
Learn and Sample Together:
Collaborative Generation for Graphic Design Layout

Haohan Weng1∗ , Danqing Huang2† , Tong Zhang1 , Chin-Yew Lin2

1South China University of Technology
2Microsoft Research Asia

cswhaohan@mail.scut.edu.cn, dahua@microsoft.com, tony@scut.edu.cn, cyl@microsoft.com

Abstract

In the process of graphic layout generation, user
specifications including element attributes and their
relationships are commonly used to constrain the
layouts (e.g., “put the image above the button”). It
is natural to encode spatial constraints between el-
ements using a graph. This paper presents a two-
stage generation framework: a spatial graph gen-
erator and a subsequent layout decoder which is
conditioned on the previous output graph. Training
the two highly dependent networks separately as in
previous work, we observe that the graph genera-
tor generates out-of-distribution graphs with a high
frequency, which are unseen to the layout decoder
during training and thus leads to huge performance
drop in inference. To coordinate the two networks
more effectively, we propose a novel collaborative
generation strategy to perform round-way knowl-
edge transfer between the networks in both training
and inference. Experiment results on three public
datasets show that our model greatly benefits from
the collaborative generation and has achieved the
state-of-the-art performance. Furthermore, we con-
duct an in-depth analysis to better understand the
effectiveness of graph condition modeling.

1 Introduction
Graphic layout generation is the process of determining the
position and size of each object on a page, which plays a cru-
cial role in creating a successful design (e.g., user interface,
articles, presentation slides). It establishes the relationships
between elements as well as the overall coherent appearance
for better content display. Layout generation is a challenging
research topic that dates back to the 1980s when dominant
approaches were constraint-optimization-based with heuris-
tic rules or templates [Hurst et al., 2009; Kumar et al., 2011;
O’Donovan et al., 2014]. In recent years, an increasing
number of works try to tackle this problem with powerful
generative models such as Variational AutoEncoders (VAE)

∗Work done during internship at Microsoft Research Asia.
†Corresponding Author.

Constraints Spatial Graph Layout Final Design

Image

Button

ab
o

v
e

Figure 1: Graphic layout generation with constraints. Given the user
specification of element categories and their spatial relationships,
our model can generate satisfying layouts.

[Jyothi et al., 2019; Lee et al., 2020], Generative Adver-
sarial Networks (GAN) [Li et al., 2019; Kikuchi et al.,
2021] and AutoRegressive models (AR) [Gupta et al., 2021;
Arroyo et al., 2021], which have achieved promising results.

Considering downstream applications (e.g., novel layout
suggestion and layout retrieval), user specifications includ-
ing element attributes and their relationships are useful pre-
conditions to constrain the generated layouts. For example in
Figure 1, given the user specification “put the image above
the button”, the generated layouts need to satisfy such spa-
tial constraint. Nevertheless, most of the current systems fail
to handle the relationship constraints. A natural way to en-
code the relationships is by using a graph, where the nodes
represent element categories and the edges represent spatial
relationships. The graph condition for layout generation can
not only provide users the flexibility to specify requirements,
but also serve as an interpretable intermediate representation
for better model control.

Recently, Neural Design Network (NDN) [Lee et al., 2020]
is an initial attempt to incorporate graphs into layout genera-
tion with multiple components in series, including graph gen-
eration, layout synthesis and refinement. Each component
is dependent on the output of the previous one. NDN uses
a training pipeline in which components are separately opti-
mized. In our initial experiment, we observe that the system
has a high frequency of generating out-of-distribution graphs
which are unseen for the succeeding layout generation com-
ponent during training. Errors in each component could be
propagated and thus decreasing the overall performance (e.g.,
it is less likely to generate promising layouts if conditioned on

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5851

an unreasonable graph). We will give a more detailed analysis
of this issue in the later section.

In this paper, we aim to better utilize graph conditioning
in layout generation. We simplify the components in NDN
and present a two-stage framework consisting of a VAE-
based graph generator followed by an autoregressive layout
decoder. To prevent error propagation in the pipeline, we
propose a novel collaborative generation strategy to jointly
optimize these two generative networks. During training, one
network is fed with the output from the other and conducts
a round-way knowledge transfer. Similarly in inference, we
apply cyclic sampling to refine the layout for several itera-
tions. Additionally, we conduct a comprehensive study of
graph conditioning such as graph sparsity, the ratio of user
constraints in the graph, and its consistency to generated lay-
outs.

We evaluate our model on three public datasets re-
lated to graphic design: RICO [Deka et al., 2017], Pub-
LayNet [Zhong et al., 2019] and InfoPPT [Shi et al., 2022].
Experiment results show that our model outperforms current
baselines by a large margin in terms of both quantitative and
qualitative evaluations.

In summary, the main contributions of this paper include:
• We in-depth analyze the issue of the separate training

pipeline in graph-conditioned layout generation.
• To better utilize the two highly correlated generative

networks, we propose a novel collaborative generation
strategy that boosts the model performance to the state-
of-the-art.

