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Abstract
Agriculture faces unprecedented challenges due
to climate change, population growth, and water
scarcity. These challenges highlight the need for ef-
ficient resource usage to optimize crop production.
Conventional techniques for forecasting hydrolog-
ical response features, such as soil moisture, rely
on physics-based and empirical hydrological mod-
els, which necessitate significant time and domain
expertise. Drawing inspiration from traditional hy-
drological modeling, a novel temporal graph con-
volution neural network has been constructed. This
involves grouping units based on their time-varying
hydrological properties, constructing graph topolo-
gies for each cluster based on similarity using dy-
namic time warping, and utilizing graph convolu-
tions and a gated recurrent neural network to fore-
cast soil moisture. The method has been trained,
validated, and tested on field-scale time series data
spanning 40 years in northeastern United States.
Results show that using domain-inspired cluster-
ing with time series graph neural networks is more
effective in forecasting soil moisture than existing
models. This framework is being deployed as part
of a pro bono social impact program that lever-
ages hybrid cloud and AI technologies to enhance
and scale non-profit and government organizations.
The trained models are currently being deployed on
a series of small-holding farms in central Texas.

1 Introduction
Over the past decade, machine learning (ML) has transformed
various domains, but it has had little impact on crucial ar-
eas such as quantifying and predicting water availability for
agricultural purposes. Ground- and surface-water availability
depends on various temporal and spatial factors such as pre-
cipitation volumes, heterogeneous sources of runoff, evapo-
transpiration, and water losses. Due to the large geographi-
cal extents and high variability, collecting enough observation
data for implementing IoT-based decision support systems is
infeasible.

Traditionally, engineers have relied on physics-based mod-
els that represent hydrological processes as a set of partial
differential equations constrained by heuristics, empirical re-
lationships, and expert intuition. While these allow greater
insight into spatial and temporal evolution of water over land,
the associated complexity and uncertainty places a heavy bur-
den on the expert user. Further, these models can not readily
be deployed across different locations without a cumbersome
calibration and validation effort. A prominent example in this
regard is the Soil & Water Assessment Tool [Gassman et al.,
2007] that has been widely-used to simulate the quality and
quantity of both surface and ground water processes, and in-
form agriculture, land use, and land management practices.
A corresponding body of research has developed around pa-
rameterizing and evaluating these models with prominent ex-
amples being the parameter estimation toolbox (PEST) and
SWAT Calibration and Uncertainty Program [Doherty, 2003;
Abbaspour, 2013].

Precision agriculture approaches [Zhang et al., 2002] have
developed over the past four decades by combining simu-
lation, satellite, and sensor data to improve decision mak-
ing. Precision agriculture accomplishments are related to
how well they can be applied to assess, manage, and evaluate
crop production [Pierce and Nowak, 1999]. Climate change
introduces a completely different set of challenges that re-
quire more granular data, and a holistic decision making ap-
proach to enable an environmentally and economically sus-
tainable response. The negative impacts of climate change
are already being felt in the form of increasing temperatures,
weather variability, shifting agroecosystem boundaries, in-
vasive crops and pests, and more frequent extreme weather
events [Calzadilla et al., 2013]. On farms, climate change
is reducing crop yields, the nutritional quality of major cere-
als, and lowering livestock productivity [Bank, 2016]. These
stressors particularly impact water constrained regions, re-
sulting in groundwater depletion, soil erosion, and crop fail-
ures.

Adapting to these challenges requires the adoption of
climate-smart agriculture practices that minimize resource
consumption and environmental impacts, while simultane-
ously ensuring food security for growing populations. Glob-
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ally, while large farms increasingly digitize operations to en-
hance sustainability, small-holding farmers lack the skills and
resources to leverage AI and IoT-backed decision making.
This led the World Economic Forum to posit that “agriculture
and farming will be redefined within a decade with the adop-
tion of AI-driven autonomous tools” [Forum, 2021]. How-
ever democratization of these solutions to small-holding and
disadvantaged farmers requires scalable machine learning
models that can be informed by publicly-available datasets
and sparse low-cost sensor data.

