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Abstract

Developing digital sound synthesizers is crucial to
the music industry as it provides a low-cost way
to produce high-quality sounds with rich timbres.
Existing traditional synthesizers often require sub-
stantial expertise to determine the overall frame-
work of a synthesizer and the parameters of sub-
modules. Since expert knowledge is hard to ac-
quire, it hinders the flexibility to quickly design and
tune digital synthesizers for diverse sounds. In this
paper, we propose “NAS-FM”, which adopts neural
architecture search (NAS) to build a differentiable
frequency modulation (FM) synthesizer. Tunable
synthesizers with interpretable controls can be de-
veloped automatically from sounds without any
prior expert knowledge and manual operating costs.
In detail, we train a supernet with a specifically de-
signed search space, including predicting the en-
velopes of carriers and modulators with different
frequency ratios. An evolutionary search algo-
rithm with adaptive oscillator size is then devel-
oped to find the optimal relationship between os-
cillators and the frequency ratio of FM. Extensive
experiments on recordings of different instrument
sounds show that our algorithm can build a syn-
thesizer fully automatically, achieving better results
than handcrafted synthesizers. Audio samples are
available at https://nas-fm.github.io/.

1 Introduction
Creating and rendering music has become increasingly con-
venient with the help of digital sound synthesizers which sim-
ulate the timbre of real instruments that are potentially expen-
sive and rare. Lots of sound synthesizers are designed whose
commercial values are widely recognized, while the complex-
ity of the synthesizers also increases dramatically.

Instead of carefully designing delicate structures of highly
diversified instruments, our target is to design a general
framework which can flexibly construct digital synthesizers
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Synthesizer Tunable Interpretable Automatic
Design

Digital
Synthesizer ! ! %

Neural Network
Synthesizer % % !

Our NAS-FM ! ! !

Table 1: Comparison between the proposed NAS-FM with other
strategies for digital audio synthesis.

simply from recordings and allow further tuning of the tim-
bres in a controllable and interpretable way.

Early approaches to sound synthesis are parametric, de-
signing a set of components (e.g., oscillators and modu-
lators) based on digital signal processing (DSP), and ul-
timately creating complex timbres with specific structures
combining these components. Typical works include sub-
tractive synthesis [Huovilainen and Välimäki, 2005], addi-
tive synthesis [Serra and Smith, 1990], frequency modulation
(FM) [Chowning, 1973] and wavetable synthesis [Bristow-
Johnson, 1996], among which FM-based methods are widely
used in sound synthesis due to their flexibility in tuning tim-
bre with only a few parameters.

While satisfying sounds can be produced, designing the
parametric structure of the synthesizer as well as parame-
ter values requires considerable expertise. This is due to
the non-linear interactions between synthesizer parameters,
as well as the wide range of possible values for each pa-
rameter. Achieving a desired sound often involves a pro-
cess of iterative adjustments and fine-tuning, which can be
time-consuming and require a deep understanding of digital
signal processing techniques. Although some efforts have
been made to determine the parameters of FM synthesizer
based on estimation theory [Justice, 1979], genetic algorithm
[Horner, 1998], LSTM-based [Yee-King et al., 2018], VAE-
based [Le Vaillant et al., 2021] and dilated CNN based [Chen
et al., 2022] methods, these methods are limited by static
spectra or an audio clip conditioned on an entire ADSR enve-
lope under a specific pitch value and a fixed duration length.
Thus, these methods cannot be applied to the audio with con-
tinuously varying pitch and loudness on dynamic spectra.

Neural synthesis methods have been developed recently to
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learn a deep neural network to produce audio in the data-
driven scheme and achieved impressive results in terms of
audio fidelity. However, for fully-neural generative models
such as WaveGlow [Prenger et al., 2019], and HiFi-GAN
[Kong et al., 2020a], sufficient data is usually required to train
a complex model with non-interpretable parameters, which
greatly limits the controllability of the synthesizer as required
by the music industry, specifically when the generated non-
perfect sound needs tuning. Although the harmonic-plus-
noise model-based differential DSP (DDSP) is integrated into
the network to improve controllability [Engel et al., 2020], it
only allows the transfer of timbres between different instru-
ments rather than explicit adjustment. FM-based neural syn-
thesizer DDX7 [Caspe et al., 2022] is then developed. How-
ever, this method can only learn the time-varying parameters
of the submodules under the assumption that the overall struc-
ture has been manually defined.

