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Abstract
This study presents the first differentially private
and fair clustering method, built on the recently
proposed density-based fair clustering approach.
The method addresses the limitations of fair clus-
tering algorithms that necessitate the use of sen-
sitive personal information during training or in-
ference phases. Two novel solutions, the Gaus-
sian mixture density function and Voronoi cell, are
proposed to enhance the method’s performance in
terms of privacy, fairness, and utility compared to
previous methods. The experimental results on
both synthetic and real-world data confirm the com-
patibility of the proposed method with differential
privacy, achieving a better fairness-utility trade-off
than existing methods when privacy is not consid-
ered. Moreover, the proposed method requires sig-
nificantly less computation time, being at least 3.7
times faster than the state-of-the-art.

1 Introduction
Recently, there has been a significant increase in attention
devoted to the issue of fairness in machine learning due to
the revelation that the outputs generated by multiple ma-
chine learning algorithms exhibit a bias towards certain de-
mographic groups. The utilization of such biased algorithms
can lead to adverse effects for individuals who belong to
socially marginalized communities. An empirical study re-
ported that the COMPAS software utilized by courts in the
United States tends to exhibit a higher prediction of recidi-
vism rate for Black Americans than is accurate [Mehrabi et
al., 2021]. Furthermore, several instances of discrimination
in face recognition technology have been brought to light, in-
cluding the categorization of white faces as more attractive
and Asian faces being labeled as having closed eyes [Howard
and Borenstein, 2018]. As a result, it is imperative to ad-
dress the unequal treatment exhibited by machine learning
algorithms, which is closely related to the United Nations’
Sustainable Development Goals [Vinuesa et al., 2020].

Studies on fairness in machine learning have primarily cen-
tered on supervised learning techniques, such as classifica-
tion [Zafar et al., 2017; Agarwal et al., 2018] and regression
[Berk et al., 2017]. However, it is crucial to also consider

the fairness of unsupervised learning, as biased unsupervised
models can result in adverse outcomes in real-world scenar-
ios. For instance, when the result of customer segmentation
is closely tied to a sensitive variable, minority groups may be
unfairly excluded from opportunities such as targeted mar-
keting benefits. Since the pioneering work of [Chierichetti et
al., 2017], several studies on fair clustering have been con-
ducted. The concept of ”balance” is the most widely used no-
tion of fairness in fair clustering and is a clustering-specific
variant of disparate impact. The majority of these studies are
based on fairlet decomposition, which balances the coupling
of data points based on the sensitivity variables and distances
between points.

Fairness in machine learning has a strong correlation with
privacy, as demographic information is considered personal
and private. The revelation of sensitive variables can result in
disparate treatment [Krieger and Fiske, 2006], a legal princi-
ple that prohibits decision-making based on such information.
As a result, many fair machine learning models aim to mini-
mize the use of sensitive variables [Lahoti et al., 2020], par-
ticularly during the inference phase. However, such models
may not be effective in scenarios where the collection of sen-
sitive information is prohibited. To address privacy concerns
regarding demographic information, the concept of differen-
tial privacy (DP) [Dwork, 2006] was introduced in fair clas-
sification to limit the impact of sensitive variables on model
outputs [Jagielski et al., 2019]. However, differential privacy
has yet to be applied to fair clustering, as the fairlet decom-
position requires repeated access to sensitive variables in the
construction of fairlets, making it incompatible with DP.

In this study, we introduce a pioneering approach for fair
clustering that ensures differential privacy. Specifically, we
present a novel differentially private fair labeling function for
the density-based fair clustering method [Lee et al., 2021].
To address the limitations of the existing method in handling
high-dimensional data, we propose two solutions. Firstly,
instead of utilizing a kernel-based support function, our ap-
proach employs Gaussian mixtures (GMs). Secondly, we de-
termine adjacency of centers based on the intersection of their
Voronoi cells instead of relying on the existence of transi-
tion points (TPs). By utilizing the GM density function and
Voronoi cells, our proposed method eliminates the require-
ment for gradient system integrations, leading to substantial
improvements in both efficacy and efficiency.
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2 Related Works
The fair clustering method has undergone numerous advance-
ments since its introduction in [Chierichetti et al., 2017]. To
overcome the super-quadratic time requirement of the origi-
nal fairlet decomposition method [Chierichetti et al., 2017],
approximate fairlet decomposition methods were proposed in
[Bera et al., 2019] and [Backurs et al., 2019] that only require
nearly linear time. Moreover, [Huang et al., 2019] proposed
an algorithm to determine a coreset before applying any effi-
cient fair decomposition method.

