidt, 2000]. Consider the following scenario: John
arrives at the library and starts working on his class assign-
ment in the library. However, an event kicks off in the library
disrupting John’s work and compelling him to leave. Before
John leaves, he checks out a few literature books he plans
to read at home. Since John would be arriving home ear-
lier today, he makes a quick call before leaving campus and
driving home. The sparse correlations (i.e., causal relation-
ships) among the state variables in this scenario are shown in
Fig. 1, which make it suitable for MMC. Modeling similar
scenarios with HMC is possible but unnecessary while FMC
would be insufficient given the long-term dependencies. Note
that the “skipping links” in MMC differ fundamentally from
the notions of jumping chains [Metzner et al., 2009] and op-
tions [Sutton et al., 1999], which are about the duration of
transitions.

1.1 Contributions
We formally introduce MMC and provide an analytical solu-
tion for parameter estimation based on maximum likelihood.
However, such a solution is generally intractable unless the
state space is small. Based on the analytical solution, we
provide a highly efficient greedy method that performs well
empirically. Applying this method to both synthetic and real-
world datasets, we compare MMC with several baselines in
terms of prediction accuracy, sample efficiency, and compu-
tation time. Results confirm MMC as a valuable alternative
for stochastic modeling.

2 Related Work
Markov chains (MCs) are introduced for stochastic model-
ing and have been applied in physics [Randall, 2006], com-
puter science [Stewart, 1994], geography [Chin, 1977], be-
havior and social sciences [Benjamin, 1979]. MCs rely
on the Markov assumption to simplify modeling, learning,
and inference. They have also been generalized for more
expressiveness and scalability, such as to consider hidden
state [Baum and Petrie, 1966; Fine et al., 1998] and fac-
tored models [Kearns and Koller, 1999]. However, MCs re-
quire an exponential number of parameters in the order of
the chain, which makes them intractable for complex do-
mains and causes learning to be sample inefficient. Approx-

Figure 2: The first 4 state variables of the order 3 MMC in Fig.
1, represented by a Bayesian Network that replaces the associated
skipping link (red) with the dashed links and an additional hidden
variable (i.e., H1). Later skipping links can be replaced in a simi-
lar fashion. The result is a Hierarchical Bayesian Network. MMC
implicitly expresses such a structure (albeit being more restrictive in
its parameter specification for model parsimony and efficiency) by
introducing skipping links.

imate HMCs that are parsimonious and fast to learn are de-
sired. Popular approximate models [Jacobs and Lewis, 1978;
Raftery, 1985] use auxiliary variables to combine the influ-
ences from each of the lags individually for generating the
next state. Such models have also been extended to consider
mixtures [Berchtold and Raftery, 2002] where the influences
to be combined can be specified with respect to more than
one lag, leading to better approximations. However, there
are two main limitations of the existing approximate HMC
models. While they are more parsimonious than HMCs,
parameter optimization is computationally challenging, of-
ten through complex numerical procedures [Raftery, 1985;
Berchtold and Raftery, 2002]. Second, the influences for gen-
erating the next state are not context dependent, which limits
the model flexibility and negatively impacts its performance.

Variable-order Markov models (VOMMs) [Roucos et al.,
1982; Begleiter et al., 2004] address the second issue of ap-
proximate HMCs by learning variable orders (that are context
dependent) from data, which also contributes to parameter
reduction. Summary Markov Models (SuMMs) [Bhattachar-
jya et al., 2022] generalize VOMMs by restricting history in-
formation to influencing sets. Unfortunately, parameter es-
timation for these models is still computationally expensive.
Neither VOMMs or SuMMs consider skipping links. MMC
uses these links to simplify the model structure and impose
model sparsity while building more flexibility into its tempo-
ral dynamics (see Fig. 1). The simpler model structure con-
tributes to a highly efficient parameter estimation method for
MMC. MMC can be further generalized to sequential data
with denser correlations, resulting in a spectrum of models
with increasing expressiveness that converge to HMCs.