This paper describes a novel domain-inspired framework
to forecast soil moisture. The proposed framework uses tem-
poral graph convolutional neural networks (TGCN) to re-
solve complex hydrological response in a domain consisting
of 3000 watersheds. While previous research has explored
a GNN approach to represent spatial patterns by superim-
posing a graph topology over the physical streamflow net-
work, our approach instead generates the topology based on
the degree of physical and hydrological similarity between
individual watersheds. This provides a more physically rep-
resentative framework that is informed by the concept of
group response units, a well-established hydrological mod-
eling technique, introduced by [Kouwen et al., 1993]. A
Group response unit is composed of groups of hydrological
response units (HRUs) that have similar hydrological charac-
teristics and consequently have more comparable hydrologi-
cal response than neighboring HRUs which might have differ-
ent characteristics (e.g. crop versus livestock farming). The
proposed framework is applied to predict soil moisture for a
case study application in Northeastern United States.

The contributions of this paper are as follows:

• We describe a novel domain-inspired temporal graph
convolution neural network. Analogous to group re-
sponse units, a clustering algorithm based on dynamic
time warping (DTW) clusters together HRUs with sim-
ilar features regardless of their spatial proximity. For
each cluster, the graph topology is extracted from a set
of similarity metrics that encompass static and dynamic
hydrological catchment attributes.

• We present experimental results that compare models
using our novel GNN framework against state of the art
for time series forecasting, an LSTM model. These ex-
periments demonstrate the increased gain from using hy-
drological feature information to inform prediction.

• Finally, we discuss further research opportunities to ap-
ply machine learning to improve agriculture manage-
ment and environmental sustainability. In particular,
the potential to use the approach to inform regions with
sparse sets of monitoring datasets.

2 Related Work
Recent advancements in machine learning have led to
widespread interest amongst hydrologists and environmen-
tal scientists as a solution to address the challenges that per-
sist with streamflow and run-off forecasting. While previous
works have approached performance levels of state-of-the-
art physics-based methods [Hsu et al., 1995; Kratzert et al.,

2019; Nearing et al., 2020], the challenge remains whether it
can generalize to finer scales and if it can perform in regions
with limited training data.

Physics- or empirical-based hydrological models are well
established in the literature, with research in the space receiv-
ing significant impetus with the US Clean Water Act of 1977.
Data inputs to resolve streamflow processes include meteoro-
logical forcing and a large number of parameters describing
the physical characteristics of the catchment (soil properties,
initial water depth, topography, topology, runoff curve num-
ber, etc.) [Devia et al., 2015]. Popular modelling systems
include SWAT [Arnold et al., 2012], MIKE SHE [Graham
and Butts, 2005], WRF-Hydro [Lin et al., 2018] and the VIC
framework [Gao et al., 2009]. On the SWAT model alone,
there are over 4,500 peer-reviewed journal articles describing
its application to different hydrology studies [Srinivasan and
Balmer, 2021].

More recently, extensive research efforts have focused on
the potential of deep learning (DL) for hydrology studies
[Shen, 2018; Shamshirband et al., 2020]. In particular, re-
search has focused on the potential of recurrent networks and
LSTMs to resolve the complex, nonlinear, spatiotemporal re-
lationship between meteorological forcing, soil moisture and
streamflow [Kratzert et al., 2019]. In a provocative recent pa-
per, [Nearing et al., 2021] argued that there is significantly
more information in large-scale hydrological data sets than
hydrologists have been able to translate into theory or mod-
els. This argument for increased scientific insight and per-
formance from machine learning rests on the assumption that
large-scale data sets are available globally (over sufficient his-
torical periods) to condition and inform on hydrological re-
sponse. While significant progress on coarse-scale hydrology
dataset curation has been achieved in the US [Newman et al.,
2015], and Europe [Klingler et al., 2021] other regions are
still constrained by data limitations.

Many studies have proposed ML methods to represent the
spatiotemporal properties of geophsysical systems. The most
widely used frameworks combine convolutional neural net-
works (CNN) with LSTM to represent both the spatial (CNN)
and temporal (LSTM) dependencies within the data. This ap-
proach has been applied to a variety of geoscientific tasks
such as precipitation nowcasting from rainfall radar maps
[Xingjian et al., 2015], and forecasting sea surface temper-
ature from satellite-derived observations [Yang et al., 2017].
[ElSaadani et al., 2021] use this CNN + LSTM approach to
estimate soil moisture. However, this approach requires grid-
ded input data, and relies on spatial correlations. Our pro-
posed approach overcomes these limitations by using graphs
to handle unstructured data and by connecting nodes of the
graph based on hydrological similarity rather than spatial
proximity.