The large reliance on expert knowledge and extensive time
cost greatly limit the feasibility of building digital synthesiz-
ers for general instruments. Moreover, the handcrafted frame-
work may make the resulting synthesizer suboptimal in mod-
elling the real instrument. In this paper, we propose NAS-FM,
a neural architecture search (NAS) based FM synthesizer. It
can be seen as an effort to build interpretable neural genera-
tive models. A key of the proposed method is NAS. With a
carefully designed search procedure, different structures and
oscillator sizes are included in a universal search space of the
supernet, and an evolutionary search algorithm is developed
to find the optimal structure between oscillators and the fre-
quency ratio of FM. The advantages of the proposed NAS-FM
are described below:

• The audio synthesizer can be built based on recordings
without any expert knowledge, largely simplifying the
pipeline and reducing the cost of audio synthesizer con-
struction. It is also possible to quickly build new variants
of the target sound with flexible adjustments;

• It returns a tunable and interpretable conventional FM-
based interface with a few parameters, making it easily
embedded into existing audio workstations;

• Extensive experiments on recordings of different instru-
ments demonstrate that synthesizers fully automatically
built by the proposed NAS-FM can achieve better results
to carefully handcrafted synthesizers.

2 Related Work
2.1 Sound Synthesis
Sound synthesis contains digital signal processing (DSP)
methods and neural network methods. DSP methods have
been integrated into the digital audio workstation used by
musicians. More specifically, DSP methods start from sev-
eral simple waves such as sine, sawtooth, square and triangle
generated by an oscillator. The additive synthesizer [Serra
and Smith, 1990] generates new sounds by adding various
simple waves. The Subtractive synthesizer [Huovilainen and
Välimäki, 2005] filters a simple wave from white noises. FM
synthesizers [Chowning, 1973] rely on simple waves to mod-
ulate frequency to create complex timbre. Wavetable synthe-

sis manipulate a collection of short samples to design new
sounds. These traditional methods need users to determine
the configuration manually for a given sound.

Neural network synthesis models adopt the deep neural
network to learn the mapping function between audio and
given input, for instance, pitch and loudness. The early explo-
ration begins with auto-regressive models such as WaveRNN
[Kalchbrenner et al., 2018] and SampleRNN [Mehri et al.,
2016]. The following works [Engel et al., 2019] [Kong et
al., 2020b] are based on various generative models to further
improve the quality of synthesis sound. However, the above
methods may lead to glitch problems because of the lack of
phase continuity. Therefore, DDSP [Engel et al., 2020] rely
on the harmonic-plus-noise model to keep the phase contin-
uous and also make the sound can be directly controlled by
pitch and loudness. While these methods can be optimized
automatically with the help of gradient descent to obtain the
model, there are few control factors to help users manipulate
the synthesized result directly. Therefore, our approach aims
to introduce the FM synthesizer with controllable factors to
help the user interact with the synthesized audio.

2.2 FM Parameter Estimation
FM parameter estimation also called FM matching is adopted
to determine the configuration of an FM synthesizer. The
early approach considers this problem as a searching problem
that uses the genetic algorithm(GA) [Jh, 1975] or its variants
to find a best-fit configuration in a specific searching space.
Horner employs GA solving a sound matching problem for
different FM algorithms such as Formant FM [Horner et al.,
1993], Double FM [Horner, 1996], Nested FM and Feedback
FM [Horner, 1998]. These methods can achieve very close
re-synthesizing results with a static target spectrum when se-
lecting an appropriate FM algorithm as prior. The follow-
ing methods leverage an open-source FM synthesizer Dexed
synthesizer [Gauthier, 2013] to construct a large number of
pair data between presets1collected on the Internet and syn-
thesized audio clip generated by Dexed. By reversing this
process, these works employ LSTM [Yee-King et al., 2018],
VAE [Le Vaillant et al., 2021] and dilated CNN [Chen et al.,
2022] to estimate the preset. Since the synthesized sound is
generated by pressing a note with specific velocity, duration
and pitch using Dexed synthesizer, the result of the model for
a realistic sound audio clip without any prior is unpredictable.
DDX7 [Caspe et al., 2022] predict the envelopes of oscilla-
tors using the widely-used TCN [Oord et al., 2016] decoder
with algorithm and frequency ratios as prior. Therefore, our
method is designed to construct an FM synthesizer without
prior knowledge.