• We conduct extensive studies to verify the effectiveness
of graph conditioning. Our model is robust against the
input constraint ratio in the graph as well as the sequence
order in the autoregressive layout generation.

2 Related Work
2.1 Layout Generation
Early works [Hurst et al., 2009; Kumar et al., 2011;
O’Donovan et al., 2014; Tabata et al., 2019] are mostly based
on heuristic rules or predefined templates with constraint op-
timization. These methods usually ensure high-quality out-
puts but with very limited variations, thus restricting the ap-
plications of layout generation in complicated scenarios.
Unconstrained Layout Generation. In recent years, deep
generative models have shown great power in learning the
complex distribution from given data and generating samples
with high fidelity and diversity, such as GAN [Goodfellow et
al., 2014] and VAE [Kingma and Welling, 2013]. They have
been also adapted to layout generation and achieved promis-
ing results. LayoutGAN [Li et al., 2019] applies GAN to
synthesize the layout bounding box and proposes a differ-
ential wireframe rendering module to enable the training of
discriminator, and LayoutGAN++ [Kikuchi et al., 2021] ex-
tends LayoutGAN with Transformer backbone. LayoutVAE
[Jyothi et al., 2019] trains two VAEs separately, one to pre-
dict the element categories and the other to generate the lay-
outs given the category condition. Several methods also fol-
low the VAE-based generative framework [Patil et al., 2020;

Lee et al., 2020; Jiang et al., 2022]. Recent works [Gupta
et al., 2021; Kong et al., 2021; Arroyo et al., 2021; Jiang
et al., 2022] build the generative backbone based on Trans-
former [Vaswani et al., 2017] to model the long-distance
dependency and yield better performance. There are also
some content-aware generation methods [Zheng et al., 2019;
Wang et al., 2022; Cao et al., 2022; Zhou et al., 2022;
Li et al., 2022; Vaddamanu et al., 2022] that further consid-
ers the element content into modeling, which we will leave
for future exploration.
Layout Generation with Constraints. Spatial constraints
are shown to be crucial in this task which allows users to spec-
ify the desired spatial relations between elements. Previous
works mainly encode the constraints as auxiliary losses or op-
timization functions. Attribute-conditioned LayoutGAN [Li
et al., 2020b] considers element attributes (e.g., area, aspect
ratio) and incorporates them by forcing the model to meet
attribute conditions with extra training objectives. Layout-
GAN++ [Kikuchi et al., 2021] views it as a constrained op-
timization problem in post-processing. Neural Design Net-
work (NDN) [Lee et al., 2020] is an initial attempt to rep-
resent constraints as graph condition and incorporate it into
model learning. It is a graph-based system with a separate
training pipeline that optimizes different components sepa-
rately, which raises error propagation in a series of compo-
nents. In the next sections, we will analyze this issue in more
detail and improve the graph condition modeling with a col-
laborative generation strategy.

As a similar task, related works in floorplan generation
commonly use graph to model floorplan [Wang et al., 2019;
Hu et al., 2020; Nauata et al., 2020; Nauata et al., 2021;
Para et al., 2021; He et al., 2022], exhibiting great capabil-
ity of graph representation in layout modeling.

2.2 Graph Generative Networks
Graph generative models [Kipf and Welling, 2016; Li et al.,
2020a; Hasanzadeh et al., 2019; Zhang et al., 2019] mainly
adopt graph convolutional networks to learn the distribu-
tion of graphs. One of the most representative models is
Variational Graph AutoEncoder (VGAE) [Kipf and Welling,
2016], which embeds each node to a random variable in the
latent space and uses an inner-product decoder to generate
the adjacency matrix. In this work, we extend the framework
of VGAE to multi-class edge matrix prediction and propose
a variational graph autoencoder for generating spatial graphs
with user constraints.

3 Approach
In this section, we first present our two-stage framework for
graph-conditioned layout generation, including a graph gen-
erator and a layout decoder. Next, we analyze the issue of the
separate pipeline for training the two networks, and further
propose our collaborative generation framework.

3.1 Graph-Conditioned Layout Generation
Layout generation can be viewed as a sequence generation of
s [Gupta et al., 2021]:

s = ([bos], v1, x1, y1, h1, w1, ..., vn, xn, yn, hn, wn, [eos])

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5852

Graph 𝐺

GCN
Encoder

𝑄(𝑧|𝐼)

𝑁(0,1) KL

Partial Graph 𝐺 with user specifications

Inner
Product
Decoder

Output Graph 𝐺

Cross
Entropy (a)

(c)

Graph
Generator

Layout
Decoder

Train

Sample

Masked
Multi-Head
Attention

Graph
Multi-Head
Attention

Feed Forward

GCN Layer

Output Sequence
Probabilities

Embedding

PE+

× N

(b)

Self
Multi-Head
Attention

Graph
Multi-Head
Attention

Feed Forward

GCN Layer

Previous Tokens 𝑠 :

