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Abstract

Graphs can be leveraged to model polyphonic mul-
titrack symbolic music, where notes, chords and
entire sections may be linked at different levels of
the musical hierarchy by tonal and rhythmic rela-
tionships. Nonetheless, there is a lack of works
that consider graph representations in the context of
deep learning systems for music generation. This
paper bridges this gap by introducing a novel graph
representation for music and a deep Variational Au-
toencoder that generates the structure and the con-
tent of musical graphs separately, one after the
other, with a hierarchical architecture that matches
the structural priors of music. By separating the
structure and content of musical graphs, it is pos-
sible to condition generation by specifying which
instruments are played at certain times. This opens
the door to a new form of human-computer inter-
action in the context of music co-creation. After
training the model on existing MIDI datasets, the
experiments show that the model is able to gener-
ate appealing short and long musical sequences and
to realistically interpolate between them, producing
music that is tonally and rhythmically consistent.
Finally, the visualization of the embeddings shows
that the model is able to organize its latent space in
accordance with known musical concepts.

1 Introduction
The automatic generation of artistic artifacts is gathering in-
creasing interest, also thanks to the possibilities offered by
modern deep generative models. The visual arts of painting
and photography [Ramesh et al., 2022], the written expres-
sions of prose and poetry [Brown et al., 2020], and intricate
art forms such as music [Agostinelli et al., 2023] are all do-
mains where neural models can be leveraged to produce real-
istic, if not artistically appealing, artifacts.

Despite these achievements, a closer inspection is often
enough to detect whether a piece of art is the outcome of an
automatic artificial process or not. While being very good at
approximating the external appearance of the artworks, arti-
ficial models still lack a way to convey an artistic message to

the overall experience. This results in artworks that are con-
vincing but soulless, lacking a general coherence and a deeper
meaning. This is particularly true in the case of music, where
the artist needs to be very aware of the emotions evoked by
a particular sequence of notes in order to stimulate a specific
mood in the listener.

A way to circumvent the above issues is to look at deep
learning models as a powerful support to the human artist,
instead of as a replacement. The models can thus be used
as a way to automatize the low-level routine sub-tasks of the
creative process, while leaving the artist free to concentrate
on the overall picture. Thus, the neural network becomes an
extremely versatile tool in the hand of the artist, which should
be able to control and shape the output of the network in any
way they see appropriate.

In this paper, we introduce a new model for the automatic
generation of symbolic sequences of multitrack, polyphonic
music. The generation process is carried out through the use
of a novel graph-based internal representation, which allows
to explicitly model the different chords in the song and the
relations between them. This representation allows the hu-
man artist to perform controlled changes to the output of the
neural network in order to control specific aspects of the artis-
tic performance, while leaving the model free to generate the
remaining part in a coherent way.

The main contributions of this paper are the following:

1. We propose a novel graph representation of multitrack,
polyphonic music, where nodes represent the chords
played by different instruments and edges model the re-
lationships between them.

2. We introduce a deep Variational Autoencoder [Kingma
and Welling, 2013] that generates musical graphs by
separating their rhythmic structure and tonal content. To
the best of our knowledge, this is the first time in litera-
ture that Deep Graph Networks [Bacciu et al., 2020] are
used to generate multitrack, polyphonic music.

3. We show a new generative scenario enabled by our ap-
proach in which the user can intuitively condition gener-
ation by specifying which instruments have to be played
at specific timesteps.
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2 Related Works

In recent years, there have been many attempts at generating
symbolic music with deep learning. Various works have fo-
cused on sequential models such as LSTMs [Chu et al., 2016;
Brunner et al., 2017; Roberts et al., 2018] and, more recently,
Transformers [Huang et al., 2018; Valenti et al., 2021]. When
considering specific representations (e.g. pianorolls), music
can also be processed by convolutional networks, with associ-
ated applications to music generation [Chuan and Herremans,
2018; Huang et al., 2019].