2.3 Neural Architecture Search
Neural Architecture Search (NAS) can automatically find the
best neural architecture for a specific task. Many works focus
on computer vision [Liu et al., 2018]or natural language pro-
cessing [Xu et al., 2021] tasks. More recently, one-shot NAS

1Preset means a full FM configuration for specific sound de-
signed by users
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(a) (b) (c) (d)
Figure 1: Different FM algorithms: (a) Single FM; (b) Nested FM;
(c) Formant FM; (d) Double FM. The green box refers to the carrier
and the blue box refers to the modulator

[Guo et al., 2020] [Bender et al., 2018] train a shared super-
net once which includes all candidate architectures. Then, the
supernet is used as an estimator to evaluate every possible ar-
chitecture in the search space. This method has been widely
used on various applications to determine a good structure,
for example, image classification [Guo et al., 2020], object
detection [Liang et al., 2021], 3d scene understanding [Tang
et al., 2020], BERT compression [Xu et al., 2022]. These
methods introduce neural architecture search to each specific
task which gets a better model architecture than manual de-
sign. Although NAS has been widely used in lots of areas,
the applications are mainly focused on neural networks. Ac-
tually, we are the first to bring NAS to build the sound syn-
thesizer.

3 Review of FM Synthesizer
3.1 Basics of FM
FM was originally proposed in [Chowning, 1973] for sound
synthesis and different timbres are produced by controlling
a set of parameters. With two sound sources, the modulator
oscillator sin(2πfmt) and the carrier oscillator sin(2πfct),
FM basically generates a time-domain signal y(t):

y(t) = a(t) sin(2πfct+ I sin(2πfmt)), (1)

where fc and fm are the carrier frequency and modulation
frequency respectively, I is the modulation index, and a(t)
is the amplitude envelope of the carrier. y(t) can be further
decomposed by using Bessel functions of the first kind as

y(t) = a(t)
n=+∞∑
n=−∞

Jn(I) sin(2π(fc + nfm) · t) (2)

which shows that the sidebands of y(t) distribute evenly
around fc with spacing as fm, and the spectra is harmonic
when the frequency ratio r ∈ Q where r = fc/fm. Jn(I)
is a Bessel function of the modulation index I , and dynamic
spectra can be generated if the I becomes a time-variant func-
tion I(t).

3.2 FM Algorithms
The (1) explains the basic module of the FM synthesizer to
generate sounds. More diversified and expressive FM syn-
thesizers can be further developed by designing complicated

Figure 2: Digital synthesizers in the commercial product YAMAHA
DX7. The lower part is the user interface of a synthesizer. The
upper part shows the FM algorithms for audio synthesis, with green
and blue boxes denoting carriers and modulators, respectively.

topologies, which are called “FM algorithms”, on connecting
the carrier and modulator oscillators.

Typical FM algorithms are shown in Fig. 1. Fig. 1(a) de-
notes the single FM expressed by (1). The Nested FM [Jus-
tice, 1979], formant FM [Horner et al., 1993], and double
FM [Schottstaedt, 1977] are illustrated in Fig. 1(b)-(d), whose
outputs are calculated by

y(t) =a(t) sin(2πfct+ Im1(t) sin[2πfm1t

+ Im2(t) sin(2πfm2t)]), (3)
y(t) =a1(t) sin[2πfc1t+ Im(t) sin(2πfmt)]

+ a2(t) sin[2πfc2t+ Im(t) sin(2πfmt)], (4)

and

y(t) =a(t) sin[2πfct+ Im1(t) sin(2πfm1t)

+ Im2(t) sin(2πfm2t)], (5)

respectively. These FM algorithms produce different timbres,
and as shown in Fig. 22, by selecting different FM algorithms.

To briefly summarize, a set of parameters controls the FM
output, which can be time-variant or fixed. In our work,
time-variant parameters include the oscillators’ envelopes,
i.e., a(t) and I(t), which are determined by the time-variant
input, such as f0 and loudness. Fixed parameters are the cho-
sen FM algorithm and the frequency ratio of each oscillator,
which need to be determined by the expected timbre.

4 Proposed NAS-FM Synthesizer
In this section, we aim to fully automatize the designing of an
FM synthesizer in a data-driven manner, thus eliminating the
reliance on expertise and labour to tune the timbres.