An alternative approach aims to embed information from
physics or heuristic knowledge within the network. Physics-
informed DL is a novel approach for resolving information
from physics. The philosophy behind it is to approximate
the quantity of interest (e.g., governing equation variables)
by a deep neural network (DNN) and embed physical laws to
regularize the network. To this end, training the network is
equivalent to minimization of a well-designed loss function
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that contains the PDE residuals and initial/boundary condi-
tions [Rao et al., 2020].

A further stream of related work has been started by [Chen
et al., 2018], who presented a novel approach to approximate
the discrete series of layers between the input and output state
by acting on the derivative of the hidden units. At each stage,
the output of the network is computed using a black-box dif-
ferential equation solver which evaluates the hidden unit dy-
namics to determine the solution with the desired accuracy. In
effect, the parameters of the hidden unit dynamics are defined
as a continuous function, which may provide greater memory
efficiency and balancing of model cost against problem com-
plexity. The approach aims to achieve comparable perfor-
mance to existing state-of-the-art with far fewer parameters,
and suggests potential advantages for time series modeling.

3 Methods
3.1 Data
[Leavesley et al., 1983] introduced the decomposition of wa-
tersheds into sub-areas that are assumed to share land-surface
characteristics, termed hydrologic response units (HRUs).
The HRUs are characterized using topographic variables,
such as elevation and slope, and geographic variables such
as soil type, vegetation type and precipitation distribution.
HRUs are generated by first decomposing a domain into a
set of watersheds which represents the land area in which any
precipitation eventually flows into the same outlet. Within
sub-basins, HRUs are further delineated into smaller poly-
gons, based on land use, soil attributes, and slope. For mod-
elling and analysis, polygons with homogeneous hydrologic
response are lumped together and resolved simultaneously.
The concept of HRUs enable modelers to more effectively
resolve complex issues regarding spatial variability to pro-
vide a more realistic representation of land surface processes
[Prasad, 2005].

We use data simulated by the Soil and Water Assessment
Tool (SWAT) [Gassman et al., 2007]. SWAT is a state-of-
the-art small watershed to river basin-scale model used to
simulate the quality and quantity of surface and ground wa-
ter and predict the environmental impact of land use, land
management practices, and climate change. SWAT is widely
used in developing agricultural management practices, as-
sessing soil erosion prevention and control, non-point source
pollution control and regional management in watersheds.
While publicly available soil moisture reanalysis are avail-
able from institutions such as ECMWF (ERA Land-5) and
NOAA (NLDAS), practical applications for agriculture man-
agement are constrained by the available resolution of 9 km
[Muñoz-Sabater et al., 2021] and 14 km [Xia et al., 2012],
respectively. Agriculture, on the other hand, requires predic-
tions that resolve field-scale (< 500m) processes.

The Hydrological and Water Quality System (HAWQS)
v2.0 [Chen et al., 2020b] (https://hawqs.tamu.edu/), a web-
based interface of the SWAT model, was used to develop
SWAT models for 3,037 watersheds at HUC12 (hydrologic
unit code) resolution within HUC2- region 02, Mid-Atlantic
region. The HAWQS provides a SWAT watershed model de-
velopment framework with pre-loaded input data and model-

Figure 1: Layout of the Mid-Atlantic basin along with its stream
network and HUC12 watersheds.

ing support capabilities for setting up models, running simu-
lations, and processing outputs. To further divide delineated
watersheds into HRUs, an area threshold of 0.5 km2 was ap-
plied i.e., HRUs having area less than threshold value were
not assigned a separate HRU-ID and merged with nearby
HRUs. Overall, our data set consists of 3,037 watersheds di-
vided into more than 99k HRUs. Detailed information about
the features associated with each HRU is included in the sup-
plementary materials. Monthly data is available for each fea-
ture spanning 34 years.

3.2 Problem Formulation
Given a feature matrix Xt ∈ Rn×d as a snapshot of d feature
values for n HRUs at time t, our goal is to forecast M soil
moisture values {Yt+i}Mi=0 in the future. For M = 1 it is
called single step forecasting, for M > 1 it is called a multi-
step forecasting. We start by solving the single step forecast-
ing problem and extend our method to multi-step forecasting.

