
TeSTNeRF: Text-Driven 3D Style Transfer via Cross-Modal Learning

Jiafu Chen1 , Boyan Ji1 , Zhanjie Zhang1 , Tianyi Chu1 , Zhiwen Zuo2 ,
Lei Zhao1∗ , Wei Xing1∗ and Dongming Lu1

1Zhejiang University
2Zhejiang Gongshang University

{chenjiafu, ji by, cszzj, chutianyi, cszhl, wxing, ldm}@zju.edu.cn, zzw@zjgsu.edu.cn

Abstract
Text-driven 3D style transfer aims at stylizing a
scene according to the text and generating arbitrary
novel views with consistency. Simply combining
image/video style transfer methods and novel view
synthesis methods results in flickering when chang-
ing viewpoints, while existing 3D style transfer
methods learn styles from images rather than texts.
To address this problem, we for the first time design
an efficient text-driven model for 3D style transfer,
named TeSTNeRF, to stylize the scene using texts
via cross-modal learning: we leverage an advanced
text encoder to embed the texts in order to control
3D style transfer and align the input text and out-
put stylized images in latent space. Furthermore, to
obtain better visual results, we introduce style su-
pervision, learning feature statistics from style im-
ages and utilizing 2D stylization results to rectify
abrupt color spill. Extensive experiments demon-
strate that TeSTNeRF significantly outperforms ex-
isting methods and provides a new way to guide 3D
style transfer.

1 Introduction
Given a collection of artworks, learning their internal expres-
sions of art (such as color tones, strokes) and applying them to
3D scenes is a meaningful yet challenging task. From a prac-
tical point of view, artistic scene creations resembling style
of various artists can be toured on visual reality (VR) and
augmented reality (AR) devices, which provides users with a
more intuitive understanding of artists’ styles. One possible
solution to 3D style transfer is to directly apply image/video
stylization techniques to 3D scenes. However, these methods
lack 3D scene perception. Without considering the underly-
ing 3D structure, such methods may cause short-range flick-
ering or long-range discontinuity when changing viewpoints.

The major challenge for 3D style transfer is to maintain
consistency among different viewpoints to produce coherent
results. Recently, Neural Radiance Field (NeRF) [Milden-
hall et al., 2020] has shown superior performance in recon-
structing 3D objects and scenes and novel view synthesis. An
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Figure 1: Results of text-driven 3D style transfer by our method. (a)
is driven by text “Paul Cezanne”, (b) is driven by text “Monet”,
and (c) is driven by text “Van Gogh”. Given a set of real pho-
tographs and a text, our method is capable of generating stylized
novel views, which are consistent in 3D space.

implicit neural scene can be estimated from a few image ob-
servations. NeRF uses MLP to regress both volume density
and color. Some subsequent works [Schwarz et al., 2020;
Niemeyer and Geiger, 2021; Gu et al., 2022] focus on dis-
entangling shape and appearance to manipulate them. Nev-
ertheless, they are mainly designed for objects, which have
difficulty in stylizing complex 3D scenes.

To address the problem, a number of works [Chiang et
al., 2022; Huang et al., 2022; Zhang et al., 2022; Nguyen-
Phuoc et al., 2022] investigate adopting NeRF for style trans-
fer. Once trained, [Chiang et al., 2022] is capable to trans-
fer arbitrary style to 3D scenes, while [Zhang et al., 2022]
and [Nguyen-Phuoc et al., 2022] need to re-train the network
every time given a new style image. These methods use an
image for style reference. However, to achieve artist-aware
stylization, it is more convenient to use a text for reference,
as one reference image is not representative enough. Thus,
we tend to guide the stylization with texts instead of images.

In this paper, we propose TeSTNeRF, a novel method for
text-driven 3D style transfer. On the basis of a pre-trained

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5788



NeRF where the 3D scene has already been reconstructed, we
introduce latent codes to represent styles of different artists.
Moreover, we leverage CLIP [Radford et al., 2021], a large
cross-modal vision-language model, to align the input text
and output stylized images. We also enhance the stylization
by learning style feature statistics from image collection cor-
responding to the text. To generate more harmonious stylized
scenes, we utilize results from 2D stylization approaches to
alleviate abrupt color spill. Our experiments show that the
proposed approach can produce different results by using dis-
tinct texts, which are also view-consistent.

In summary, our main contributions are threefold:

• To the best of our knowledge, we for the first time pro-
pose a novel approach to stylize 3D scene according to a
given text via cross-modal learning, which can produce
consistent novel views of high visual quality.