A NAS-FM synthesizer is proposed, with an overall frame-
work shown in Fig. 3 on the next page. For input audio,
the pitch and loudness are extracted, and these two features

2We do not consider the feedback FM in our work as the same
reason in [Caspe et al., 2022]
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Figure 3: The overall architecture of NAS-FM. The learnable Re-
verb module is optional depending on whether the real room effect
should be simulated for real-world audios.

are fed into an oscillator envelope prediction network to esti-
mate the envelopes of the oscillators. We develop architecture
search methods to determine the optimal FM algorithm, and
given the FM algorithm and oscillator envelopes, sounds with
a specific timbre can be produced. Depending on whether the
sound is from the real environment, a learnable reverb mod-
ule [Engel et al., 2020] can be optionally used to simulate the
room effects. The framework is optimized in an auto-encoder
setting, i.e., seeking to recover the original signal in the final
output.

Besides the FM algorithm search, the framework is similar
to the framework in DDX7 [Caspe et al., 2022], which esti-
mates pitch and loudness by CREPE [Kim et al., 2018] and
A-weighting loudness [Moore et al., 1997], designs the oscil-
lator envelope prediction network as a temporal convolutional
network (TCN) [Bai et al., 2018]. However, DDX7 requires
a prior FM configuration designed by experts. By adopting
NAS, the proposed framework designs the FM synthesizer
in the fully-automated data-driven pipeline and also returns
a tunable and interpretable interface used by musicians. In
the following, details of the proposed NAS-FM will be in-
troduced, which include a) converting the FM algorithm to a
graph, b) designing the search space, c) training the supernet,
and d) selecting the FM algorithm.

4.1 Directed Acyclic Graph of FM Algorithm
To facilitate discussion in this section, we convert an FM syn-
thesizer, with examples shown in Fig. 1, to a directed acyclic
graph (DAG) [Pham et al., 2018] with an ordered sequence of
N nodes, where N represents the number of oscillators. Each
node x(i) refers to the oscillator’s output. Each directed edge
(i, j) indicates whether node x(j) is the modulating node of

x(i). The topology of the graph is associated with the FM al-
gorithm. Thus, an intermediate node x(i) can be expressed as

x(i)(t) = ai(t) sin(2πfit+
∑
j∈M

x(j)(t)), (6)

where M is a set of oscillators modulating node x(i). When
M is empty, x(i) outputs standard sine wave. The output of
FM is calculated through the sum of carrier nodes

y(t) =
∑
i∈C

x(i)(t), (7)

where C is the set of carriers.

4.2 Search Space Design
There are a huge number of possible configurations for the
FM synthesizer. By converting the FM algorithm to the DAG,
the principles of NAS can be applied to design the FM algo-
rithm. In NAS for neural networks, all possible architectures
of the network, which span the “search space”, can be rep-
resented by a general DAG, with each candidate architecture
as a sub-graph. Similarly, we design the search space for FM
algorithm here.

We visualize the operation in (6) in Fig. 4, where two is-
sues should be solved to define an oscillator: a) what is the
frequency ratio? The frequency ratio is defined originally in
(2), and is the ratio between fi in (6) and fundamental fre-
quency F0 here; b) which modulators will be connected to
the current oscillator? As depicted in Fig. 4, we define the
frequency ratio set FR = {1, 2, 3, ..,K} which consists of K
integers, and assumes that there are N candidates in the mod-
ulator set M. Actually, the interval in the frequency ratio set
can be reduced to 0.1 or even smaller, to 0.01 instead of 1, for
a more refined exploration.

Now let us analyze the design of the search space. Previous
works adopted evolutionary search on frequency ratio set un-
der a fixed FM algorithm such as double FM [Horner, 1996]
and nested FM [Horner, 1998]. Therefore, the challenge is
how to design an appropriate space including various FM al-
gorithms, instead of enumerating all possible FM algorithms.
In [Guo et al., 2020] and [Xu et al., 2022], the weight shar-
ing is proposed to reduce the search space, which forces sub-
graph candidates to have the same weights in the graph nodes
commonly shared by different candidates. This also makes it
possible to directly train a supernet including all possible can-
didates. Here we propose a novel envelope-sharing strategy
for FM synthesizers to make all FM configuration candidates
trained in the supernet.