In addition to the k-center methods, fairlet decomposition
was applied to other clustering methods such as correlation
clustering [Ahmadian et al., 2020b] and hierarchical cluster-
ing [Ahmadian et al., 2020a]. [Li et al., 2020] introduced a
deep fair clustering method by incorporating a loss function
to maintain a similar cluster assignment distribution among
demographic groups.

Several studies have also proposed classification models
that achieve fairness and DP simultaneously. [Cummings
et al., 2019] proposed an efficient algorithm that is approx-
imately fair in cases where ensuring DP prohibits fairness.
[Mozannar et al., 2020] introduced a fair learning algorithm
with local DP to protect sensitive information. [Tran et al.,
2021] extended the method in [Jagielski et al., 2019] to deep
learning by incorporating Lagrangian duality into the training
of neural networks.

3 Preliminaries
3.1 Balance for Fair Clustering
Consider a set of n data points, denoted as {xi}, that belong
to data space X := Rp. Each data point xi is associated with
a binary sensitive variable zi, which can take on either the
value of 0 or 1. In accordance with the definition presented
in [Chierichetti et al., 2017], the balance of a subset D is
calculated as follows:

Bal(D) := min

(
|D0|
|D1|

,
|D1|
|D0|

)
, (1)

where |D0| and |D1| denote the number of instances in D
with z = 0 and z = 1, respectively.

Additionally, the balance of a set of clusters C =
C1, . . . , Cm can be determined as follows:

Bal(C) := min
C∈C

Bal(C). (2)

3.2 Density-based Fair Clustering
With a smooth real-valued density function f : X → R, the
level set of the density function Lf (γ) for γ > 0 can be de-
composed into disjoint clusters, as follows

Lf (γ) := {x ∈ X : f(x) ≤ γ} = C1 ∪ . . . ∪ Cm. (3)
Density-based clustering methods typically begin by esti-

mating a density function, which is assumed to have a specific
form. For instance, when using support vector domain de-
scription (SVDD) [Tax and Duin, 1999], the density function
is estimated as follows:
f(x) = K(x,x)− 2

∑
i

αiK(xi,x) +
∑
i,j

αiαjK(xi,xj),

(4)

where K(·, ·) is a kernel function and αi are the estimated
parameters. The gradient system is then constructed from the
estimated density function as follows:

dx

dt
= −G(x)−1∇f(x), (5)

where G(x) is a positive definite matrix for all x.
A stable equilibrium point (SEP) is an equilibrium vector

(∇f(s) = 0), whose corresponding Jacobian matrix J(s) has
only positive eigenvalues. The basin cell of an SEP is defined
as follows:

B(s) := cl{x(0) ∈ R : limt→∞x(t) = s}. (6)

The entire data space, X , can be partitioned into separate
basin cells under mild conditions, which allows for the la-
beling of any unseen data. A data point in the basin cell of an
SEP is labeled as belonging to the same cluster as the SEP.

An index-k equilibrium vector is an equilibrium vector
whose corresponding Jacobian matrix has k negative eigen-
values and p − k positive eigenvalues. If an index-one equi-
librium vector, or TP, tij ∈ B(si)∩B(sj) exists between two
SEPs si and sj , the two SEPs are said to be adjacent and the
distance between them is estimated as f(tij). The SEPs are
then hierarchically merged based on their proximity to form
the desired number of clusters.

In [Lee et al., 2021], a fair clustering method was proposed
by modifying the hierarchical merging procedure of SEPs.
The method adds a fairness constraint to the distance measure
by incorporating a trade-off between fairness and utility as
follows:

f̂(ti) := f(ti)

− λ · (Bal(Ci1 ∪ Ci2)−min (Bal(Ci1),Bal(Ci2))), (7)

where i1 and i2 are indices of the two clusters to which each
of the two SEPs corresponding to the TP ti belongs, and λ
is a hyper-parameter to adjust the trade-off between fairness
and utility.

Though method in [Lee et al., 2021] has an advantage in
capturing complex, nonconvex clusters, it faces challenges in
terms of efficiency and performance, particularly for high-
dimensional data. The process of determining SEPs and TPs
through (5) requires a large number of iterations, and the ef-
fectiveness of the algorithm in determining TPs becomes un-
certain as the dimensionality of the data grows.

3.3 Differential Privacy
DP is a concept in privacy-preserving data analysis that
bounds the impact of any single individual’s data on the out-
come of a query. This is achieved by adding random noise to
the query results, which limits the extent to which the output
can be altered by any change in the input.

Definition 1 (Differential privacy). A randomized algorithm
Q is (ϵ, δ)-DP if for all A ⊆ Range(Q) and for all neighbor-
ing datasets D,D′ ∈ D such that ||D −D′||1 = 1 (differ in
only one data point),

Pr[Q(D) ∈ A] ≤ exp (ϵ)Pr[Q(D) ∈ A] + δ. (8)
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(a) (b) (c)

Figure 1: The overall framework of the proposed method, demostrated with a toy example. (a) 1. Estimation of the GM density function,
which can be modified to ensure DP for all variables. (b) 2. Determination of the Voronoi cells of the centers and the corresponding BPs. (c)
3. Fair and DP hierarchical merging of the centers until K = 4, with the number in each figure indicating the order of merging.