Single Forecast
Given Xt we want to forecast the soil moisture Yt for the next
month.

Multi-step Forecast
Given Xt we want to forecast the soil moisture Yt, .., Yt+12

for the next 12 months.

3.3 Domain Inspired Clustering
Inspired by the concept of group response units, we build a
clustering module to group HRUs that have similar hydrolog-
ical characteristics. Traditionally, group response units are
constructed based on climate, land use, soil and pedotransfer
properties [Poblete et al., 2020]. The use of group response
units reduces the need for model calibration and allows for
the transfer of model parameters among HRUs in the same
group.

We propose a dynamic time warping based temporal clus-
tering technique, which leverages the seasonality of these
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Algorithm 1 Dynamic Time Warping Algorithm
Input: Discrete time series x, y ∈ R1×s

Output: Distance between x and y
1: initialize C = inf ∈ Rn×n

2: C0,0 = 0
3: for i : 0 → s do
4: for j : 0 → s do
5: dist = d(xi, yj)

2

6: Ci,j = dist+min(Ci−1,j , Ci,j−1, Ci−1,j−1)
7: end for
8: end for
9: DTW (x, y) =

√
Cs,s

10: return DTW (x, y)

hydrological features to inform clustering. First introduced
in [Sakoe and Chiba, 1978], dynamic time warping (DTW)
quantifies the similarity between two discrete temporal sig-
nals. For the data tensor X ∈ Rn×s×d containing n HRUs
, s timesteps, and d features xi,j := X i, :, j represents the
1D time series data for jth feature in ith HRU. The distance
matrix D ∈ Rn×n represents the pairwise DTW distance be-
tween all HRUs. The distance Dp,q between two HRUs p and
q is given by

Dp,q =
d∑

j=1

DTW (xp,j , xq,j) (1)

where DTW (., .) is calculated using Algorithm 1.

3.4 Temporal Graph Convolution Neural Network
(TGCN)

Graph convolution neural networks are an extension of con-
volution neural networks to unstructured graph data [Kipf and
Welling, 2016]. A graph G : (V, E) , has associated with it
a set of nodes V connected by a set of edges E . For our ap-
plication each HRU represents a graph node. The adjacency
matrix A is a matrix representation of the graph topology.

We use the temporal graph convolution neural network de-
tailed in [Zhao et al., 2020] for predicting soil moisture at
each node. At time t, the feature matrix Xt is updated using
the graph convolution defined in [Bruna et al., 2014]. The re-
sulting ’neighbor-aware’ feature matrix Zt is then passed on
to the gated recurrent unit (GRU).

Zt = Relu(AXtW0) (2)
ut = σ (Wu[Zt : ht−1] + bu) (3)
rt = σ (Wr[Zt : ht−1] + br) (4)
ct = tanh (Wc [Zt(r ⊙ ht−1)] + bc) (5)
ht = (ut ⊙ ht−1) + (1− ut)⊙ ct (6)

where ut represents update gate, rt represents reset gate, ct
represents cell state, ht represents hidden state, and Wi, bi are
learnable weights and baises. The prediction Ŷt is expressed
as a linear transform of ht. Figure 2 describes the information
flow of a single cell of the TGCN.

We minimize the mean squared error loss during training.

Lt =
1

n

n∑
i=1

(Yt,i − Ŷt,i)
2 (7)

Figure 2: Schematic of a single cell of TGCN, equations (2-6).

Figure 3 summarizes the model architecture that groups
similar HRUs and implements a TGCN prediction frame-
work.

4 Results
We train 10 TGCN models (one for each cluster) for both
the single forecast and multi-step forecasting. The number of
clusters was selected based on the proportion of variance ex-
plained as described in the supplementary material. Results
are benchmarked against an LSTM model and a distance-
based TGCN model that clusters solely based on a single
static measure of similarity (hydrological curve number).