Output Token 𝑠

Embedding

+ PE

× N

Generated
Graph

Refined
Graph

Figure 2: The overview of our approach. (a) Graph generator extends from the variational graph autoencoder; (b) Attention mechanism with
graph in the layout decoder; (c) Collaborative generation framework. These two generative nets are trained collaboratively. The output of the
graph generator is fed to the layout decoder. Layout decoder extract graphs from its generated layouts to guide the graph generator for better
generation. In cyclic sampling, our model extracts the graph from the decoded layout and feeds it back to generate new layouts for iterative
refinement.

where vi is the category label of the i-th element in the lay-
out (e.g., title, text, figure), xi, yi, hi, wi represent
the position and size which are converted to discrete tokens.
[bos], [eos] are special tokens for beginning and end.

To consider adding user specifications of element cate-
gories and their spatial relationships, it is natural to intro-
duce a graph as a condition to constrain the generated lay-
outs. Moreover, a graph serves as an intermediate represen-
tation in the generation process to improve the model’s inter-
pretability. We define a graph G = (V, E) where the node
vi ∈ V is the element category and the edge ei ∈ E encodes
the spatial relationship between two nodes. The edge can be
one of the nine types: overlap, above-left, above, above-right,
right, below-right, below, below-left, left. The spatial graph
so far is a complete directed graph, which is dense and con-
tains many spatially-true but redundant edges. For example,
given above(A, B) and above(B, C), the edge above(A, C)
may be not necessary to be stored. This edge redundancy
problem will be likely to introduce noise in (1) predicting
self-consistent edges during graph generation; (2) capturing
the key structural information in graph conditioning. There-
fore, we apply a heuristic pruning strategy to obtain a sparse
graph: delete the edges which the distance of the two con-
nected nodes is longer than a pre-defined threshold. We show
later in the experiment that such a simple pruning strategy
works surprisingly well.

Our generation process consists of two networks: (1) graph
generator, producing a graph given partial user constraints;
(2) layout decoder, synthesizing layouts conditioned on the
graph. We briefly describe them in the following.

Network 1: Graph Generator. We extend Variational
Graph Autoencoder (VGAE) [Kipf and Welling, 2016] for
multi-classes edges generation. In VGAE, a graph is encoded
to the latent code z by a GCN, and the edges are generated
by the dot product of z. In our model, the latent code zi for
each node is encoded as the concatenation of the input graph
embedding by GCN and the node embedding with a learn-
able embedding matrix. The probability of an edge eij ∈ E
belonging to a relation type k between nodes vi, vj ∈ V can
be given by an inner product between the latent of two nodes
zi, zj :

p(E|V) =
n∏

i=1

n∏
j=1

p(eij |zi, zj)

p(eij = k|zi, zj) = softmax(ρk(zi)
⊤ϕk(zj))

(1)

where ρk and ϕk is the non-linear transformation correspond-
ing to k. During training, the ground truth of spatial graphs
can be extracted from real layouts in the dataset.
Network 2: Layout Decoder. Conditioned on a generated
graph from the previous step or an extracted graph from a
real layout, our layout decoder autoregressively generates the
layout sequence s:

p(s) =
5n+2∏
i=1

p(si|s1:i−1,G)

hi = hi +GraphAttn(h1:i,G)

(2)

where hi is the hidden representation of the i-th token. In
each decoder layer, tokens will attend to the graph using a
cross-attention.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5853

Figure 3: T-SNE visualization of generated and extracted graph em-
beddings. In separate training, there is a distribution shift between
these two types of graphs, resulting in performance reduction using
generated graphs. The issue is alleviated in collaborative training.

In our observation, one major limitation of the previ-
ous autoregressive models is that the generated results are
very sensitive to the input element order [Lee et al., 2020;
Gupta et al., 2021]. For example, LayoutTransformer sorts
the elements from top left to bottom right as the input order
in both training and inference. The performance drops signif-
icantly when the order is set randomly. In our experiments,
we show that our model is robust against different input order
variations, in which the graph condition plays a crucial role.

3.2 Issue of Separate Training Pipeline
Similar to NDN, it is natural to connect the two networks
using a separate training/inference pipeline. During train-
ing, the graph generator and layout decoder are separately
trained with ground-truth extracted graphs from real layouts.
Instead in inference, the layout decoder receives generated
graphs from the graph generator as input. There exists a gap
in the layout decoder’s conditioned graphs between training
and inference time. In our initial experiment, we observed
huge performance reduction when the layout decoder input
is changed from the extracted graph to the generated graph.
Similar results can also be found in Lee [2020].

To better understand this issue, we visualize the latent
space of extracted/generated graphs in Figure 3. As we
can see on the left (separate training), the generated graphs
have a distribution shift from the extracted graphs. With
limited-scale and highly-imbalanced training data, it is dif-
ficult to train a fully generalized graph generator and can eas-
ily yield out-of-distribution graphs that are likely to be self-
inconsistent among edges with increasing node size. More-
over, the layout decoder, only trained with ground-truth ex-
tracted graph inputs, is not robust to the unseen generated
graphs. Being compared, our proposed learning strategy in
the next subsection alleviates the distribution shift of gener-
ated graphs as shown in Figure 3 (right), and therefore re-
duces the error propagation from the graph generator to the
layout decoder.