The model structure of MMC may appear similar to skip-
chain sequence models [Galley, 2006; Sutton and McCallum,
2004] where the skipping structure is known a priori (un-
like with MMC). The closest work that learns skipping links
is VDJ-HMM [Petropoulos et al., 2017]. However, MMC
is for time-homogeneous MCs while VDJ-HMM is for non-
homogeneous MCs, so the temporal dynamics (TD) of the
models are different. The TD in VDJ-HMM follows a sepa-
rate FMC stochastically while the TD in MMC is fixed given
the context (i.e, lags).

MMC is fundamentally different from jumping chains and
options [Metzner et al., 2009; Sutton et al., 1999]; it models
varying temporal stretches of skipping links instead of vary-
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ing transition duration. MMC may be converted to a Hier-
archical Bayesian Network (HBN) [Gyftodimos and Flach,
2002] with a hidden middle layer for deciding which state
variable in the lags dominates the generation of the next
state (see Fig. 2). However, representing an MMC as an
HBN would no longer be parsimonious. MMC may also be
viewed as a special type of Contingent Bayesian Network
(CBN) [Milch et al., 2005] where the network structure is
context dependent: the links are labeled with conditions to
determine when they are active. We will show that param-
eter estimation for MMC can be done efficiently while the
estimation for CBN, in general, is challenging.

3 Approach
Next, we first provide the background for High-order Markov
Chain (HMC) and a popular approximate model for HMC.
We then introduce Max Markov Chain and discuss parameter
optimization (learning) with data. We focus on complete data
and defer learning with partial data to future work.

3.1 Preliminaries
A discrete time-homogeneous Markov chain of order K is
specified by the probability distributions, captured by the
transition or state-generating matrix, of the next state given
the previous K lags:

P (St+K |St:t+K−1) (1)

The parameter size of this model is O(MK+1), where M
is the size of the state space. MTD [Raftery, 1985], an ap-
proximate HMC model, approximates Eq. (1) as follows:

P (St+K |St:t+K−1) = Σlλlq(t+l)(t+K) (2)

where q(t+l)(t+K) is an element in an M ×M transition ma-
trix Q, capturing the influence from state St+l to St+K indi-
vidually; λl is the weight associated with lag l and satisfies∑

l λl = 1. MTD has a size of O(M2 + K). Even though
MTD is more parsimonious than HMC, it makes the assump-
tion that the influence is context independent: the influence
from one lag is independent of the other lags. Also, parame-
ter estimation with MTD is computationally challenging.

MMC addresses the issues of MTD by simplifying the
model structure while allowing skipping links for more flex-
ible temporal dynamics. In particular, MMC makes the as-
sumption of sparse correlations such that only one of the lags
generates the next state (i.e., the state value of St+K). How-
ever, the determination of such a lag is context dependent in
MMC to allow the influences from the other lags to be passed
implicitly. Model learning for MMC may be viewed as dis-
covering causal relationships [Pearl, 2003] and hence is sam-
ple efficient. While the MMC model assumptions are restric-
tive, we will show in our evaluation that MMC performs well
with real-world datasets, suggesting that domains with sparse
correlations may be common.

3.2 Max Markov Chain
Our innovation is Max Markov Chain (MMC) for domains
with sparse and long-term correlations. An MMC is specified
as follows:

P (St+K |St:t+K−1) = P (St+K |St+l∗) (3)

where l∗ = argmaxSt+K ,lP (St+K |St+l).
Intuitively, the generation of the next state is dominated by

one of the lags with the maximum state-generation probabil-
ity, or generation probability for short. Correspondingly, the
state-generation (or transition) distribution is referred to as
the generation distribution. Essentially, the maximum gener-
ation probability for each lag determines its priority for state
generation, and the generation distribution of the next state
depends only on the lag with the highest priority. Theoreti-
cally, such a specification still represents an order K Markov
chain since the generation distribution of St+K depends on
all the lags, albeit in a restricted way (i.e., winner-take-all).
Even though MMC only uses the same amount of parameters
as a First-order Markov Chain (FMC) (i.e., O(M2)), such a
formulation allows it to encode varying long-term dependen-
cies via skipping links. The price to pay is that MMC is ex-
pected to have difficulty when the link structure (i.e., tempo-
ral stretches) is fixed in the data, such as when the data is gen-
erated by FMCs or skip chains. From this aspect, MMC may
be viewed as a special class of approximate HMCs, since the
traditional approximate HMC models (e.g., MTD) are strict
generalization of FMCs and skip chains. However, MMC can
be extended to address this limitation by augmenting to in-
clude links with fixed temporal stretches at the cost of model
parsimony.