Specifically, we construct a search space as shown in
Fig. 3. The search space can be divided into a carrier layer
and several modulator layers. We set the oscillator at the
same layer with the same frequency ratios sharing the same
envelope. Due to the envelope-sharing strategy, There are fol-
lowing rules in our search space. (1) A oscillator in a certain
layer can only be modulated by the upper layer; (2) The sum
of the output of selected oscillators at the carrier layer forms
the final signal;(3) A oscillator is discarded when there is no
connection with other oscillators or final output. In addition,
according to our experience, we find two modulator layers
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Figure 4: The oscillator in NAS-FM. The output of an oscillator con-
ditioning on F0 depends on the choice of frequency ratio, envelope
and modulator. The choices are determined by NAS.

are enough. The number of candidate oscillators in a layer
depends on the oscillator number in the expected FM synthe-
sizer.

4.3 Supernet Training with Proxy Oscillator
Although the proposed envelope-sharing strategy makes all
possible FM configurations can be trained using a supernet
that includes all candidates, we still encounter the challenge
of a large search space. The huge search space makes it
hard to evaluate each FM configuration in the supernet dur-
ing training. To further improve the training efficiency, we
propose to use the “proxy oscillator” as the proxy for all os-
cillators in each layer to determine the envelopes of the oscil-
lators.

Specifically, during supernet training, a fixed Nested FM in
(3) with a carrier and two modulators are chosen, which has
three layers in accordance with the settings in the Sec. 4.2.
For each oscillator, uniform sampling [Guo et al., 2020] is
adopted to determine the frequency ratio. With these two con-
figurations fixed, the envelopes of the oscillators are learned,
and after training, the learned envelopes are shared within the
same layer for a complicated search space. Utilizing the tech-
nique, we can expand the width of the search space flexibly.

4.4 FM Configuration Selection
After the supernet training and search space design, we use
the evolutionary algorithm to conduct FM algorithm selec-
tion. Specifically, we put all N candidate oscillators ol in
order. a certain FM configuration is encoded as an individual
can be formulated as

{fol1 , fol2 , ..., folN , lol1 lol2 , ..., lolN } (8)

where oli is the ith oscillator, corresponding foli and loli in-
dicate the selected frequency ratio and connection relation-
ship. The connection relationship is the relation between the

lower layer. If the oscillator belongs to the carrier, the lower
layer is the output signal. If the connection relationship of
this oscillator is none means it is discarded. Firstly, a random
population is initialized within the initial space. Secondly,
we evaluate the fitness score of the generated individuals and
select the top individuals. The fitness function will be in-
troduced in the experiment section. Thirdly, crossover and
mutation are used to generate new individuals to update the
population, until meeting the stopping criterion.

5 Experiments
To evaluate the proposed NAS-FM approach which aims to
automatically learn the FM synthesizer that is applicable to
the music industry, we aim to answer the following ques-
tions: a) Given sound recordings, can the FM synthesizers
learned by the proposed method be comparable to the man-
ually designed synthesizers? b) We fuse different FM algo-
rithms into one universal search space, is this strategy better
than separately searching the best configuration for each FM
algorithm? c) Can we controllably tune the timbre of the pro-
duced sounds or create new instrument timbres by modifying
the parameters of the learned FM synthesizer?

5.1 Dataset
We conduct experiments on the benchmark URMP dataset
[Li et al., 2018]. Sound recordings of three real instruments,
which are violin, flute, and trumpet, are chosen and the “opti-
mal” manually designed FM algorithms of these instruments
are given as in [Caspe et al., 2022]. The three instruments are
also the most typical instrument of the strings, woodwinds,
and brass. Each instrument recording is divided into 4-second
segments, and silent segments are discarded. The loudness
and pitch are estimated by the A-weighting loudness [Moore
et al., 1997] and CREPE [Kim et al., 2018] methods. Each
audio clip is resampled to the 16kHz sampling rate and ana-
lyzed with a frame size of 2048 and a hop size of 64, yielding
1000 frames. We split the dataset into train, validation, and
test sets with proportions of 0.75, 0.125, and 0.125, respec-
tively.