3.3 Collaborative Generation
To resolve the issue mentioned above, we propose a strategy
including collaborative training and cyclic sampling for better
unifying the graph generator and layout decoder. The overall
pipeline is shown in Figure 2.

Collaborative Training. As shown in Algorithm 1, two
networks teach each other alternatively during training iter-
ations. On one hand, besides ground-truth extracted graphs,
the layout decoder accepts generated graph input from the
graph generator to update its parameters. On the other hand,
a graph can be derived from the layout decoder output and is
used as the training data for the graph generator. This training
framework has two major benefits. First, it can be viewed as
an approach of curriculum data augmentation, which enforces
model robustness to more unseen data. Second, it provides in-
stant communication to perform round-way knowledge trans-
fer between the two networks, and adjusts their learning pace
when training together.
Cyclic Sampling. We apply several rounds of decoding in
the inference. After the first round of the generation process
from graph generation to layout generation, the layout de-
coder will input the graph derived from its sampling layout in
the previous round for iterative refinement. Empirically, we
apply the cyclic sampling only on the layout decoder side as
it improves sampling time efficiency while performing con-
siderably well.

Algorithm 1 Collaborative Generation.

Require: Target layouts Lt, extracted graphs Gt from Lt

1: Initialize Graph generator θg , layout decoder θl
2: for training iteration i = 1, · · · , Tt do
3: Update θg with Gt, generate graphs Gg

4: Update θl with Lt conditioned on either Gt or Gg

5: Sample layouts Lg conditioned on Gg with θl
6: Update θg with graphs derived from Lg

7: end for
8: for sampling iteration i = 1, · · · , Ts do
9: if i == 1 then

10: Generate graphs Gi with θg
11: end if
12: Sample layouts Li conditioned on Gi

13: Derive Gi+1 from Li

14: end for

4 Experiments
In this section we show our experiment details, system com-
parison results and the in-depth analysis of graph modeling.

4.1 Experiment Setup
Datasets. We conduct our experiments with three public
datasets for graphic design, RICO [Deka et al., 2017] and
PubLayNet [Zhong et al., 2019] and InfoPPT [Shi et al.,
2022]. RICO consists of over 66k unique UI layouts from
Android mobile apps. Following previous works, we exclude
elements whose labels are not in the 13 most frequent sets
and exclude layouts with more than 9 elements. After filtering
there are 20,507 layouts in total. PubLayNet is a large collec-
tion of over 360k scientific documents crawled from PubMed
Central. Similarly, layouts with more than 9 elements are
excluded, totaling 173,225 layouts in the final set. InfoPPT
contains 23k information presentations collected from the In-
ternet. We exclude several unnecessary categories such as

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5854

Dataset Rico PubLayNet InfoPPT

Model Max. IoU Alignment Overlap FID ↓ Max. IoU Alignment Overlap FID ↓ Max. IoU Alignment Overlap FID ↓
LayoutVAE 0.24 0.98 66.20 95.81 0.28 0.63 8.09 58.99 0.15 0.99 61.95 22.03
LayoutGAN++ 0.36 0.60 61.19 26.13 0.36 0.24 21.52 25.67 0.09 0.32 127.02 19.01
NDN-none 0.34 0.51 58.06 16.86 0.30 0.30 19.38 38.37 0.15 0.74 96.61 36.81
LayoutTransformer 0.21 0.10 71.12 73.73 0.35 0.43 12.05 66.37 0.21 0.36 53.35 12.99
Ours-none 0.44 0.18 67.95 6.36 0.42 0.07 5.15 6.30 0.30 0.30 48.66 15.34

Real data 0.68 0.27 51.31 1.93 0.53 0.04 0.22 1.78 0.75 0.14 17.20 0.40

Table 1: Overall results of unconstrained layout generation on three datasets. For the metrics Max. IoU, Alignment and Overlap, closer value
to the real data indicates better system performance. “none” means no user constraint input and the layout decoder is conditioned fully on
model-generated graphs.

footnote and decorator, and select layouts with element num-
bers ranging from 4 to 20, which are in total 46,654 layouts.

Baselines. We consider the following recent works as base-
lines. LayoutVAE [Jyothi et al., 2019] takes the latent code
and category labels (optional) as input and generates the el-
ement bounding boxes in an autoregressive manner. Lay-
outGAN++ [Kikuchi et al., 2021] improves LayoutGAN
with Transformer backbone and applies several beautification
post-process for alignment and non-overlap. NDN [Lee et
al., 2020] is a pipeline system with graph generation, layout
synthesis and refinement. LayoutTransformer [Gupta et al.,
2021] autoregressively generates a sequence of element to-
kens.