• We introduce latent codes to control styles of differ-
ent artists, simplifying the representation of style do-
main. To establish the connection between texts and la-
tent codes better, we adopt CLIP as the encoder.

• We conduct rectification of abrupt color spill utilizing
2D stylization results, which helps generate more har-
monious visual results.

2 Related Work
2.1 Representing Scenes with Neural Field
In the past few years, rendering 3D scenes implicitly via
neural networks [Jiang et al., 2020; Genova et al., 2020;
Park et al., 2019; Riegler and Koltun, 2020; Mildenhall
et al., 2020] has gained much concern. Among them,
NeRF [Mildenhall et al., 2020] has achieved incredibly high-
quality results in reconstructing 3D objects and scenes. Given
a few images, NeRF encodes a continuous neural radiance
field to render photo-realistically novel views. The success
of NeRF has inspired various follow-up works, extending
NeRF to generative models [Schwarz et al., 2020; Niemeyer
and Geiger, 2021; Gu et al., 2022], decomposing rendering
of scenes [Boss et al., 2021; Martin-Brualla et al., 2021;
Yang et al., 2021], etc. We leverage NeRF as our backbone to
learn volume density and view-dependent color for the scene,
which can also be extended to better-quality NeRFs [Zhang
et al., 2020; Barron et al., 2021].

2.2 2D Style Transfer
2D style transfer includes image style transfer and video
style transfer. Image style transfer is to combine style fea-
ture from an image and content feature from another image,
whose style is similar to the former and content the latter.
Many works [Huang and Belongie, 2017; Li et al., 2017]
investigate approaches to perform the combination. To rep-
resent the full scope of artistic style, learning style from a
collection of artworks, which forms a style domain, is an-
other perspective of image style transfer. AST [Sanakoyeu
et al., 2018] manages to extract shared qualities among a
group of artworks. DualAST [Chen et al., 2021] develops
a scheme to learn simultaneously both the holistic artist-style
and the specific artwork-style via its proposed Style-Control

Block. StyleBank [Chen et al., 2017b] utilizes multiple con-
volution filter banks, each of which explicitly represents one
style domain. Moreover, image translation approaches, like
CycleGAN [Zhu et al., 2017], can also deal with collec-
tion style transfer. Some other works [Kwon and Ye, 2022;
Fu et al., 2021]learn styles from text descriptions. TxST [Liu
et al., 2022] proposes to embed an image-text model.

Directly applying image style transfer techniques to video
frame-by-frame usually causes instability and flickering.
Video style transfer [Chen et al., 2017a; Gao et al., 2018]
tackles this problem by introducing optical flow or aligning
intermediate feature to constrain nearby video frames. MCC-
Net [Deng et al., 2021] rearranges style representations based
on content representations to make style patterns suitable for
content structures. With the help of temporal regularization,
ReReVST [Wang et al., 2020] reconciles the contradiction
between style transfer and temporal consistency.

2.3 3D Style Transfer
3D style transfer has higher requirements compared to video
style transfer, since novel view synthesis is required in 3D
scenes. Previous methods extend stylization to 3D scenes
by representing 3D scenes with point clouds [Huang et al.,
2021] or meshes [Yin et al., 2021]. Due to the success of
NeRF, some approaches explore 3D style transfer based on
NeRF. Stylizing-3D-Scene [Chiang et al., 2022] develops a
hypernetwork to control the appearance-related weights of
the NeRF model. StylizedNeRF [Huang et al., 2022] pro-
poses a mutual learning strategy for NeRF and 2D stylization
method. SNeRF [Nguyen-Phuoc et al., 2022] deals with the
memory limitation of training with a whole image in NeRF
and improves the visual quality by alternating between styl-
ization and NeRF training. ARF [Zhang et al., 2022] aims to
transfer detailed style features via matching features between
the style image and the scene. These methods guide the styl-
ization with images. Instead, we focus on realizing 3D style
transfer under the guidance of texts.

2.4 CLIP-based NeRFs
Recently, a model based on Contrastive Language-Image Pre-
training (CLIP) [Radford et al., 2021] learns a latent space,
which may be used to estimate the similarity between a text
and an image and promote the development of cross-modal
learning. The powerful representation learned by CLIP nar-
rows the gap between texts and images. CLIP-NeRF [Wang
et al., 2022] leverages CLIP to flexibly control the 3D content
through texts or images, providing an interactive approach to
manipulate the shape and appearance of 3D objects. Dream
Fields [Jain et al., 2022] generates objects via NeRF with
the help of CLIP. LaTeRF [Mirzaei et al., 2022] uses CLIP
to remove artifacts while extracting objects that is partly oc-
cluded from a scene. DFFs [Kobayashi et al., 2022] distills
the knowledge of CLIP-LSeg, a model for segmentation, into
a 3D feature field to semantically decompose 3D scenes.