Variational Autoencoders (VAE) [Kingma and Welling,
2013] and Generative Adversarial Networks (GAN) [Good-
fellow et al., 2014] have emerged as plausible candidates for
symbolic music generation. MidiNet [Yang et al., 2017], C-
rnn-gan [Mogren, 2016] and MuseGAN [Dong et al., 2018]
are all models in which a convolutional or recurrent generator
produces music from a random sample, and a discriminator is
trained to distinguish generated samples from real ones. For
what concerns VAEs, an early approach to music generation
is Midi-VAE [Brunner et al., 2018], where separate GRU
encoder/decoder pairs are used for pitch, instrument and ve-
locity, while sharing the same latent space. In [Roberts et al.,
2018], instead, a high-level conductor LSTM takes the latent
code generated by an encoder and produces latent variables
corresponding to different segments of music. These are then
processed by a lower-level decoder LSTM, which focuses on
the generation of smaller subsections one note at a time. The
same hierarchical approach is followed by PianoTree VAE
[Wang et al., 2020], which uses multiple GRUs to compute
bar decodings from a latent code representing the entire
piece, and chord decodings from bar decodings. The authors
also exploit note-chord hierarchy priors, computing chord
embeddings from note embeddings. An interesting middle
ground between VAEs and GANs is represented by Adver-
sarial Autoencoders (AAE) [Makhzani et al., 2015], which
have been used in the context of music generation to impose
arbitrary priors to latent variables [Valenti et al., 2020;
Valenti et al., 2021].

A challenge in devising symbolic generators is choosing an
appropriate representation for music data. Researchers have
therefore started to experiment with graph-based representa-
tions, where musical entities and their relationships are mod-
eled, respectively, by nodes and edges. Musical graphs have
been built at the note level [Liu et al., 2010; Ferretti, 2018;
Ferretti, 2017], associating nodes to notes and edges to tem-
poral or tonal relationships, as well as at a higher level of the
hierarchy, using melodic segments [Simonetta et al., 2018]
and bars [Wu et al., 2020; Zou et al., 2021] as building blocks.

In the literature, there is a substantial lack of studies that
consider graph representations in the context of deep learning
for symbolic music. The VAE-based performance renderer in
[Wu et al., 2020] and the cadence detector in [Karystinaios
and Widmer, 2022] are, to the best of our knowledge, the only
systems that use Deep Graph Networks to process musical
graphs. In both works, graphs are constructed at the note level
and edges represent both tonal and temporal relationships be-
tween musical entities. For what concerns generation, the

only attempts at using graphs with deep learning are repre-
sented by PopMNet [Wu et al., 2020] and MELONS [Zou et
al., 2021]. Both works use GANs and recurrent networks,
enforcing the typical structure of human music through a bar-
level graph representation. These graphs are used to condition
the generation of monophonic music, which is carried out by
the recurrent networks. In contrast to these works, our ap-
proach uses graphs at a lower level, leveraging Deep Graph
Networks to automatically learn meaningful tonal and rhyth-
mic concepts in the context of polyphonic multitrack music
generation.

3 Graph-based Music Generation
The proposed model processes polyphonic, multitrack music.
Input songs are assumed to be available as an N × I×T ×P
multitrack pianoroll binary tensor, where N is the number of
bars, I the number of tracks, T the number of timesteps in
a bar and P the number of possible pitches. An example of
a multitrack pianoroll is shown in Figure 1a. The number of
timesteps in a bar, T , is fixed to 32, which allows to represent
notes with rhythmic value 1/32. A note is defined by its pitch
and duration values. Songs are assumed to contain a set of
tracks played by non-percussive instruments together with a
drum/percussion track (possibly silenced). This can be easily
enforced during the preprocessing phase.

3.1 Graph-based Music Representation
We propose to represent polyphonic multitrack music by a
chord-level graph g = (V, E ,A,X ), where V is the set of
nodes, E is the set of (multi-type) edges, A the set of edge
features and X the set of node features. An example of a
chord-level graph is shown in Figure 1c.

The structure S of g is represented by the sets V , A and E .
Each node v ∈ V corresponds to the activation of a chord in a
specific track and timestep. We identify three types of edges
(u, v) ∈ E : track edges, onset edges and next edges. Track
edges connect nodes that represent consecutive activations of
a single track. Onset edges connect nodes that represent si-
multaneous activations of different tracks. Finally, next edges
connect nodes that represent consecutive activations of dif-
ferent tracks in different timesteps. In order to model differ-
ent tracks, a separate track edge type is instantiated for each
track. Track edges model intra-track relationships since they
only connect nodes belonging to a single track. On the other
hand, onset and next edges model inter-track relationships
since they connect nodes related to different tracks. Each
edge feature auv ∈ A contains the type of the edge (u, v)
as well as the distance in timesteps between the two nodes.