We could have defined a simpler MMC model by specify-
ing the transition or state-generation matrix of P (S|S) inde-
pendently from the priorities of the states. In MMC, however,
we relate these priorities to the maximum generation proba-
bilities (MGPs) to introduce a set of constraints on the genera-
tion distributions (specified in the matrix), which represents a
way to reduce overfitting: it prevents assigning high MGPs to
the states with low priorities. Intuitively, states with lower pri-
orities tend to generate fewer states and are hence more sub-
ject to overfitting. MMC alleviates overfitting by constrain-
ing the generation distributions so that the model generally
associates higher uncertainty with states having lower priori-
ties. For example, if a state is unseen during training to have
generated another state that however appears during testing,
it would likely result in a low data likelihood for the testing
data under the simpler MMC model, which is undesirable.

Proposition 1. Every MMC has a well-defined probability
distribution.

This is easy to see since every MMC has an associated
HMC of the same order. It can also be derived from results
in [Milch et al., 2005] when viewing MMCs as HMCs with
contingent edges, given that HMCs do not contain loops.

3.3 Parameter Estimation
Given training data D with each sample in the form of d :
st:t+K−1 → st+K (d ∈ D), the problem can be described as
maximizing the data likelihood under the i.i.d. assumption:

max
M

P (D|M) = max
M

ΠdP (d|M) (4)

where M denotes the space of MMCs. Directly optimizing
Eq. (4) is infeasible given the infinite MMCs. To discuss our
solution, first, we introduce State Generation Order (SGO):
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→ s1 s2 s3
s1 0 2 2
s2 2 0 0
s3 1 0 4

Table 1: A data generation table for an MMC of order 2 with 3 states
based on the training data 3333331231231 (note that state indices
are used here to denote states for clarity). Assume the SGO given
is s1 ≻ s2 ≻ s3. For every two consecutive states (i.e., lags),
the generation relationship for the next state is determined by which
state among the two has a higher priority in the SGO. Each row is
for a generating state (the first column) and the numbers in the row
are the counts of a particular state generated by that generating state.

Definition 1 (State Generation Order (SGO)). A state gen-
eration order specifies the order of priorities over the state
space for state generation.

We use sa ≻ sb to denote that state sa has a higher pri-
ority than sb for state generation. This requires p∗sa ≥ p∗sb
to hold where p∗sa (p∗sb ) represents the maximum generation
probability of sa (sb) for generating any state according to its
generation distribution. It is clear that an MMC introduces a
unique SGO, when assuming that ties are broken consistently.
We thus can optimize Eq. (4) according to a 2-step process.
In the first step, we determine the SGO of the state space. In
the second step, we optimize the parameters according to the
SGO identified. We will show next that parameter optimiza-
tion under a given SGO is not difficult. In such a situation,
optimizing Eq. (4) boils down to iterating through the set of
SGOs, which is finite, to identify the SGO after parameter
optimization that maximizes Eq. (4).

Parameter Optimization under a Specified SGO
Denote the space of SGOs as O. The problem now becomes
to consider optimizing for P (D|Mo), where o ∈ O is a given
SGO and Mo denotes the set of MMCs introducing the given
SGO. Under the assumption that the data generation process
is an MMC, with the given SGO, the generation relationship
among the states in the data is also known (i.e., which lag
among st:t+K−1 generated st+K). Refer to Tab. 1 for an ex-
ample of how the generation relationship is determined. We
denote the part of the data (i.e., a set of states) that is gen-
erated by state s in the training data D as Ds. Each row in
Tab. 1 corresponds to a Ds for the corresponding generat-
ing state (s) shown in the first column. Then, given an MMC
M ∈ Mo, the contribution of Ds to the data likelihood is:

P (Ds|M) = pn1
1 pn2

2 ...pnm
m (5)

where pi is the generation probability of state si for the gen-
erating state s and ni is the number of times si appearing in
Ds. m indexes into the state space. p1 : pm jointly spec-
ify the generation distribution for s and are the parameters to
learn. Note that we intentionally refrain from specifying to
which state these values (n1 : nm and p1 : pm) belong in Eq.
(5) to avoid cluttering the notation: each generating state is
associated with a separate set of these values (see Tab. 1 for
n1 : nm for the three different states). Next, take the log to
transform Eq. (4) and express it using Eq. (5):

max
M

logP (D|M) = max
M

Σs logP (Ds|M) (6)

Given that p1 : pm specify a distribution, P (Ds|M) in Eq.
(5) takes the unique maximum value when the p values are
aligned with the data, such that pi = ni∑

m nm
(referred to as

the optimal value setting). The minimum value is at when
one or more of the p values are 0. Furthermore, P (Ds|M)
monotonically decreases as the p values deviate from the op-
timal value setting. Next, we introduce results that inform the
parameter optimization process.
Lemma 1. Given an SGO respected by the data, mean-
ing that the priorities of the generating states according to
the generation distributions estimated from data, i.e., pi =

ni∑
m nm

, align with the SGO, the maximum data likelihood is
achieved by setting the generation distribution according to
pi =

ni∑
m nm

for each generating state, respectively.

Proof. The proof is straightforward given that P (D|M) =
ΠsP (Ds|M). Since {Ds} are fully specified by the SGO,
under the given assumption above, the generation distribu-
tion for each state can be set according to the data (i.e.,
pi = ni∑

m nm
) without violating the constraints of the given

SGO (i.e., sa ≻ sb requires p∗sa ≥ p∗sb ). Since it is also the
maximum value possible under each Ds, P (D|M) must also
be the maximum for D under the SGO.

In Tab. 1, assuming no violation with the SGO constraints,
the generation distributions (i.e., p values) for s1 and s2
would be set to {0, 0.5, 0.5} and {1.0, 0.0, 0.0}, respectively.

However, setting the MMC parameters this way for the ex-
ample in Tab. 1 would violate the constraints of the given
SGO s1 ≻ s2 ≻ s3, since p∗s1 = 0.5 < p∗s2 = 1.0. To
address the issue, given that the priorities of the generating
states in the SGO are determined by their maximum genera-
tion probabilities, we can focus on these probabilities only to
address any violations. First, we note that it is straightforward
to determine the state that should be assigned the maximum
generation probability for each generating state: the state be-
ing generated with the largest count, e.g., s3 or s2 for s1, s1
for s2, and s3 for s3 in Tab. 1.
Lemma 2. Given an SGO, assume that the maximum genera-
tion probabilities for all generating states are given (denoted
by {p∗}) and they align with the SGO. For each generating
state, respectively, the maximum data likelihood is achieved
when the probabilities for the remaining states being gener-
ated are set according to min(p∗,

nj∑
mk

nmk
(1−Σkpk)) iter-

atively, with these states considered in the decreasing order
of ni∑

m nm
. k (j) indexes into such states that have (have

not) been assigned a probability in the current iterative step;
{nmk

} are counts for the states not yet assigned. States be-
ing generated with 0 counts will be assigned equal probability
masses if any mass is left unassigned.

Proof. When the maximum generation probability is given
for a generating state s, the remaining states in the genera-
tion distribution of s contribute to the data likelihood via an
equation that is similar to Eq. (5), except that the sum of
the remaining p values would be 1 − p∗. Given the mono-
tonicity of Eq. (5) from the optimal value setting, we would
need each remaining p value to be as close as possible to
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nj∑
mk

nmk
(1 − p∗). When all such values are equal to or

smaller than p∗, we would be done since the iterative steps
above would be equivalent to setting the remaining p values
according to nj∑

mk
nmk

(1− p∗).