4.1 Evaluation Metrics
We evaluate all models using mean squared error (MSE) and
Kling-Gupta Efficiency (KGE). We also calculate the rela-
tive percent decrease in MSE to compare model performance.
KGE is a traditional metric used in hydrology to evaluate
model performance and is expressed as:

KGE = 1−
√
(r − 1)2 + (β − 1)2 + (α− 1)2 (8)

where r is the Pearson product-moment correlation coeffi-
cient, α is the ratio between the standard deviation of the pre-
dicted values and the standard deviation of the true values,
and β is the ratio between the mean of the predicted values
and the mean of the true values. A value of KGE = −0.41
corresponds to using the mean value as a benchmark pre-
dictor, therefore KGE > −0.41 indicates that the model
improves upon the mean value benchmark [Knoben et al.,
2019]. As model becomes more accurate, KGE → 1 .

For model comparison, we perform a t-test to examine the
statistical significance of performance improvement. Since
we report test performance on independent clusters instead
of k-folds, we do not violate the independence of sample as-
sumption for the t-test. The null hypotheses H states that
TGCN MSE has identical average values as LSTM MSE. For
probability less than 0.05, we reject the null hypothesis.

4.2 Model Details
We use the first 27 years of data for training and validation
and keep data from the last 7 years for testing.

Before computing the DTW distance matrix (D), we nor-
malize the data using a custom min-max scaling. Instead of
independently scaling the time series data, we normalize the
time series for each feature by the minimum and maximum
feature values across time series across all HRUs. Using this
custom scaling we are able to preserve the relative trends in
features.
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Figure 3: Schematic of our Clustering and Temporal Graph Convolution Neural network (C+TGCN) approach for soil moisture forecast.

To estimate the number of clusters, we employ an elbow
test and only use training data to prevent data leakage. After
dividing the HRUs into clusters, we construct graph topol-
ogy by using the DTW distances of HRUs within each clus-
ter. The resulting static graphs represent disjoint subsets of
HRUs and are independently trained using TGCN with the
same model architecture. The model comprises a layer of
graph convolution followed by a linear transform. The out-
put from the linear layer is fed into the GRU, which produces
the forecast Yt. For the multi-step model, the GRU generates
a sequence of 12 predictions for each node. We trained all
TGCNs using the Adam optimizer [Kingma and Ba, 2015]
with a learning rate of 1e-2 for approximately 100 epochs
(until validation loss stopped decreasing). The eights were
initialized using He initialization [He et al., 2015]. Based
on the size of the graph the training took between 1.5 - 150
sec/epoch on 1 CPU core with 100G memory.

In order to establish the added benefit of graph topology
and DTW clustering we conduct a comparative evaluation of
our model’s performance against the following baseline mod-
els

LSTMN

The Long Short-Term Memory (LSTM) model is trained on
the entirety of the HRU data and is agnostic to any clus-
tering information. The subscript N represents the forecast
length. This constitutes the most elementary model, lacking
any graph topology or clustering information.

CDTW + LSTMN

This model entails separate training of LSTM models for each
cluster. As a result, despite the absence of explicit graph
topology, the model effectively capitalizes on the hydrolog-
ical attributes specific to each cluster.

CS + TGCNN

Similar to our proposed method, this model also uses TGCNs.
However, the distinction lies in the manner in which graph
topology is introduced. In this case, clustering is performed
based on a static future (average hydrological curve number),
effectively disregarding any seasonal trends.

Code for model setup, training and evaluation is available
at https://github.com/IBM/tgcn-soil-moisture.

4.3 Soil Moisture Forecast Results
Table 1 compares performance of our proposed algorithm
against the baseline methods. The test MSE is computed

for each cluster, and the mean and standard deviation values
across all clusters are reported. The addition of HRU connec-
tivity through graphs and seasonal information via DTW clus-
tering leads to an improvement in the performance of both
single-step and multi-step forecast models. This improve-
ment remains consistent across the models.

Table 2 shows the average mean squared error of predicted
soil moisture in each cluster. MSE reduces across all clus-
ters compared to the LSTM model. Figure 4 shows the mean
and standard deviation of KGE for all HRUs in each clus-
ter. KGE is between between 0.4–0.8, indicating an effective
model. All instances report values greater than −0.41 illus-
trating clear improvement upon a naive model.