The content C of g is represented by the set of node features
X . Node features xv ∈ X contain the list of notes played in
correspondence of node v. The number of maximum notes
in a chord, Σ, is fixed a priori. Each note is represented as
a feature vector of dimension D. The vector contains in-
formation about pitch and duration stored as a one-hot token
pair. The pitch token can assume 131 different values, which
correspond to 128 MIDI pitches with the addition of SOSP ,
EOSP and PADP tokens. Similarly, the duration token can
assume 99 different values, which correspond to 96 different
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(a) (b)

(c)

Figure 1: (a) Illustration of a single bar of a multitrack pianoroll with
four tracks (rows) and four timesteps (columns). Colored rectangles
in the grid represent the notes being played in the sequence, while
their position inside each cell indicates their pitch. (b) A structure
tensor computed from the pianoroll. (c) The resulting chord level
graph. In the image, black, solid connections indicate track edges.
Red, dotted connections indicate next edges. Blue, dashed connec-
tions indicate onset edges. Edge features δuv indicate the distance
in timesteps between two nodes. The content of the graph is omitted
for simplicity.

durations (yielding a maximum duration of 3 bars) with the
addition of SOSD, EOSD and PADD tokens.

The structure of g is encoded by the tensor S ∈
{0, 1}N×I×T , where Sn,i,t = 1 if and only if there is an
activation of at least one note in the track i at timestep t of
the n-th bar. Intuitively, Sn,i,t indicates whether track i is
active (not counting the sustain of notes) at timestep t in the
n-th bar. An example of a structure tensor is shown in Figure
1b. The content of a chord-level graph, on the other hand, can
be encoded through a tensor X ∈ R|V|×Σ×D after fixing an
ordering of V .

3.2 Deep Graph Network for Music
Our graph-based representation of music is processed by a
deep VAE [Kingma and Welling, 2013] that reconstructs
the structure S and the content C of a chord-level graph
g = (S, C). Its encoder models the encoding distribution
qϕ(z|S, C), where z ∈ Rd. The decoder network, on the
other hand, models pθ(S, C|z). After introducing the latent
variables zS ∈ Rd and zC ∈ Rd, the generative process can
be formalized as follows:

pθ(S, C, zS , zC |z) = pθ(zS |z)pθ(zC |z)pθ(S|zS)pθ(C|zC ,S) (1)

A high-level representation of the model is shown in Figure
2. The encoder consists of two separate submodules, namely
a content encoder and a structure encoder which output, re-
spectively, the codes zS and zC . The two codes are finally
combined into a graph code zg with a linear layer. The de-
coder, on the other hand, generates the structure S and the
content C of g one after the other. First, symmetrically to

the encoder, it decomposes z into two separate latent vec-
tors zS and zC through a linear layer. Then, it generates S
from zS through a structure decoder and the content C from
S and zC through a deep graph content decoder. The content
and the structure decoder model, respectively, the distribu-
tions pθ(S|z) and pθ(C|S, z).
Content Encoder. The content encoder (Figure 3a) de-
velops progressively higher-level representations for notes,
chords, bars and the whole piece. This module first em-
beds each note in a d-dimensional space with a note encoder,
which uses separate embedding matrices for pitches and dura-
tions. Next, a chord encoder processes the list of notes associ-
ated to each node, producing d-dimensional chord represen-
tations. In our instantiation of the model, the chord encoder
is implemented as a linear layer that takes a concatenation of
the Σ note representations and yields a final chord embed-
ding. These chord representations are the initial node states
h0
v of an encoder Graph Convolutional Network (GCN) [Bac-

ciu et al., 2020] with L layers. Combining the techniques
employed in [Schlichtkrull et al., 2018; Simonovsky and Ko-
modakis, 2017; Gilmer et al., 2017], the GCN constructs new
node states by taking into account the discrete information re-
garding both the edge types and the distances between nodes.
Residual connections are used between consecutive layers in
the GCN. This has proven to be beneficial in mitigating over-
smoothing problems with large values of L [Li et al., 2018;
Li et al., 2019]. Batch Normalization [Ioffe and Szegedy,
2015] is used after each graph convolutional layer to speed up
convergence and improve the generalization capability of the
model. We refer the reader to the supplementary material1 for
details about the implementation of the GCN. After L graph
convolutional layers, a readout layer aggregates the informa-
tion contained in each subgraph gn of g related to the n-th
bar of the musical sequence. This layer, which resembles the
ones in [Jeong et al., 2019] and [Li et al., 2015], produces bar
embeddings z1

C , . . . , z
N
C using a soft attention layer, which is

in charge of learning the importance of single track activa-
tions. The N bar embeddings z1

C , . . . , z
N
C are concatenated

and passed through a bar compressor, which is implemented
as a linear layer, to obtain the final content representation zC .