Evaluation Metrics. There are 4 metrics commonly used
to measure the generated layout quality:

• Maximum IoU. Given the generated layouts and the ref-
erences, this metric computes the intersection over the
union of the two sets with a permutation to maximize
the IoU as a similarity measurement.

• Alignment. Layout elements are usually aligned with
each other to create an organized composition. Align-
ment calculates on average the minimum distance in the
x- or y-axis between any element pairs in a layout.

• Overlap. It is assumed that elements should not overlap
excessively. Overlap computes the average IoU of any
two elements in a layout. Layouts with small overlap
values are often considered to be high quality.

• FID. Compared to the above heuristic metrics, FID is a
sample-based metric for image generation [Heusel et al.,
2017] and has been adopted in layout generation. It pre-
trains a feature network to classify real or fake layouts
which is then used to extract features of two data sets
and calculate the Fréchet distance.

For all the evaluation metrics, we use the implementation
from LayoutGAN++1.

Implementation Details. For model architecture, the graph
generator stacks 3 GCN layers with hidden dimension 128
and each node with hidden size 32. The layout decoder con-
tains 6 attention layers each with 8 heads. The attention
dropout rate is set to 0.5. The token embedding size is 512.
The cyclic step for sampling is set to 2. We train the model

1https://github.com/ktrk115/const layout

for 100 epochs with a learning rate 3 × 10−4 and batch size
64. We use early stopping based on validation error. Adam
[Kingma and Ba, 2014] is used as optimizer with β1 = 0.9
and β2 = 0.99.

4.2 Unconstrained Generation Results
Quantitative Comparisons. For the three heuristic met-
rics, the closer value to real data, the better performance.
For FID score, we pursue the lowest absolute value. Table
1 shows the overall results of unconstrained layout genera-
tion. In this setting, our pipeline generates graphs without
any constraints to initialize the graph as the same in NDN
(labeled as ”none”). Our model performs significantly bet-
ter than the baselines with a large margin on most metrics,
especially on the FID. Except that it does not perform well
in terms of Overlap on RICO. We argue that elements in UI
layouts are more frequently to be overlapped which might en-
courage the model to learn strong overlap behavior. To high-
light, NDN is the most similar approach to ours which also
synthesizes layouts conditioned on the generated graph but
mainly differs in training strategy. Our model beats NDN
across most metrics, indicating the effectiveness of our col-
laborative generation framework to improve the final perfor-
mance of generated layouts.
Qualitative Comparisons. As the case study shown in Fig-
ure 4, our model generates layouts with better alignment and
less overlap. With the aid of spatial graphs, we find that our
model can learn to better capture the element relationships.
For example, it frequently places icons inside the toolbar as
navigation widget in UI layouts (RICO), and text captions on
the top of tables while in the bottom of figures in scientific
document layouts (PubLayNet).
Ablation of Different Components. We show the results
by removing different components of our model in Table 2.
All experiments in the following are conducted on Pub-
LayNet. As we can see, coupled with all three components it
achieves the best result. Especially with collaborative train-
ing, the performance is significantly improved, with FID op-
timized from 52.70 to 6.64. Graph pruning is also useful,
meaning that sparse graphs can help the model better capture
the key structural information by removing redundant edges.
Robustness to Input Sequence Order. The order of the in-
put elements is also an important factor in previous autore-
gressive generation methods. Table 3 shows the result of dif-
ferent element orders on RICO. Without graph condition, the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5855

(a) RICO (b) Publaynet

Layout
Transformer

LayoutGAN++

LayoutVAE

Input
Toolbar ×1

1

Image × 1

Text × 1

Button × 1

Image × 1

Text × 2

Icon ×2
2

Button × 1

Toolbar × 1

Image × 1

Text × 2

Background

Title × 1

Text × 5

Figure × 1

Text × 7

Figure × 1

Text × 6

Table × 2

(c) Infoppt

Table × 3

Title × 1

Text × 3
Title × 1

Image × 3 Image × 1

Text × 4

Ours-none

NDN-none

Figure 4: Qualitative comparisons of generated layouts.

Graph Collaborative Cyclic Max. IoU Alignment Overlap FID ↓Pruning Training Sampling

% % % 0.28 0.18 46.36 58.25
" % % 0.28 0.21 41.84 52.70
% % " 0.35 0.10 18.41 18.85
" " % 0.43 0.07 8.55 6.64
" " " 0.42 0.07 5.15 6.30

Table 2: Ablation of different components on PubLayNet.

result is sensitive to the input element order (the random order
performs much worse than the sorted order). After adding the
graph, our model is robust against the order, with even FID
score improved under the random setting. It may probably be
the reason that random order serves as an approach to data
augmentation with graph conditioning.