Time trace plots of predicted and true values of soil mois-
ture on a sample HRU are displayed in Figures 5 – 8. One-
step ahead forecasts are presented in Figures 5 and 7 while
12-step ahead forecasts are presented in Figures 6 and 8.
These figures illustrate the rationale behind our approach,
in which TGCNs corresponding to each cluster are trained
to predict different soil moisture trends, similar to group re-
sponse units that share model parameters in conventional hy-
drological modeling.

Table 3 compares prediction error for multi-step forecast-
ing. Across all clusters, LSTM has an average MSE of 0.4584
with a standard deviation of 0.2179, while our method has an
average MSE of 0.0480 with a standard deviation of 0.0165.
The null-hypothesis H has a p value 6.5e-6, indicating that
the decrease in MSE of our model compared to LSTM is sta-
tistically significant. Figure 4 demonstrates that our method
outperforms a naı̈ve model.

Figure 4: The plot shows the mean and standard deviation of Kling-
Gupta Efficiency for each cluster for single and multistep forecast.
KGE > −0.41 shows that the CDTW + TGCN models improve
upon the mean benchmark.
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Clustering Graph
structure

Forecast
Length

Model
name

Mean
Test
MSE

Std
Test
MSE

Static DTW 1 mo 12 mo
✓ LSTM1 0.384 0.096

✓ ✓ CDTW + LSTM1 0.394 0.061
✓ ✓ ✓ CS + TGCN1 0.086 0.059

✓ ✓ ✓ CDTW + TGCN1 0.033 0.005
✓ LSTM12 0.372 0.419

✓ ✓ CDTW + LSTM12 0.458 0.218
✓ ✓ ✓ CS + TGCN12 0.079 0.040

✓ ✓ ✓ CDTW + TGCN12 0.048 0.016

Table 1: Performance evaluation of our proposed approach (CDTW + TGCN ) relative to various baseline methods. The assessed archi-
tectures incorporate a fusion of graph and clustering techniques to demonstrate the advantages of utilizing dynamic time warping clustering
and graph topology. The outcomes are computed by averaging the test performance for each cluster and reporting the mean and standard
deviation of the MSE.

Cluster
ID

CDTW+
LSTM1

MSE

CDTW + TGCN1

MSE

Relative
MSE

Reduction
1 0.3433 0.0332 90.34%
2 0.3815 0.0328 91.41%
3 0.3588 0.0283 92.12%
4 0.3057 0.0399 86.95%
5 0.3677 0.0307 91.64%
6 0.4087 0.0321 92.14%
7 0.7326 0.0389 94.69%
8 0.4010 0.0217 94.58%
9 0.4227 0.0383 90.93%
10 0.3847 0.0335 91.30%

Table 2: Mean Squared Error (MSE) for single soil moisture forecast
across DTW-clusters using TGCN, compared with LSTM model.

Cluster
ID

CDTW+
LSTM12

MSE

CDTW + TGCN12

MSE

Relative
MSE

Reduction
1 0.3433 0.0549 82.93%
2 0.3815 0.0573 84.93%
3 0.3588 0.0523 86.06%
4 0.3057 0.0610 79.60%
5 0.3677 0.0527 86.06%
6 0.4087 0.0543 86.19%
7 0.7326 0.0417 94.29%
8 0.4010 0.0393 91.10%
9 0.4227 0.0560 87.42%

10 0.3847 0.0591 83.43%

Table 3: Mean Squared Error (MSE) for multi-step soil moisture
forecast across clusters using DTW-Clustering and TGCN, com-
pared with the LSTM model.

5 Discussion
Accurate estimation and prediction of soil moisture are cru-
cial for climate-smart agriculture and necessitate a thorough
evaluation of diverse spatial and temporal features. Although
physics-based approaches are established, they have limita-
tions due to their significant user complexity and computa-
tional expense, making them unsuitable for widespread adop-
tion in commodity use cases. As a result, these approaches
are primarily employed by academic institutions and govern-
ment organizations.

This paper introduces a machine learning framework that
draws on hydrological modeling principles to enhance predic-
tive accuracy and interpretability. Several studies have exam-
ined the application of physics-based constraints to machine
learning, as previously discussed. These studies typically aim
to incorporate external data into the models through tech-
niques like modified loss functions [Daw et al., 2020], data
augmentation [James et al., 2018], or specifying consensus
filters to guide disparate models or data towards convergence
[Haehnel et al., 2020].