Structure Encoder. The structure encoder (Figure 3b)
takes as input the structure tensor S ∈ RN×I×T and com-
putes the code zS . This module first encodes each bar
Sn ∈ RI×T into a latent representation zn

S ∈ Rd through
a CNN [Goodfellow et al., 2016] made of two convolutional

1https://emanuelecosenza.github.io/polyphemus/assets/
suppmaterials.pdf

Figure 2: High-level visualization of the model.
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(a) (b)

Figure 3: Visualization of the content encoder (a) and the structure encoder (b).

layers with ReLU activations and Batch Normalization, inter-
leaved by max pooling. The bar representations z1

S , . . . , z
N
S

are then computed by passing the signal through two dense
layers. These representations are finally concatenated and
passed through a linear layer to obtain zS .

Structure Decoder. The structure decoder (see Figure 4b)
is specular to the structure encoder. It first decompresses zS
into N structure bar representations z1

S , . . . , z
N
S and decodes

each of them into a structure tensor Sn ∈ RI×T with a bar
decoder. The bar decoder mirrors the bar encoder, with the
difference that upsample layers are interleaved with convolu-
tional layers to obtain the original resolution of the pianoroll.
Finally, a sigmoid layer produces probability values which
are stacked to form the probabilistic structure tensor S̃.

Content Decoder. It reconstructs the content of g from zC
and S . The decoder first decompresses zC into z1

C , . . . , z
N
C ∈

Rd. Each zn
C is used to initialize the states of the nodes

in the subgraph gn, which represents the connected compo-
nent related to the n-th bar of the structure S . From there,
a GCN identical to the one employed in the encoder com-
putes the final states hL

v ∈ Rd for each node v. At this point,
a (linear) chord decoder transforms each final node state hL

v
into the corresponding Σ note representations of dimension
d. Such note representation vectors are split into two halves:
each half is transformed by a pitch and a duration decoder,
respectively, into pitch and duration information. As in the
encoder, two separate pitch embedding matrices are used for
drum and non-drum pitches. Finally, a softmax layer out-
puts two separate probability distributions over pitches and
durations, yielding the probabilistic tensors P̃ and D̃, which
contain, respectively, pitch and duration probabilities.

3.3 Training
The model is trained to minimize the following loss

L(g) = E[− log pθ(g|z)] + βDKL(qϕ(z|g) || N (0, I)), (2)

where DKL(·||·) is the KL divergence and the expectation is
taken with respect to z ∼ qϕ(z|x). Following the β-VAE
framework [Higgins et al., 2016], the hyperparameter β con-
trols the trade-off between reconstruction accuracy and latent
space regularization.

Since the generative process is divided in two parts, the
log-likelihood term in Equation 2 can be decomposed as fol-

lows:

log pθ(g|z) = log (pθ(S|z)pθ(C|z,S))
= log pθ(S|z) + log pθ(C|z,S).

(3)

The first term in Equation 3 can be derived in the following
way:

log pθ(S|z) =
∑
n,i,t

Sn,i,t log S̃n,i,t+

+ (1− Sn,i,t) log(1− S̃n,i,t),

(4)

where independence is assumed between variables.
Computing the content log-likelihood in Equation 3 is

trickier, since the structure generated by the structure decoder
may be different from the real one. We circumvent this prob-
lem by using a form of teacher forcing, where the content is
obtained by filling the real structure in place of the one gen-
erated by the structure decoder. In this way, the following
likelihood can always be computed:

log pθ(C|z,S) =
∑
i

∑
σ

log(P̃i,σ)
TPi,σ+

+ log(D̃i,σ)
TDi,σ,

(5)

where P and D are tensors containing, respectively, real one-
hot pitch and duration tokens, while P̃ and D̃ represent their
probabilistic reconstructions. Indepedence is assumed be-
tween all pitch and duration variables.