We propose to utilize CLIP for stylization in 3D scenes.
Given texts, we use the text embeddings encoded by CLIP
to manipulate which style domain the scene should be trans-
ferred to and align the input text and output stylized images
in CLIP latent space.
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Figure 2: TeSTNeRF model overview. Based on pre-trained NeRF reconstructing the scene, we perform stylization using a text from the
style dictionary. The text is then projected to the latent space of CLIP, guiding hypernetwork Ψ to predict the parameters W c of Fc. Finally,
stylized images are generated via volume rendering. The objective functions Lcontent, Lstyle, L2D , and LTIC are used for constraining the
generated results.

3 Preliminary
NeRF [Mildenhall et al., 2020] adopts multi-view images of
a 3D scene to optimize the underlying continuous radiance
field, using MLP to output volume density σ and color c given
a point coordinate x and its view direction d. The whole
networks can be disentangled into three parts: Fθ, Fσ , and
Fc. Practically, volume density and color can be calculated
separately as:

σ = Fσ(Fθ(x)), c = Fc(Fθ(x),d). (1)
During volume rendering, a ray r(t) = o+ td is cast from

the center o of the camera along the direction d through a
pixel in the image. According to the volume rendering equa-
tion, each pixel’s color is integrated along the ray as:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (2)

where T (t) = exp(−
∫ t

tn

σ(r(s))ds), (3)

where tn and tf represent the near and far bounds of the ray.
The image taken from a specific viewpoint is finally gener-
ated by aggregating its pixels according to Eq. 2 and 3.

4 Method
Our goal is to stylize a scene generated by a set of photos
from different viewpoints. We carry out the implementation
based on pre-trained implicit reconstruction of the scene us-
ing NeRF. During stylization, we fix the parameters of Fθ

and Fσ to maintain the geometry of the scene, and only opti-
mize Fc to change the appearance. Existing methods [Chi-
ang et al., 2022; Huang et al., 2022; Zhang et al., 2022;
Nguyen-Phuoc et al., 2022] achieve stylization under the
guidance of style images. Our proposed TeSTNeRF manages
to stylize the scene with texts as conditional inputs. Please
refer to Fig. 2 for an overview of our proposed framework.

4.1 Cross-modal Text-driven Style Transfer
Given paintings from different artists, it is not a difficult task
for experienced people to distinguish which painting belongs
to whom. Thus, the artists’ name can be used as a high-level
representation, denoting different style domains. Inspired by
TxST [Liu et al., 2022], we leverage a latent space with differ-
ent latent codes to control different style domains. Although
it is possible to distinguish style domains with one-hot encod-
ing, one-hot encoding may lead to poor performance since its
representation lacks concrete meaning in latent space. To di-
rectly handle a text t as input, we project t into CLIP text
latent space. With the powerful representation of CLIP’s text
embedding, the latent code z guides the optimization of hy-
pernetwork Ψ, which predicts the parameters W c to update
Fc. In this way, we utilize CLIP embedding as style condi-
tion to manipulate the appearance of a scene.

To ensure the generated images containing the same con-
tent as the origin images of the scene, we introduce content
loss. Features produced by pre-trained VGG-19 network [Si-
monyan and Zisserman, 2014] ϕ can effectively capture in-
trinsic representation of an image, which is often used in im-
age style transfer. Denoting Icontent as the ground truth im-
age and Iout as the stylized image, we compute the content
loss as:

Lcontent = ∥ϕ4(Icontent)− ϕ4(Iout)∥2, (4)

where ϕ4 denotes the relu4 1 layer in VGG-19.
Cross-modal learning aims to effectively utilize the corre-

lation of different modal contents for modeling. Since CLIP
has made a significant breakthrough in evaluating the similar-
ity of image-text pairs, we carry out our cross-modal learning
based on CLIP. For an image and a text, the similarity of their
features is proportional to the probability of the text being as-
sociated with the image. Thus. we define a text-image cross-
modal loss LTIC to shorten the CLIP-space distance between
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Figure 3: Qualitative results generated by our proposed TeSTNeRF. The first column shows various scenes. The second column shows the
texts, which are taken as the style references. The rest of the images are novel views of difference styles in corresponding scenes generated
by our model.

the input text t and the output stylized image Iout:

LTIC = 1− ⟨ζi(Iout), ζt(t)⟩, (5)

where ζi and ζt are pre-trained CLIP image encoder and
text encoder, respectively, and ⟨, ⟩ denotes cosine similarity.
Through training with Lcontent and LTIC , we are capable to
generate stylized scene corresponding to the input text.