5.2 Experimental Setup
For training, a supernet contains c ∗ m ∗ m paths where c is
the number of frequency ratios of the carrier, and m is the
number of frequency ratios in modulators. We set c as 15
and m as 5. The model adopts the stack TCN architecture
[Bai et al., 2018] as a sequence-to-sequence model to pre-
dict oscillator envelope through pitch and loudness. We first
stack 4 TCN architecture to extract a hidden temporal feature.
Then, we construct (c+m+m) TCN architectures with dif-
ferent weights to predict the envelope of the corresponding
oscillator from the hidden feature. In fact, other sequence-to-
sequence models can also be employed to model the temporal
relationship in our pipeline. In addition, uniform sampling of
oscillators on each layer with different ratios is adopted. We
use Adam optimizer with an initial learning rate of 3e-4. For
regularize, we set the maximum value of the oscillator for the
carrier and modulator as 1 and 2, respectively. The exponen-
tial decay strategy with a decreasing factor of 0.98 every 10k
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Fréchet Audio Distance (↓)

Model Flute Violin Trumpet

Test Data 1.180 0.308 0.554
DDX7 7.841 3.497 4.442
NAS-FM 7.077 3.255 3.384

Table 2: FAD of resynthesis results using 6 oscillators

steps is adopted for the learning rate .The whole training steps
are 500k, and the batch size is 16.

For searching, we use the evolutionary algorithm with a
population size of P , crossover size of P/2, and mutation
size of P/2 with mutation probability and max iterations of
T depending on the search space size. In addition, since we
use the fixed number of the candidate oscillator, the discarded
candidate oscillator with different frequency ratios will cause
the same fitness score. Therefore, we force the generated can-
didates with a unique fitness score to be legal.

After searching, we directly extract the weight of the sub-
model with the best fitness score from the supernet as our
final model. Actually, fine-tuning the model or training from
scratch with the searched FM configuration may further im-
prove the performance. However, our aim is not to focus
on the resynthesis performance but to get a controllable syn-
thesizer close to the target sound so that musicians can fur-
ther utilize it to tweak the sound or do other more interesting
things such as sound morphing and sound interpolation.

5.3 Evaluation Metric
We use Fréchet Audio Distance (FAD) [Kilgour et al., 2018]
as the evaluation metric to measure the distance between real
and generated sound. This method extracts the embedding of
the audio using a pre-trained VGG-like model. The distance
is calculated as follows:

FAD = ∥µr − µg∥2 + tr(Σr +Σg − 2
√

ΣrΣg) (9)

where r and g are the real audio and generated audio respec-
tively, µr and µg are the mean vector of embedding and Σr

and Σg are the covariances of embedding. A smaller Fréchet
Audio Distance indicates a higher level of similarity between
the distributions of real and generated data. In our experi-
ment, we calculate the Fréchet Audio Distance between the
real data and synthesize validation data as the fitness score
during searching. And calculating the FAD between the syn-
thesized test data as the final evaluation result.

5.4 Comparison with Manually-Designed FM
Synthesizers

In this part, we are interested to know if our method could
achieve comparable results to manually designed FM synthe-
sizers. The baseline is DDX7 [Caspe et al., 2022] which the
author retrieves on the web manually to find the patch with the
most similar sound to the target sound. The patches they find
have six oscillators, and we adopt the same oscillator num-
ber with them. Since the authors did not open source their
evaluation code, we train the model following their method

Fréchet Audio Distance (↓)

Model Flute Violin Trumpet

Nested FM 12.75 6.02 8.24
Formant FM 14.48 7.56 8.68
Double FM 11.16 7.27 9.91
Single+ FM 11.20 12.07 9.28
NAS-FM 11.16 6.02 8.24

Table 3: Ablated of search space using 3 oscillators

ten times with a random seed and took the best one as their
result.

In our method, we use a 3 ∗ 3 candidate oscillator search
space forcing three oscillators discarded to ensure six oscilla-
tors. During the search, we follow the above procedure and
set the population size as 1000 and max iterations as 50. Re-
sults are shown in Table 2. The Test Data line means the
Fréchet Audio Distance between the entire real data from the
real test data. We can see that our NAS-FM outperforms the
hand-designed DDX7 baseline across all musical instrument
recordings. The results show that our NAS-FM can search for
more comparative FM configurations than manually designed
FM synthesizers.

5.5 Ablation Study of Search Space
The previous methods of FM parameter estimation [Chen et
al., 2022] [Mitchell and Sullivan, 2005] [Horner et al., 1993]
were usually constrained to a specific FM algorithm. How-
ever, our approach puts the different FM algorithms in one
search space. To demonstrate the significance of the method,
we first want to answer whether different timbres have their
own FM algorithms that are more suitable for them when op-
erator size is fixed. If the answer is yes, can our method find
the algorithm that best fits this timbre? We conduct our ex-
periments conditioned on three oscillators and enumerate all
possible FM algorithms:

• Nested FM: a carrier with two nested modulators as
shown in Fig. 1(b);

• Formant FM: two carriers sharing a modulator as shown
in Fig. 1(c);

• Double FM: a carrier with two modulators in the same
row as shown in Fig. 1(d);

• Single FM+: a single oscillator adds a single FM. Single
FM is shown in Fig. 1(a);

• NAS-FM (Ours): Constructing a 3 ∗ 2 candidate oscil-
lator search space forcing three oscillators discarded to
search both FM algorithms and frequency ratios.