4 Experiments
Following [Roberts et al., 2018; Valenti et al., 2020; Valenti
et al., 2021], we experiment on short and long sequences of
MIDI music. The experiments probe the generative capabil-
ities of the model comparing, whenever possible, to state of
the art approaches. We further examine a novel scenario en-
abled by our methodology where generation is conditioned on
user-specified structures. Finally, pitch, duration and chord
embeddings are visualized to show that the model is able to
learn known tonal and rhythmic concepts. We refer the reader
to the source code2 and the additional material3, which con-
tains the audio samples produced in the experimental phase.

2https://github.com/EmanueleCosenza/polyphemus
3https://emanuelecosenza.github.io/polyphemus/
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(a) (b)

Figure 4: Visualization of the content decoder (a) and the structure decoder (b).

Datasets 2 Bars 16 Bars

LMD-matched 6,813,946 2,842,739
MetaMIDI Dataset 11,076,635 27,251,322

Table 1: Size of the datasets obtained in the preprocessing phase.

4.1 Data and Experimental Setup
We consider the ‘LMD-matched’ version of the Lakh MIDI
Dataset [Raffel, 2016], which contains a total of 45,129 MIDI
songs scraped from the internet. Additionally, we train our
models on the more challenging MetaMIDI Dataset (MMD)
[Ens and Pasquier, 2021], a recent and unexplored large scale
MIDI collection totalling 436,631 songs. For each dataset, we
obtain two new datasets containing, respectively, 2-bar and
16-bar sequences represented as chord-level graphs. The pre-
processing pipeline is similar to that in [Roberts et al., 2018;
Valenti et al., 2020; Valenti et al., 2021]. The details about
preprocessing can be found in the supplementary material. At
the end of this phase, each sequence is composed of 4 tracks:
a drum track, a bass track, a guitar/piano track and a strings
track. The sizes of the resulting datasets are shown in Table
1.

The experiments focus on two versions of the model, one
for 2-bar sequences and one for 16-bar sequences. We use for
both a 70/10/20 split. The number of layers L of the encoder
and decoder GCN is fixed to 8. The value d is set to 512.
Adam [Kingma and Ba, 2014] is used as the optimizer for
both models. The initial learning rates are set to 1e-4 and 5e-
5, respectively, for the 2-bar and the 16-bar model. In both
cases, the learning rate is decayed exponentially after 8000
gradient updates with a decay factor of 1− 5e-6. The hyper-
parameter β is annealed from 0 to 0.01. In the first 40,000
gradient updates, β is always 0, allowing the model to fo-
cus on the reconstruction task to find good initial representa-
tions. After this phase, the hyperparameter is annealed every
u = 40, 000 gradient updates by adding 0.001 to its current
value. The batch size b is set to 256 and 32 respectively for
the 2-bar and the 16-bar model.

4.2 Generation
The first set of experiments concerns the analysis of se-
quences generated from random codes z. A qualitative vi-
sual inspection of the samples suggests that the models can

consistently generate realistic music. Figure 5 shows an
example of a 2-bar generated sequence. As can be seen
from the pianoroll, the generated structures are well orga-
nized rhythmically, with drum and bass events played at the
same timesteps. In the listening analysis4, the 2-bar mod-
els appear to be particularly consistent, producing reason-
able chord progressions, melodic segments and drum pat-
terns. The 16-bar models are also coherent, both rhythmi-
cally and tonally. However, 16-bar sequences generally lack
variability as the models tend to repeat musical structures
across bars with slight differences. The rhythmic consis-
tency of the model is enforced by the fact that the content
decoder can focus on the generation of reasonable rhyth-
mic patterns. The tonal consistency, instead, is ensured by
the expressiveness of the GCN decoder, which is able to fill
chord-level graphs realistically. To provide a more quantita-
tive assessment, following previous works [Dong et al., 2018;
Valenti et al., 2021], we measure the generative ability of the
trained models by computing the following metrics on 20,000
generated sequences:

• EB (Empty Bars): ratio of empty bars.

• UPC (Used Pitch Classes): number of used pitch classes
(12) per bar.