Otherwise, first, note that nj∑
mk

nmk
(1 − p∗) is the op-

timal value setting and we should deviate from it as little
as possible. Given that the probability for any state being
generated cannot exceed p∗, setting the values according to
min(p∗,

nj∑
mk

nmk
(1−Σkpk)) iteratively, ordered by ni∑

m nm

(equivalent to ordering by nj∑
mk

nmk
(1−p∗)), would serve the

purpose. Setting the p values any other way would be sub-
optimal since we can always adjust them to be closer to the
optimal value setting to improve the data likelihood.

For the example in Tab. 1, consider a case when the maxi-
mum generation probability for the generating state s1 is as-
signed to s3 with a value of 0.4. In such a case, we cannot
assign probabilities to the remaining states for s1 according
to nj∑

mk
nmk

(1−p∗) since that would assign all the remaining

probability mass (0.6) to s2, leading to a conflict since s1 is
supposed to receive the maximum generation probability. In
such a case, we assign the maximum possible to s2 (0.4) and
the remaining (0.2) to s1. Note also that assigning s2 to any
value smaller than 0.4 would decrease the data likelihood.

The remaining challenge is to determine the maximum
generation probability for each generating state. One may be
tempted to assign the probability for each state according to
max ni∑

m nm
based on the data. However, problems can oc-

cur when the data does not align with the given SGO. Without
the loss of generality, consider two different states sx and sy
such that sx ≻ sy in the given SGO but pDx∗ < pDy∗ , where
pDx∗ (= n∗∑

m nm
) represents the maximum generation proba-

bility for state sx estimated from data under the SGO and n∗

denotes the largest count of the state being generated by sx.

Definition 2 (Misalignment). A misalignment occurs when
two states sx and sy satisfy that sx ≻ sy in the given SGO
but pDx∗ < pDy∗ based on the data.

In Tab. 1, we can see that there is a misalignment between
s1 and s2 (pDs1∗ = 2/4 and pDs2∗ = 2/2), and a second mis-
alignment between s1 and s3 (pDs1∗ = 2/4 and pDs3∗ = 4/5),
with the given SGO s1 ≻ s2 ≻ s3. Misalignment is direc-
tionless so can be represented as an undirected edge between
two generating states. In such a representation, all misalign-
ments introduce a connected graph among the states. We refer
to such a graph as a misalignment graph.

Lemma 3. Given an SGO with a misalignment between sx
and sy (sx ≻ sy in the SGO), the maximum data likelihood is
achieved at p∗sx = p∗sy , where p∗sx (p∗sy ) represents the maxi-
mum generation probability for state sx (sy).

Proof. Given sx ≻ sy in the SGO, it requires that p∗sx ≥ p∗sy .
Given Lemma 1, the maximum data likelihood is achieved at
p∗sx = pDx∗ and p∗sy = pDy∗ , respectively, without any SGO

constraints. However, this would imply that p∗sx < p∗sy , lead-
ing to a violation of the SGO constraint. Given that the con-
tribution to the likelihood is decreasing from its maximum as
the p values deviate from the optimal value setting for both
sx and sy , we show next that the maximum likelihood must
be achieved at p∗sx = p∗sy under the constraint of p∗sx ≥ p∗sy .

We prove this result by contradiction. Assume that the
maximum is achieved at p∗sx > p∗sy instead. In such a case,
we can update p∗sx and p∗sy to be the same value between
(p∗sy , p

∗
sx) to move the p values of both states closer to their

optimal value settings. This will increase the likelihood, re-
sulting in a contradiction with the assumption made.

Corollary 1. For all states that are connected (directly or
indirectly) via misalignments in the misalignment graph, the
maximum data likelihood is achieved when their maximum
generation probabilities are set to be the same.

This is a direct result of Lemma 3. In other words, if sx and
sy , and sy and sz , are misaligned, they must all have the same
maximum generation probability to maximize the data likeli-
hood. The implication here is that all the generating states
will be divided into connected subgraphs and states in each
connected subgraph must share the same maximum genera-
tion probability. In Tab. 1, given the misalignments, all the
states must share the same maximum generation probability
under the given SGO. In such a case, we can solve for this
maximum generation probability by optimizing:

max
p

(1− p)2p2p2(1− p)p4 (7)

which reaches the maximum value at p = 8/11.