The proposed methodology offers a viable framework for
incorporating external information into time series signals,
with the potential to improve learning outcomes. The GNN
framework results in a significant improvement in predictive
accuracy. Conventional techniques, like LSTM, are widely
used for soil moisture prediction, [Li et al., 2022], but they
treat distinct locations as independent and do not leverage
spatial dependencies.

[Vyas and Bandyopadhyay, 2022] described a GNN ap-
proach to forecast soil moisture based on Dynamic Graph
Learning. At each timestep graph topology is updated based
on a smoothness regularizer that evaluated dissimilarity for
both node features and labels. Regularized dynamic graph
updating have demonstrated improved model prediction in
general cases [Chen et al., 2020a]. However, for soil mois-
ture prediction, graph connectivity can be more effectively
informed based on a systematic quantification of static and
dynamic catchment attributes. Due to the high spatial and
temporal hetereogeneity dynamic updating can lead to spu-
rious correlations based on synoptic similarity between fea-
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Figure 5: Predicted vs true soil moisture value for single forecast for
a sample HRU(id=10) in cluster 10 from test data set. Y represents
ground truth, Ŷ represents predicted soil moisture and blue boxes
represent randomly sampled time steps for which multi-step results
are plotted in Figure 6.

Figure 6: Predicted (Ŷ ) v.s. true (Y ) soil moisture for multi-step
forecast for a sample HRU(id=10) in cluster 10 from test data set.

Figure 7: Predicted vs true soil moisture value for single forecast for
a sample HRU(id=76) in cluster 7 from test data set. Y represents
ground truth, Ŷ represents predicted soil moisture and blue boxes
represent randomly sampled time steps for which multi-step results
are plotted in Figure 8.

Figure 8: Predicted (Ŷ ) v.s. true (Y ) soil moisture for multi-step
forecast for a sample HRU(id=76) in cluster 7 from test data set.

tures or labels. This is exacerbated by the long heterogeneous

memory of soil moisture concentration. For example, the soil
moisture at a point depends on weather processes together
with previous moisture values over a specific window. The
length of the historic window is highly dependent on local
factors such as soil types, vegetation cover, and slope. For
example, clay soils will have longer moisture retention than
sandy soils. To accurately represent these dynamics, graph
topology need to consider hydrological processes and their
implications rather than individual physical descriptors.

A prominent body of literature has explored the combina-
tion of CNN and LSTM frameworks to resolve spatiotempo-
ral processes. These provide an intuitive and pragmatic ap-
proach to incorporate both information dimensions but are
generally constrained to data on a consistent spatial grid.
Applications have exclusively focused on gridded data such
as satellite measurements, radar observations, and numerical
model reanalysis products. Our proposed GNN framework
adapts naturally to the characteristics of hydrological data.
Individual polygons or hydrological response units are char-
acterised based on their specific properties and informs a mes-
sage passing between different regions based on similarity.

Additionally, our approach provides a direct fit to modern
Internet of Things (IoT) sensor networks which are generally
limited in spatial scope but exhibit intricate, time-lagged in-
terdependencies among adjacent sensors. By utilizing hydro-
logical feature data, a graph topology can be established to
connect diverse sensors based on established physics-based
correlations.

6 Conclusion
Robust, high-resolution soil moisture estimates are critical to
most aspects of farm management, including: planting and
harvesting scheduling, drought and irrigation management,
and informing insurance risk and coverage. Creating a graph
topology based on similarity metrics rather than the physi-
cal stream network and topography improved prediction per-
formance by 70–90%. Further, decoupling the graph topol-
ogy from spatial relationships improves the generalizability
of the framework. The approach can be applied to regions that
share properties such as climate, soil features, and vegeta-
tion, regardless of spatial proximity, allowing data from well-
monitored regions to inform predictions in under-monitored
regions.

Estimating and forecasting soil moisture in ungauged
basins is one of the great challenges of hydrology. This im-
plicit form of parameters sharing enabled by the spatially de-
coupled graph network is a valuable contribution to this ambi-
tion. Informed by well-established hydrological understand-
ing and using a computationally efficient TGCN, the frame-
work is particularly applicable for regions with limited com-
putational resources or observation data. This is particularly
important in hydrology where collecting high-quality data is
both time consuming and expensive.
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