4.3 Conditioned Graph Analysis
Here we investigate the impact of different graph settings on
the overall performance.

Effect of Input Constraints Ratio in Graph. With a
smaller input constraint ratio to initialize a graph, the graph
generator has to complete more missing edges, which in-
creases the task difficulty. As shown in Figure 5, when train-
ing the graph generator and layout decoder separately (i.e.,

Graph Order Max. IoU Alignment Overlap FID↓

%
sort 0.21 0.10 71.12 73.73

random 0.20 0.16 81.07 79.83

"
sort 0.30 0.16 66.99 23.73

random 0.44 0.18 67.95 6.36

Table 3: Effect of different element input order. With graph condi-
tions, the model is more robust to random order.

NDN and Separate), we observe great performance reduc-
tion with less constraint input. With our collaborative gen-
eration (purple line), the performance becomes stable across
different constraint ratios. This indicates that collaborative
generation improves the generated graph quality as well as
the robustness of the layout decoder, minimizing the perfor-
mance gap among graphs with different input edge ratios. We
also show the performance of LayoutGAN++ with a post-
processing optimization of user constraints (red line). Inter-
estingly, it shows a different trend of performance decreas-
ing with a higher constraint ratio, which is expected since
more constraints might increase the optimization problem dif-
ficulty.

Graph Consistency with Layouts. To evaluate how well
the generated layouts conform to the conditioned graphs, we

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5856

Figure 5: Compared to the unstable separate training, NDN and
optimization-based LayoutGAN++, our collaborative generation
maintains high performance across different input constraint ratios
on all metrics.

Matching Degree (k) RICO PubLayNet InfoPPT

0 55.80 60.61 41.47
1 68.17 79.24 63.38
2 78.17 87.90 80.57

Table 4: Graph consistency with the generated layout.

measure the graph consistency in Table 4. Specifically, given
a graph g and the corresponding generated layout l where a
graph g′ which can be derived from, the consistency value λ
can be calculated by matching the edges between g and g′:

λk =
1

|E|
∑
e∈E

[|eg − eg′ | ≤ k]

where the matching degree k indicates the direction close-
ness between two edges. For example, the degree of <above,
above-left> is 1 and <above, left> is 2. From the table, we
can see that the exact match of the conditioned graphs and
generated layouts (k = 0) is challenging, with only 40%-60%
of samples satisfying this hard matching. While setting loose
the degree to k = 1, 2, the consistency values can be reached
up to around 80%, which indicates that most generated lay-
outs can reasonably conform to the conditioned graph.

Effect of Graph Sparsity. As we mentioned in Section 3.1,
complete graphs usually contain redundant edges and are
likely to increase the learning difficulty for both the graph
generator and layout decoder. Here we investigate the ef-
fect of graph sparsity on the overall performance. As shown
in Figure 6, pruning the redundant edges to a reasonable

Figure 6: Pruning redundant edges with a reasonable percentage (up
to 40%) can improve the quality of generated layouts.

Image

Button

above

Toolbar

above

Figure 7: Given the same specification, our model can generate dif-
ferent graphs following the same constraint, accompanied by diverse
layouts per graph.

percentage (up to 40%) can improve the quality of gener-
ated layouts. As the number of pruning edges continues
to get increased, the performance deteriorates, which is ex-
pected since there will be more information lost in the pruned
graph. This conclusion consistently holds when given differ-
ent amounts of input constraints (0/25%/50%).

Generation Diversity. Given the user specification, a well-
performed system should generate diverse layouts satisfying
the same input constraints. As shown in Figure 7, in terms of
graph diversity, our model outputs different reasonable spatial
graphs. Furthermore, for each conditioning graph, our model
generates diverse layouts with varying sizes and positions.

5 Conclusion
User specifications are commonly used to constrain graphic
layout generation. In this work, we introduce a graph-
conditioned layout generation system that accepts flexible
user constraints. Our system consists of a graph generator
and a layout decoder. Instead of the separate training pipeline,
we propose a novel collaborative generation strategy to better
utilize the two networks. Experiment results show the effec-
tiveness of our approach. In the future, we aim for better
solutions for generation control. Also, content-aware layout
generation would be another promising direction.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5857

Acknowledgements
This work was funded in part by the Major Research plan
of the National Natural Science Foundation of China un-
der number 92267203, in part by the National Key Re-
search and Development Program of China under num-
ber 2019YFA0706200, in part by the National Natural Sci-
ence Foundation of China grant under number 62076102,
U1813203, and U1801262, in part by the Guangdong Nat-
ural Science Funds for Distinguished Young Scholar un-
der number 2020B1515020041, in part by the Science
and Technology Major Project of Guangzhou under num-
ber 202007030006, in part by the Science and Technol-
ogy Program of Guangzhou under number 202002030250,
in part by The Program for Guangdong Introducing Inno-
vative and Entrepreneurial Teams (2019ZT08X214), in part
by Guangdong-Hong Kong-Macao Greater Bay Area Center
for Brain Science and Brain-Inspired Intelligence Fund (NO.
2019016).

References
[Arroyo et al., 2021] Diego Martin Arroyo, Janis Postels,

and Federico Tombari. Variational Transformer Networks
for Layout Generation. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
13637–13647. IEEE, June 2021.