4.2 Style Supervision
Although cross-modal learning can produce stylized results,
the results are not visually-pleasant enough, as shown in
Fig. 6. To tackle this problem, we introduce style loss to as-
sist in better learning the style feature, which is usually used
in image style transfer. We utilize a collection of style images
corresponding to the text, where a style image is randomly
chosen each iteration. Style loss Lstyle measures the error

between feature statistics of the style image Istyle and the
stylized image Iout as:

Lstyle =
∑
i

∥µ(ϕi(Istyle))− µ(ϕi(Iout))∥2

+
∑
i

∥s(ϕi(Istyle))− s(ϕi(Iout))∥2,
(6)

where µ and s are channel-wise mean and standard deviation,
respectively. ϕi denotes a layer in VGG-19 used to compute
the style loss. In our experiments, we use relu1 1, relu2 1,
relu3 1, and relu4 1 layers.

Previous domain-based 2D style transfer ap-
proaches [Sanakoyeu et al., 2018; Zhu et al., 2017]
generate globally color harmonious results due to their
effective learning from a large scale of images. They learn
a mapping between a source domain and a target domain,
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Figure 4: Qualitative comparisons. Our method takes the text “Van Gogh” as the reference style. For CycleGAN and AST, we use the
provided models pret-rained on a collection of Van Gogh’s artworks to generate the stylized results of novel views. For the rest methods, we
choose a reference style image as shown in the first row to guide the stylization. Inconsistencies are highlighted in red boxes.

generating results that are indistinguishable from the target
domain. To rectify color spill when training with limited data
in a scene, we leverage 2D stylization to supply additional
supervision. We adopt CycleGAN [Zhu et al., 2017] to
provide the 2D stylization supervision. Specifically, we
utilize their pre-trained collection style transfer models. It
should be noted that CycleGAN is a representative domain-
based style transfer method, which may be replaced by other
advanced methods. 2D stylization supervision is introduced
via computing L1 loss between the corresponding result
generated by 2D style transfer method I2D and 3D output
stylized image Iout:

L2D = ∥I2D − Iout∥1. (7)

The loss L2D constrains the output of 3D style transfer to
alleviate the influence of color spill from irrelevant object in
the scene, thus leads to better visual quality, as we will later
demonstrate in Fig. 6.

4.3 Total Loss
In summary, the content loss Lcontent is to make sure that
the generated images contain the same content as the origin
images of the scene, while LTIC is utilized to align the input
text and output images in a pre-trained latent space. Mean-
while, the style loss Lstyle is to guide the model to learn from
a specific collection of images corresponding to the input text,
and L2D is leveraged to mitigate the abrupt color spill, yield-
ing high-quality stylization results. The final loss function L

used to train our model is:
L = λcontentLcontent + λTICLTIC

+λstyleLstyle + λ2DL2D,
(8)

where the constants λcontent, λTIC , λstyle, and λ2D are
hyper-parameters of the model.

5 Experiment
5.1 Implementation Details
Following NeRF [Mildenhall et al., 2020], we use separate
coarse and fine sampling strategies, both sampling 64 points
each ray. To represent a larger region with a limited amount
of rays, we generate a K×K patch P containing pixel (u, v)
using stride c:

P = {(u+ cx, v + cy)} , (9)

where x, y ∈
{
−K

2 , ...,
K
2 − 1

}
.

Specifically, we set the patch size K = 100 for all exper-
iments. The loss weights in Eq. 8 are set to λcontent = 0.1,
λTIC = 1, λstyle = 1, λ2D = 0.3. Our proposed method is
optimized using Adam optimizer with β1 = 0.9, β2 = 0.999,
and its learning rate starts from 1e−4. The proposed TeST-
NeRF is trained for 1500 iterations on a single NVIDIA RTX
3090 GPU.

Datasets
We utilize scenes provided by NeRF [Mildenhall et al., 2020]
and FVS [Riegler and Koltun, 2020]. All of them are captured
using handheld cameras in real-scenes.
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Figure 5: More stylization results generated by TeSTNeRF.