During the search process, the search space of a fixed FM
algorithm equals only contains the frequency ratios of each
oscillator. In addition, we set the population size as 30 and
max iterations as 20 for each method for a fair comparison.
The results are shown in Table 3.

To answer the first question, we compare the result across
all FM algorithms. The Nested FM achieves the best per-
formance on violin and trumpet. However, this algorithm
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Figure 5: Examples of sound morphing. The top figure is the syn-
thesized sound of the trumpet. In the middle and bottom figures, we
morph the sound by tuning a certain parameter in our NAS-FM.

yields the second-worst performance on the Flute. The dou-
ble FM performs the best on the Flute but worst on the trum-
pet. Therefore, we find that no fixed FM algorithm achieves
the best results for every musical instrument recording. How-
ever, our method can always find the best FM configuration
for different instruments under the same searching setting.
This proves the merit of our well-designed search space.

5.6 Tuning of Learned FM Synthesizers
In this section, we check the tuning ability of NAS-FM. Two
important tasks in sound synthesis are considered: sound
morphing and timbre interpolation.

Sound Morphing
Due to the timbre of an instrument being controlled by a set of
frequency ratio parameters, we want to show the ability of our
NAS-FM tweaks the timbre from a trained synthesizer by ad-
justing a few parameters. Begin with a synthesizer designed
for the trumpet, Fig. 5 (a) is the synthesized recording of the
trumpet using our NAS-FM. More specifically, the searched
FM algorithm is the same as the 7-th algorithm shown in
Fig. 2 without the feedback module. It consists of two parts.
The left part is a single FM in which the carrier frequency
ratio is three and the modulator is one. The right part in-
cludes four oscillators which consist of a double FM with
one more nested modulator. The frequency ratios among a
carrier, double modulators and a nested modulator are 7,1,2
and 1, respectively. In Fig. 5(b), we modify the second for-
mant position from the 7th harmonic to the 10th harmonic by
modifying the frequency ratio of the carrier in the right part
from seven to ten. In addition, we decrease the second and
fourth harmonic by tuning the frequency ratio of the modu-

(a) Trumpet

(b) Intermediate sound between violin and trumpet

(c)  Violin

Figure 6: An example of timbre interpolation. The top and bottom
figures show the linear spectrogram of the synthesized sound of the
trumpet and violin, respectively. The middle figure shows the inter-
polation result between the violin and the trumpet.

lator in the left part from one to two, as shown in Fig. 5(c).
We can find that due to the adjustment of one parameter in
NAS-FM, the entire distribution and details of frequency can
be easily changed.

Timbre Interpolation
Another meaningful application is timbre interpolation. Since
our approach determines the FM configuration by search-
ing for the Fréchet Audio Distance to the target audio clip.
We find that the target audio clips can produce new tim-
bre. Therefore, we can change our fitness score to a variant
form. For instance, we set the FAD from synthesized au-
dio to violin as dv and the FAD from synthesized audio to
trumpet as dt. Next, we define the novel fitness function as
dv + da + |dv − da| aiming to find a synthesizer to gener-
ate sound regarded as an intermediate timbre between violin
and trumpet. Surprisingly, we use the supernet trained from
violin recordings to conduct the evolutionary algorithm and
get an interesting result. As shown in Fig 6, we obtain a new
instrument recording similar to both violin and trumpet.

6 Conclusion
We present NAS-FM, a tunable and interpretable sound syn-
thesizer based on frequency modulation. Given a target
sound, we prove that our method can automatically design
an FM synthesizer instead of spending a huge time designing
it manually. Meanwhile, our auto-designed synthesizer can
achieve comparable results to the handcrafted one. Further-
more, Our NAS-FM leverages the widely-used FM synthe-
sizer as the main component in our framework. This makes
our method can be directly understood by musicians that can
be used to create new sounds without extra knowledge of the
neural networks.
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