• DP (Drum Patterns): ratio of notes in 16-beat patterns,
which are common in popular music (in %).

4Audio samples of generated 2-bar and 16-bar samples can
be found here: https://emanuelecosenza.github.io/polyphemus/
generation.html

Figure 5: A pianoroll of a generated 2-bar sequence.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5801

https://emanuelecosenza.github.io/polyphemus/generation.html
https://emanuelecosenza.github.io/polyphemus/generation.html


EB UPC ↓ DP ↑
D B G/P S B G S D

LMD-matched

jamming 6.59 2.33 20.45 6.10 1.53 3.91 4.09 93.2
composer 0.01 28.9 1.35 0.01 2.51 4.55 5.19 75.3
hybrid 2.14 29.7 14.75 6.04 2.35 5.11 5.24 71.3

Calliope 0.0 0.0 0.0 0.0 2.08 3.87 2.52 94.84

Ours (2-bars) 4.58 4.39 20.46 17.74 2.27 2.53 2.72 96.97
Ours (16-bars) 1.96 3.37 11.38 12.02 1.79 2.38 2.07 96.59

MetaMIDI Dataset Ours (2-bars) 5.38 8.31 23.49 21.54 1.85 2.03 2.24 96.28
Ours (16-bars) 4.20 7.20 18.39 17.56 1.34 1.66 1.39 95.92

Table 2: Generation metrics of the proposed model, Calliope and the jamming, composer and hybrid versions of MuseGAN (EB: empty bars
(%), UPC: number of used pitch classes, DP: drum patterns (%), D: drums, B: bass, G/P: guitar/piano, S: strings).

Table 2 shows the results obtained by our models, compar-
ing our approach to different versions of MuseGAN [Dong et
al., 2018] and Calliope [Valenti et al., 2021]. We also include
metrics for the models trained on MetaMIDI Dataset with the
goal of stimulating research on larger MIDI collections. The
EB values are never equal to zero, which indicates that there
are no issues with holes in the latent space and that the mod-
els do not ignore the latent codes during decoding. The UPC
values are consistently low, indicating that the models have
learned to stick to specific tonalities in the context of single
bars. Additionally, the DP values for the proposed model are
the highest, confirming its consistency on the rhythmic level.
These results further validate the proposed methodology and
confirm the rhythmic and tonal coherence of the model.

To inspect the structure of the latent space learned by the 2-
bar Lahk MIDI Dataset model, we interpolate random latent
codes linearly and we examine the music obtained by con-
catenating the resulting 2-bar sequences5. In the majority of
cases, the interpolations created with the model are smooth
and remain coherent, both tonally and rhythmically, through-
out their entirety. Moreover, when the starting samples differ
substantially, the model manages to create appealing transi-
tions between distant styles. This suggests that the model has
learned to organize its latent space in accordance with known
musical semantics.

4.3 Structure-conditioned Generation
The separation of structure and content in our approach al-
lows for the replacement of the generated structure tensor S
with a new tensor Ŝ during the decoding process. This new
tensor can be modified in a similar fashion to pianoroll editing
in Digital Audio Workstations (DAW). For instance, the user
can specify that a certain instrument should only be played
at a specific time in the sequence by filling the desired posi-
tions in the binary activation grid. To show this, we operate
as follows, focusing on the 2-bar model trained on the Lahk
MIDI Dataset. We start by sampling a random latent code
z, from which we obtain the two representations zS and zC .
We then let the structure decoder produce the corresponding
structure tensor S from zS . At this point, we modify S to our

5Audio samples and pianorolls of interpolations can be found at
the following link: https://emanuelecosenza.github.io/polyphemus/
interpolation.html

(a)

(b)

Figure 6: A visualization of the structure editing process. (a) A
structure tensor S generated from a random latent code z (D: drums,
B: bass, G: guitar, S: strings). Blue entries indicate the activation of
single instruments at specific timesteps. Beats are numbered on the
horizontal axis. (b) The edited structure tensor Ŝ. Green entries
indicate the addition of new activations.