Baselines
We compare TeSTNeRF to SOTA image stylization meth-
ods, video stylization methods and 3D stylization methods.
Since implementing image style transfer first and then recon-
structing the scene is not stable and fails sometimes, which is
caused by inconsistent stylization across different views (we
also provide the failure case in our supplementary video), we
compare our method to the following 3 categories of schemes:

• Novel View Synthesis→Image Style Transfer: we per-
form novel view synthesis using NeRF, and stylize each
new view using CycleGAN, AST, and DualAST.

• Novel View Synthesis→Video Style Transfer: we per-
form novel view synthesis along a smooth camera path
using NeRF, gather the results as a video, and then styl-
ize the video using ReReVST and MCCNet.

• 3D Style Transfer→Novel View Synthesis: we perform
3D scene stylization and then synthesize novel view.
Specifically, we conduct a point-cloud-based method
LSNV, NeRF-based methods StylizedNeRF and ARF.

For CycleGAN and AST, we use their provided models
pre-trained on the corresponding collection of artworks. For
the rest methods, we choose a style image from the artist’s
domain corresponding to the given text.

5.2 Qualitative Results
In Fig. 3, we show our stylization results based on differ-
ent texts in various scenes. It can be seen that the stylized
scenes contain both view-consistent visual quality and satis-
fying text-driven style controllability.

To validate the superiority of our method, we compare our
results with baselines, as shown in Fig. 4. We show results
generated by different methods on the scene, Sandbox.

Image style transfer approaches, e.g., CycleGAN, AST,
and DualAST, are able to produce high quality stylized re-
sults each viewpoint. However, they produce obvious incon-
sistency artifacts, as highlighted in red boxes.

Although video style transfer approaches, e.g., ReReVST
and MCCNet, are able to maintain short-range consistency,
they struggle to deal with long-range instability. Moreover,
video style transfer methods lack perception of the spatial in-
formation in the scene, resulting in violation of geometry of

Methods Fern Orchids Vasedeck Average
CycleGAN 0.0251 0.0184 0.0453 0.0296
AST 0.0315 0.0277 0.0379 0.0307
DualAST 0.0252 0.0247 0.0791 0.0430
ReReVST 0.0058 0.0097 0.0285 0.0147
MCCNet 0.0124 0.0226 0.0679 0.0343
LSNV 0.0173 0.0535 0.0378 0.0362
StylizedNeRF 0.0123 0.0387 0.0178 0.0229
ARF 0.0096 0.0127 0.0152 0.0125
Ours 0.0043 0.0057 0.0118 0.0073

Table 1: Short-range consistency comparison. We compare the
short-range consistency using warped distance score (the lower the
better). Best and second best results are marked.

Methods Fern Orchids Vasedeck Average
CycleGAN 0.0326 0.0326 0.0617 0.0423
AST 0.0370 0.0356 0.0427 0.0384
DualAST 0.0263 0.0309 0.0692 0.0421
ReReVST 0.0099 0.0280 0.0373 0.0251
MCCNet 0.0181 0.0431 0.0952 0.0521
LSNV 0.0322 0.1614 0.0231 0.0722
StylizedNeRF 0.0590 0.0720 0.0572 0.0627
ARF 0.0357 0.0392 0.0310 0.0353
Ours 0.0108 0.0190 0.0203 0.0167

Table 2: Long-range consistency comparison. We compare the long-
range consistency using warped distance score (the lower the better).
Best and second best results are marked.

the scene. Please see their failures as reconstructing the sand-
box with jagged edges in blue boxes in Fig. 4, while their
inconsistencies are highlighted in red boxes as well.

3D style transfer approaches, e.g., LSNV, StylizedNeRF,
ARF, and ours, aim to stylize the holistic scene, therefore they
all generate view consistent results. However, LSNV cannot
capture the reference style well, which affects its visual qual-
ity. StylizedNeRF and ARF utilize NeRF as their geometry
representation, which is the same as our method. Stylized-
NeRF and ARF learn style from a reference image, while our
method takes in a text as the style reference.

In comparison, we utilize a text instead of an image as the
reference style. We produce both view-consistent and high-
quality visual results. We encourage readers to have a look at
the supplementary video, which shows more intuitive differ-
ences between our method and baselines, especially in con-
sistency and stability when changing viewpoints.

We also conduct experiments on more texts than just the
artist’s name. In this case, we only use Lcontent and LTIC in
Eq. 8 to train the network. The result is shown in Fig. 5.