Theorem 1. A local maximum of the data likelihood is
achieved by assigning the same maximum generation prob-
abilities to the generating states in a subgraph according to∑

c n∗∑
c

∑
m nm

, where c denotes the states in a connected sub-
graph in the misalignment graph and n∗ denotes the largest
count of the state generated by each generating state in the
subgraph. The remaining generating probabilities for each
generating state are assigned according to Lemma 2.

Proof. The contribution to the data likelihood of a connected
subgraph assumes a similar form as Eq. (5), except that it
involves multiple generation distributions that share the same
maximum generation probability given Corollary 1. We can
then compute the derivative of the likelihood (similar to that
in Eq. (7)) to verify the result. When such a local maximum
is also a global maximum will be studied in future work.

This theoretical result provides an analytical solution for
the parameter estimation problem under a given SGO. For
the example in Tab. 1, we can use this result to derive the
maximum generation probability for all the three states, pc =

2+2+4
2+2+2+1+4 , given that they form a connected subgraph. This
is consistent with the result derived in Eq. (7).

Parameter Optimization under Unknown SGO
Next, we extend parameter optimization to unknown SGO.
Simply put, it involves iterating through all possible SGOs.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5762



Theorem 2. The MMC, resulted based on the best SGO
o∗ ∈ O after parameter optimization according to Theorem
1, is the MMC that maximizes the data likelihood among all
possible MMC models.

This is a direct result of Theorem 1. Since the process for
determining the optimal set of parameters given the SGO re-
quires only going through the data once, the computational
complexity of the learning algorithm is O(|S|!|D|). The com-
plexity is factorial in |S| but only linearly in D. Also, note
that the complexity is indifferent to the order of the MMC,
which allows the optimal solution to be computed for MMCs
with small state spaces. The procedure for MMC parameter
optimization is summarized below:

1. For each possible o ∈ O
• Estimate the generation probabilities from data

with o

• Determine the misalignments and subgraphs
• Optimize the parameters according to Theorem 1
• Compute P (D|Mo) with the optimized parameters

2. Return the SGO achieving the maximum P (D|Mo)
along with the optimized parameters

Greedy Heuristic
The solution above, however, is intractable since the number
of SGOs can be large when the state space is large. However,
based on the theoretical result, we can derive efficient heuris-
tics. A simple heuristic is considered that orders the states
based on their maximum generation probabilities estimated
from the data. At any step, we consider the remaining states
as possible candidates for the state of the next highest prior-
ity in the SGO. This step requires going through the data once
while ignoring part of the data that is generated by the states
of higher priorities (i.e., considered in the previous steps).
The state with the maximum generation probability among
the remaining states is chosen to be the next state in the or-
der. Such a heuristic results in an approximate method that
runs in |D||S|, allowing MMC to handle large domains. We
observed in our evaluation that this simple method is highly
efficient. We defer its theoretical analysis to future work.

4 Evaluation
For the purpose of comparison, we chose the High-order
Markov Chain (HMC), a popular approximate HMC model
(MTD [Raftery, 1985]), and First-order Markov Chain (FMC)
as the baselines. Since we are particularly interested in
scenarios where data is expensive to obtain and is insuffi-
cient (so as to evaluate sample efficiency), we did not com-
pare with neural models for sequential modeling such as
LSTM [Hochreiter and Schmidhuber, 1997], which generally
require more data to perform well. We evaluated first with
synthetic datasets randomly generated and then with real-
world datasets. The same order of MMC, HMC, and MTD
was used in the same evaluation setting. For each setting, we
randomly split the data 75% for training and 25% for testing;
we ran multiple trials for the average performance. All im-
plementations are in Python. Since we observed that MMC
with the greedy method performed equivalently to the exact

method in many cases we tested, we chose to use this method
for MMC results. Experiments were run on Paperspace C7
instances with 12 vCPUs and 30GB RAM. Implementation
details and statistical test results are reported in the extended
version [Zhang and Bucklew, 2022].