[Cao et al., 2022] Yunning Cao, Ye Ma, Min Zhou, Chuan-
bin Liu, Hongtao Xie, Tiezheng Ge, and Yuning Jiang.
Geometry Aligned Variational Transformer for Image-
conditioned Layout Generation. In Proceedings of the
30th ACM International Conference on Multimedia, pages
1561–1571, Lisboa Portugal, October 2022. ACM.

[Deka et al., 2017] Biplab Deka, Zifeng Huang, Chad
Franzen, Joshua Hibschman, Daniel Afergan, Yang Li,
Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile
app dataset for building data-driven design applications. In
Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology, pages 845–854, 2017.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[Gupta et al., 2021] Kamal Gupta, Justin Lazarow, Alessan-
dro Achille, Larry Davis, Vijay Mahadevan, and Abhinav
Shrivastava. LayoutTransformer: Layout Generation and
Completion with Self-attention. In 2021 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
984–994, 2021.

[Hasanzadeh et al., 2019] Arman Hasanzadeh, Ehsan Haji-
ramezanali, Krishna Narayanan, Nick Duffield, Mingyuan
Zhou, and Xiaoning Qian. Semi-implicit graph variational
auto-encoders. Advances in neural information processing
systems, 32, 2019.

[He et al., 2022] Feixiang He, Yanlong Huang, and
He Wang. iPLAN: Interactive and Procedural Lay-
out Planning. arXiv:2203.14412 [cs], March 2022. arXiv:
2203.14412.

[Heusel et al., 2017] Martin Heusel, Hubert Ramsauer,
Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[Hu et al., 2020] Ruizhen Hu, Zeyu Huang, Yuhan Tang,
Oliver Van Kaick, Hao Zhang, and Hui Huang.
Graph2Plan: learning floorplan generation from layout
graphs. ACM Transactions on Graphics, 39(4), August
2020.

[Hurst et al., 2009] Nathan Hurst, Wilmot Li, and Kim Mar-
riott. Review of automatic document formatting. In Pro-
ceedings of the 9th ACM symposium on Document engi-
neering, pages 99–108, 2009.

[Jiang et al., 2022] Zhaoyun Jiang, Shizhao Sun, Jihua Zhu,
Jian-Guang Lou, and Dongmei Zhang. Coarse-to-fine gen-
erative modeling for graphic layouts. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(1):1096–
1103, Jun. 2022.

[Jyothi et al., 2019] Akash Abdu Jyothi, Thibaut Durand, Ji-
awei He, Leonid Sigal, and Greg Mori. LayoutVAE:
Stochastic Scene Layout Generation From a Label Set. In
2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9894–9903, 2019.

[Kikuchi et al., 2021] Kotaro Kikuchi, Edgar Simo-Serra,
Mayu Otani, and Kota Yamaguchi. Constrained Graphic
Layout Generation via Latent Optimization. In Proceed-
ings of the 29th ACM International Conference on Multi-
media, pages 88–96, October 2021. arXiv: 2108.00871.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2013] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[Kipf and Welling, 2016] Thomas N Kipf and Max
Welling. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

[Kong et al., 2021] Xiang Kong, Lu Jiang, Huiwen Chang,
Han Zhang, Yuan Hao, Haifeng Gong, and Irfan Essa.
BLT: Bidirectional Layout Transformer for Controllable
Layout Generation, December 2021. arXiv: 2112.05112.

[Kumar et al., 2011] Ranjitha Kumar, Jerry O Talton,
Salman Ahmad, and Scott R Klemmer. Bricolage:
example-based retargeting for web design. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2197–2206, 2011.

[Lee et al., 2020] Hsin-Ying Lee, Lu Jiang, Irfan Essa,
Phuong B. Le, Haifeng Gong, Ming-Hsuan Yang, and
Weilong Yang. Neural Design Network: Graphic Lay-
out Generation with Constraints. In Computer Vision –
ECCV 2020: 16th European Conference, 2020, Proceed-
ings, Part III, pages 491–506. Springer-Verlag, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5858

[Li et al., 2019] Jianan Li, Jimei Yang, Aaron Hertzmann,
Jianming Zhang, and Tingfa Xu. LayoutGAN: Generat-
ing Graphic Layouts with Wireframe Discriminators. In
ICLR, January 2019. arXiv: 1901.06767.

[Li et al., 2020a] Jia Li, Jianwei Yu, Jiajin Li, Honglei
Zhang, Kangfei Zhao, Yu Rong, Hong Cheng, and Jun-
zhou Huang. Dirichlet graph variational autoencoder.
Advances in Neural Information Processing Systems,
33:5274–5283, 2020.

[Li et al., 2020b] Jianan Li, Jimei Yang, Jianming Zhang,
Chang Liu, Christina Wang, and Tingfa Xu. Attribute-
conditioned layout gan for automatic graphic design. IEEE
Transactions on Visualization and Computer Graphics,
27(10):4039–4048, 2020.