liking, obtaining a new structure tensor Ŝ. This corresponds
to adding or removing nodes from the chord-level graph be-
ing generated. Finally, we let the content decoder compute
two separate content tensors X and X̂, corresponding to two
final music sequences. For our purposes, the content decoder
should be robust to changes in the structure, replicating the
same musical content represented by zC . When listening to
the audio samples generated in this way, the model appears to
be able to preserve the rhythmic and tonal features of the orig-
inal sequence, rearranging the musical content while abiding
by the imposed structure. As an example, Figure 6a shows a
generated structure tensor S. The resulting sequence contains
a recognizable I-IV progression in the key of B, supported by
8-beat bass and drum patterns6. We edit the tensor by mak-
ing the drums sparser, keeping only the nodes at the start of
each beat, and by making the strings more active, adding new
nodes at the start of beats. This yields a new structure tensor
Ŝ, which is shown in Figure 6b. The resulting music pro-

6This and other examples related to conditioned generation
can be found here: https://emanuelecosenza.github.io/polyphemus/
conditioned-generation.html
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(a) (b)

Figure 7: (a) PCA projection of pitch embeddings. (b) PCA projec-
tion of major chord embeddings. The major chords are obtained by
picking as roots each note between C1 and B8.

duced by the content decoder maintains the same harmonic
progression of the original sequence. The bass and guitar
tracks remain unaltered with very slight variations. Finally,
the strings play a new melodic line in the right key, while the
drums play a steady 4-beat hi-hat pattern. Overall, this shows
that the content decoder can adapt to new structures speci-
fied by the user, opening the door to a new form of human-
computer music co-creation.

4.4 Embedding Visualization
Similarly to [Wang et al., 2020] we explore the pitch, du-
ration and chord embeddings by visualizing their principal
components, focusing on the encoder network of the 2-bar
model trained on the Lahk MIDI Dataset. Figure 7a shows the
PCA projection in 3D space of all the 128 pitch embeddings.
Pitch projections follow a circular path along the clockwise
direction, suggesting that the model has learned the tonal re-
lationships between different pitches. Figure 7b shows a 3D
PCA projection of chord embeddings considering every ma-
jor chord obtained by picking as roots the notes between C1

and B8. Durations are fixed to 1 beat. Similarly to what hap-
pens for pitches, chord embeddings follow a circular path in
the space and form clusters related to specific octaves.

Figure 8 shows the PCA projections in 2D space of du-
ration embeddings considering, respectively, all the possible
96 durations (i.e. up to three bars) and the first 32 durations
(i.e. up to a bar). In the first case (Figure 8a), two distinct
clusters contain, respectively, durations above 64 (i.e. above
2 bars) and durations below 64 (i.e. below 2 bars). In the
second plot (Figure 8b), three clusters can be identified with,
respectively, durations below 16 (i.e. below 2 beats, left of
the plot), durations between 16 and 24 (i.e. between 2 and
3 beats, upper-right of the plot) and durations above 24 (i.e.
between 3 beats and a bar). The plots suggest that the model
has learned to organize its duration space in accordance to the
rhythmic concepts of beats and bars.

5 Conclusions
In this work, we introduced a new graph representation for
polyphonic multitrack music and a model that generates mu-
sical graphs by separating their structure and content. We
then tested our methodology on both known and unexplored

(a) (b)

Figure 8: 2D PCA projections of duration embeddings, considering
all 96 durations (a) and the first 32 (b).

MIDI datasets, considering short and long sequences. As
seen in the qualitative analysis and the comparison with the
state of the art, our approach has revealed to be beneficial with
regards to the rhythmic and tonal consistency of the gener-
ated music. Through manual experiments, we showed that the
models are able to replicate the same musical content when
varying the structure of the graphs. This allows for a new
generative scenario where users can specify the activity of
particular instruments in a music sequence. To conclude, we
further validated our methodology by visualizing the pitch,
chord and duration embeddings learned by the model. In each
case, the embedding spaces are organized in accordance with
known tonal and rhythmic concepts.

This work represents a first attempt at generating music
with graph-based deep methodologies and should be consid-
ered as a starting point for further research on the topic. In
the future, we aim to extend our work by taking into ac-
count MIDI velocity values, by training our model on other
datasets and by studying new feasible graph representations
and model configurations. Recurrent networks may be tested
in the bar compressors and decompressors to check for im-
provements in the variability across bars. Again, a new sus-
tain edge type could model the sustain of notes in different
track activations. To conclude, we believe that the model has
the potential to support human-computer co-creation, and it
will be interesting to find possible applications of our method-
ology in modern software audio tools.
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