4.1 Synthetic Data
We compared MMC to the three baselines with three types
of high-order data: 1) HMC data: data generated under the
HMC assumption (Eq. (1)); 2) MMC data: data generated un-
der the MMC assumption (Eq. (3)); 3) Causal data: data gen-
erated under the HMC assumption while assuming that the
appearance of a state in any lag is associated with a high prob-
ability of generating the same state. For each type of data, we
tested how the different models responded to changes in data
size, state space size, and order size. Results for each eval-
uation setting are averaged over 30 trials. More details on
how the data was generated and results for statistical tests are
reported in the extended version [Zhang and Bucklew, 2022].

HMC Data
Since HMC data was generated under the HMC assumption
(Eq. (1)), it is expected that MMC would not be able to han-
dle HMC data well. The results are presented in Figs. 3,
4, and 5. First, the testing accuracy of all methods gener-
ally increased (albeit slightly) as the number of training data
samples increased. We can see that HMC model performed
poorly even after 20k data samples compared to others, illus-
trating its sample inefficiency. MTD dominated the others in
almost all evaluation settings given that it explicitly consid-
ers influences from all lags, albeit in a rigid way. However, it
used significantly more time than the other models for train-
ing. MTD appeared to be running linearly with respect to the
data size but exponentially in the order and state sizes. MMC
performed as badly as FMC (but both were more sample ef-
ficient than HMC), since both models make their specific as-
sumptions about the data (which do not hold in HMC data).
Since MTD was much more computationally expensive than
the others, we further include two additional plots (Figs. 6
and 7) that exclude MTD to better compare the remaining
methods. We can see the linear time performance of the re-
maining three methods w.r.t. the data size and that MMC is
also linear in the state space size, which are consistent with
our computational analysis.

MMC Data
The results with MMC data are presented in Figs. 8, 9, and
10. Results show that MMC indeed outperformed all the
baselines under MMC data, which is one type of HMC data.
What is more interesting was that MTD, again, used signifi-
cantly more training time than the other models but only per-
formed similarly to FMC: it mostly failed to account for the
MMC data, which suggested a limitation of MTD models for
modeling HMC data. HMC still suffered from sample ineffi-
ciency.
Causal Data
A common type of data that we may frequently encounter
is causal data (such as our motivating example). Note that
causal data only approximately matches with the MMC as-
sumption. In particular, it does not prevent multiple lags to be
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Figure 3: Results for HMC data while varying the data size. The
state size is 7 and order size is 5.

Figure 4: Results for HMC data while varying the state space size.
The data size is 5k and order size is 5.

Figure 5: Results for HMC data while varying the order size. The
data size is 5k and state size is 7.

Figure 6: Time analysis for Fig. 3 without MTD.

Figure 7: Time analysis for Fig. 4 without MTD.

Figure 8: Results for MMC data while varying the data size. The
state size is 7 and order size is 5.

Figure 9: Results for MMC data while varying the state space size.
The data size is 5k and order size is 5.

Figure 10: Results for MMC data while varying the order size. The
data size is 5k and state size is 7.

correlated with the next state to be generated (i.e., denser cor-
relations than MMC assumes). Hence, it imposes a challenge
for MMC. The results with causal data are presented in Figs.
11, 12, and 13. Results show that MMC was able to general-
ize to this type of data quite well. In general, it outperformed
the baselines on this type of data. In Fig. 11, you can see
that MTD model caught up toward the end as more data was
provided, which showed that MMC model was more sample
efficient than MTD. This observation was further confirmed
in Fig. 12, and 13, where MTD started being comparable to
MMC but failed behind MMC as the state or order size in-
creased (hence more training data would be needed).

4.2 Real-World Data
The real-world datasets were chosen since they are com-
monly used to evaluate sequence modeling with long-term
dependencies. For example, the inflation dataset was used in
MTD [Raftery, 1985].
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Figure 11: Results for causal data while varying the data size. The
state size is 7 and order size is 5.

Figure 12: Results for causal data while varying the state space size.
The data size is 5k and order size is 5.

Figure 13: Results for causal data while varying the order size. The
data size is 5k and state size is 7.