[Li et al., 2022] Chenhui Li, Peiying Zhang, and Changbo
Wang. Harmonious Textual Layout Generation Over Nat-
ural Images via Deep Aesthetics Learning. IEEE Trans-
actions on Multimedia, 24:3416–3428, 2022. Conference
Name: IEEE Transactions on Multimedia.

[Nauata et al., 2020] Nelson Nauata, Kai-Hung Chang,
Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa.
House-GAN: Relational Generative Adversarial Networks
for Graph-Constrained House Layout Generation. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, Computer Vision – ECCV 2020,
volume 12346, pages 162–177. Springer International
Publishing, 2020. Series Title: Lecture Notes in Computer
Science.

[Nauata et al., 2021] Nelson Nauata, Sepidehsadat Hosseini,
Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasu-
taka Furukawa. House-GAN++: Generative Adversar-
ial Layout Refinement Network towards Intelligent Com-
putational Agent for Professional Architects. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13627–13636. IEEE, June
2021.

[O’Donovan et al., 2014] Peter O’Donovan, Aseem Agar-
wala, and Aaron Hertzmann. Learning layouts for single-
pagegraphic designs. IEEE transactions on visualization
and computer graphics, 20(8):1200–1213, 2014.

[Para et al., 2021] Wamiq Para, Paul Guerrero, Tom Kelly,
Leonidas Guibas, and Peter Wonka. Generative Layout
Modeling using Constraint Graphs. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
6670–6680. IEEE, October 2021.

[Patil et al., 2020] Akshay Gadi Patil, Omri Ben-Eliezer,
Or Perel, and Hadar Averbuch-Elor. READ: Recursive
Autoencoders for Document Layout Generation. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 2316–2325, June 2020.

[Shi et al., 2022] Danqing Shi, Weiwei Cui, Danqing Huang,
Haidong Zhang, and Nan Cao. Reverse-engineering in-
formation presentations: Recovering hierarchical group-
ing from layouts of visual elements. arXiv preprint
arXiv:2201.05194, 2022.

[Tabata et al., 2019] Sou Tabata, Hiroki Yoshihara, Haruka
Maeda, and Kei Yokoyama. Automatic layout generation
for graphical design magazines. SIGGRAPH ’19. Associ-
ation for Computing Machinery, 2019.

[Vaddamanu et al., 2022] Praneetha Vaddamanu, Vinay Ag-
garwal, Bhanu Prakash Reddy Guda, Balaji Vasan Srini-
vasan, and Niyati Chhaya. Harmonized Banner Creation
from Multimodal Design Assets. In CHI Conference
on Human Factors in Computing Systems Extended Ab-
stracts, pages 1–7, New Orleans LA USA, April 2022.
ACM.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.

[Wang et al., 2019] Kai Wang, Yu-An Lin, Ben Weissmann,
Manolis Savva, Angel X. Chang, and Daniel Ritchie.
PlanIT: planning and instantiating indoor scenes with rela-
tion graph and spatial prior networks. ACM Transactions
on Graphics, 38(4):1–15, August 2019.

[Wang et al., 2022] Yizhi Wang, Guo Pu, Wenhan Luo,
Yexin Wang, Pengfei Xiong, Hongwen Kang, and Zhouhui
Lian. Aesthetic Text Logo Synthesis via Content-aware
Layout Inferring. arXiv:2204.02701 [cs], April 2022.
arXiv: 2204.02701.

[Zhang et al., 2019] Muhan Zhang, Shali Jiang, Zhicheng
Cui, Roman Garnett, and Yixin Chen. D-vae: A varia-
tional autoencoder for directed acyclic graphs. Advances
in Neural Information Processing Systems, 32, 2019.

[Zheng et al., 2019] Xinru Zheng, Xiaotian Qiao, Ying Cao,
and Rynson W. H. Lau. Content-aware generative mod-
eling of graphic design layouts. ACM Transactions on
Graphics, 38(4):1–15, August 2019.

[Zhong et al., 2019] Xu Zhong, Jianbin Tang, and Anto-
nio Jimeno Yepes. Publaynet: largest dataset ever for doc-
ument layout analysis. In 2019 International Conference
on Document Analysis and Recognition (ICDAR), pages
1015–1022. IEEE, 2019.

[Zhou et al., 2022] Min Zhou, Chenchen Xu, Ye Ma,
Tiezheng Ge, Yuning Jiang, and Weiwei Xu. Composition-
aware Graphic Layout GAN for Visual-Textual Presenta-
tion Designs. In Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, pages
4995–5001, Vienna, Austria, July 2022. International Joint
Conferences on Artificial Intelligence Organization.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI, the Arts and Creativity

5859

	Introduction
	Related Work
	Layout Generation
	Graph Generative Networks

	Approach
	Graph-Conditioned Layout Generation
	Issue of Separate Training Pipeline
	Collaborative Generation

	Experiments
	Experiment Setup
	Unconstrained Generation Results
	Conditioned Graph Analysis

	Conclusion