5.3 Quantitative Results
Consistency Measurement
Following the measurement in LSNV, we use a warped LPIPS
metric [Zhang et al., 2018] to measure the consistency across
different views. Firstly, we utilize FlowNetS [Dosovitskiy et
al., 2015] to compute the optical flow from a ground truth
image Ix to another Iy . Then a warped mask M is gener-
ated according to the optical flow. Finally, we warp the corre-
sponding stylized images Îx to Îy and calculate their distance
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Figure 6: Ablation results. (a) The result of TeSTNeRF without Lstyle and L2D . (b) The result of TeSTNeRF without LTIC and L2D . (c)
The result of TeSTNeRF without L2D . (d) The result of full TeSTNeRF.

Methods
Visual Quality Temporal Consistency

mean↑ variance↓ mean↑ variance↓
CycleGAN 5.94 6.14 6.82 4.67
AST 6.88 5.03 6.78 4.49
DualAST 5.87 5.48 5.19 6.20
ReReVST 6.06 4.43 6.42 5.46
MCCNet 5.42 4.04 5.76 3.50
LSNV 6.32 4.01 6.85 2.39
StylizedNeRF 6.61 4.95 7.04 5.90
ARF 6.89 4.25 7.52 1.72
Ours 7.23 3.95 8.32 1.38

Table 3: User study. We used “Van Gogh” and “Monet” as text
input for style transfer on scene Orchids. We invited users to score
the stylized results both in visual quality and consistency, where 10
denotes excellent performance, and 1 denotes poor performance.

along with M . The distance score is formulated as:

E(Îx, Îy) = LPIPS (M ⊙Warp(Îx, Îy)), (10)
where ⊙ denotes element-wise multiplication.

We compare our method with baselines on three scenes,
Fern, Orchids, and Vasedeck, reporting average warped dis-
tance score on texts “Van Gogh” and “Monet”. For short-
range consistency, we randomly choose 20 adjacent novel
views (Ît, Ît+1) from each scene, as shown in Tab. 1. In
Tab. 2, we show the long-range consistency score, randomly
choosing 20 frame pairs (Ît, Ît+7) from each scene. From
these two tables, we observe that TeSTNeRF outperforms
baselines in short-range consistency in all scenes, and per-
forms the best or second best as for long-range consistency.

User Study
We also conduct a user study for subjective evaluation. We
invite 27 male and 23 female participants to score stylized
scenes in visual quality and temporal consistency. We first
show a text denoted an artist with three representative art-
works from the artist as reference. We carry out the study on
scene Orchids, providing its stylized result of each method
together with a ground truth video for easy comparison. The
participants are required to score the visual quality and tem-
poral consistency, where 10 denotes excellent performance,

and 1 denotes poor performance. The results are shown in
Tab. 3. We observe that our method outperforms other meth-
ods both in visual quality and temporal consistency.

5.4 Ablation Studies
In this section, we explore each component’s effect in TeST-
NeRF and validate their importance by ablation studies.
With and without style loss. In this study, we explore the
effect of including style loss Lstyle. We introduce Lstyle to
learn the style feature statistics. The model trained with only
Lcontent and LTIC shows stylized result, but its visual quality
is dissatisfying, as shown in Fig. 6(a). It demonstrates that
introducing style feature statistics is necessary.
With and without text-image cross-modal loss. We intro-
duce LTIC to align the CLIP-space embeddings between the
text and the stylized image. In Fig. 6(b), the model trained
with only Lcontent and Lstyle presents color supersaturation,
with color not existing in the artist domain and in this image
especially on flowers highlighted in the red box. Regarding
the benefits of aligning texts and images, we conclude that
text-image cross-modal loss is worth adopting.
With and without 2D loss. As shown in Fig. 6(c), when
training without L2D, there exits color spill from the desk to
the vase, highlighted in the red box. To rectify the color spill,
we leverage results from 2D stylization to supply additional
supervision. From Fig. 6(d), we can see that applying this
supervision helps resist with the color spill and provide better
visual results.

6 Conclusion
In this paper, we investigate text-driven 3D style transfer and
propose TeSTNeRF to stylize scenes. Specifically, we uti-
lize CLIP to encode the input text to a latent code, guid-
ing a hypernetwork to predict the parameters related to ap-
pearance of the scene in NeRF model and conduct cross-
modal learning by aligning the input text and output results
in CLIP latent space. Moreover, adopting style supervision
improves the stylized visual quality. The experiments on 3D
scenes demonstrate the effectiveness of TeSTNeRF for 3D
style transfer according to given texts.
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