Inflation Data
In this experiment we use the inflation rates based on the US
Consumer Price Index (CPI) from 1821 to 1999. This consists
of a total of 179 years of inflation rates, one rate per year. In
order to transform this data into a discrete state representa-
tion, we convert each year’s rate based on how it compares to
the standard deviation (STD) of inflation rates throughout the
years. If the rate lies within 1 STD, we classify that year as
either a small drop or rise. Similarly, between 1 STD and 2
STDs, 2 STDs and 3 STDs, and beyond 3 STDs, are classified
as medium, large, and extra large drop or rise, respectively. It
resulted in a total of 8 states. We chose order 3 for MMC,
MTD, and HMC, resulting in 176 data samples. We ran 500
trials to compute the averages. Tab. 2 presents the results. We
can see that MMC outperformed the three baselines. Analyz-
ing the percentage of states generated by different lags, we
can also see that the skipping links contributed to the better
performance by substantially influencing state generation.

Model Testing Accuracy

HMC 37.86%
FMC 47.84%
MMC 50.76%
MTD 48.15%

MMC-FMC MMC-HMC MMC-MTD

0.000 0.000 0.000

Lag 1 Lag 2 Lag 3

64.21% 22.75% 13.05%

Table 2: Results for inflation data based on US CPI (top left: accu-
racy; top right: p-values from student t-test; bottom: average per-
centages of states generated by each lag in testing data).

Model Testing Accuracy

HMC 33.35%
FMC 40.13%
MMC 43.01%
MTD 40.94%

MMC-FMC MMC-HMC MMC-MTD

0.000 0.000 0.000

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

37.24% 23.10% 16.30% 12.75% 10.60%

Table 3: Results for Apple stock price data from NASDAQ (top left:
accuracy; top right: p-values from student t-test; bottom: average
percentages of states generated by each lag in testing data).

Apple Stock
We took it further to consider Apple stock price from NAS-
DAQ using 1 hour interval. We obtained data consisting of a
total of 3877 samples. We converted the data into a discrete
state representation similar to that used in the inflation data.
We chose order 5 for MMC, MTD, and HMC and ran 100
trials to compute the averages. Tab. 3 presents the results.
Similar conclusions can be drawn here.
5 Conclusions and Discussions
In this paper, we introduced the Max Markov Chain (MMC)
as a novel model for stochastic modeling. MMC was moti-
vated by the limitations of the existing models and aimed at
modeling domains with sparse correlations. We provided an
analytical solution for parameter estimation. Based on this
result, a greedy method was introduced. Comparison results
with both synthetic and real-world datasets verified MMC
as an alternative for stochastic modeling and highly scalable
compared to competing models.

There exist plenty of opportunities for future research. Ex-
tensions of MMC to consider partial observability, multiple
generation states, factored representations [Sallans and Hin-
ton, 2004], and decision models [Russell, 2010], will be stud-
ied in future work. We will also investigate interesting ap-
plications of MMC, such as for intention recognition [Suk-
thankar et al., 2014] and human behavior modeling [Zhang et
al., 2015].
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and Eric Vanden-Eijnden. Transition path theory for
markov jump processes. Multiscale Modeling & Simula-
tion, 7(3):1192–1219, 2009.

[Milch et al., 2005] Brian Milch, Bhaskara Marthi, David
Sontag, Stuart Russell, Daniel L Ong, and Andrey
Kolobov. Approximate inference for infinite contingent
bayesian networks. In International Workshop on Arti-
ficial Intelligence and Statistics, pages 238–245. PMLR,
2005.

[Parzen, 1999] Emanuel Parzen. Stochastic processes.
SIAM, 1999.

[Pearl, 2003] Judea Pearl. Statistics and causal inference: A
review. Test, 12(2):281–345, 2003.

[Pentland and Liu, 1999] Alex Pentland and Andrew Liu.
Modeling and prediction of human behavior. Neural com-
putation, 11(1):229–242, 1999.

[Petropoulos et al., 2017] Anastasios Petropoulos, Sotirios P
Chatzis, and Stelios Xanthopoulos. A hidden markov
model with dependence jumps for predictive modeling
of multidimensional time-series. Information Sciences,
412:50–66, 2017.
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