If δ = 0, Q is considered ϵ-DP, where ϵ is referred to as the
privacy budget, and smaller ϵ values indicate stronger privacy.
δ is the probability of failure to satisfy ϵ-DP.

We present two widely-used mechanisms to modify algo-
rithms to satisfy DP. The mechanisms are based on the con-
cept of sensitivity, which is defined as follows:
Definition 2 (Sensitivity). The lo-sensitivity of a function g :
D → Rk is given by:

∆og := max
D,D′∈D,||D−D′||1=1

||g(D)− g(D′)||o. (9)

The Laplace and Gaussian mechanisms are defined as fol-
lows:
Definition 3 (Laplace mechanism). For any function g :
D → Rk, the Laplace mechanism is defined as:

QL(D, f, ϵ) := f(D) + y (10)

where y = (y1, . . . , yk) is a vector of k i.i.d random variables
yi ∼ Lap(∆1g/ϵ), and Lap denotes the Laplace distribution.
Definition 4 (Gaussian mechanism). For any function g :
D → Rk, the Gaussian mechanism is defined as:

QG(D, f, ϵ, δ) := f(D) + y (11)

where y = (y1, . . . , yk) is a vector of k i.i.d random variables
yi ∼ N (0, 2·ln(1.25/δ)·(∆2g)

2

ϵ2 ).
The Laplace and Gaussian mechanisms are widely recog-

nized for ensuring ϵ-DP and (ϵ, δ)-DP, respectively. Two im-
portant properties of DP are the post-processing property and
the composition property.
Remark 1 (Post-processing). If a randomized algorithm Q
satisfies (ϵ, δ)-DP, then for any randomized mapping Q′, Q′ ◦
Q also satisfies (ϵ, δ)-DP.
Remark 2 (Composition). If two randomized algorithms Q1

and Q2 satisfy ϵ1-DP and ϵ2-DP, respectively, then the map-
ping Q1,2(·) = (Q1(·),Q2(·)) satisfies (ϵ1 + ϵ2)-DP.

The two properties imply that accessing data multiple
times will consume the privacy budget, while post-processing
mappings that do not access the data will not consume the pri-
vacy budget.

The parallel composition property states that releasing the
results of multiple randomized algorithms, each operating on
disjoint datasets, will not increase privacy loss.

Remark 3 (Parallel composition). Let for all i = 1, . . . , d,
dataset Di disjoint to others and Qi whose input is Di satisfy
ϵi-DP, then releasing all Qis guarantees maxi ϵi-DP.

4 Proposed Method
4.1 Overall Framework
The proposed method involves three stages, as illustrated in
Figure 1. The initial stage involves the estimation of the GM
density function for the sample data. The GM training pro-
cess does not compromise sensitive information and there-
fore does not consume privacy budget. However, in certain
cases, it may be necessary to protect other variables, and thus
a differentially private variant of the GM training has been
introduced to ensure the privacy of all variables. Once the
GM has been trained, the centers of the Gaussian distribu-
tions are treated as approximations of the density function’s
modes, taking over the role of the SEPs. The second step in-
volves determining the adjacency and distance between the
centers with their Voronoi cells. Specifically, centers with in-
tersecting Voronoi cells are considered adjacent and the dis-
tance between the centers is estimated using (7), where the
TPs are substituted with bridging points (BPs). Finally, the
centers are hierarchically merged in a differentially private
manner.

4.2 Density Estimation with Gaussian Mixtures
The GM density function is expressed as :

f(x) =
κ∑

k=1

wk(2π)
−p/2|Σk|−1/2e−(x−mk)

TΣ−1
k (x−mk)/2,

(12)
where for k = 1, . . . , κ, wk,mk, and Σk are the weight,
mean, and covariance of each Gaussian component, respec-
tively. The computational cost of the sequential minimal
optimization algorithm for SVDD is between linear and
quadratic in n [Platt, 1998], while the computational cost of
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(a) Basin cells and TPs (b) Voronoi cells and BPs

Figure 2: Comparison of the basin cell and the Voronoi cell.

the expectation-maximization (EM) algorithm for GM is lin-
ear in n. Furthermore, the use of GM as the density func-
tion reduces the computational cost of determining the SEPs,
which is O(n · nsv) for SVDD (nsv denotes the number of
support vectors) and O(n · κ) for GM, by using the centers
mk as approximate SEPs.

Another advantage of the GM density function is its abil-
ity to provide DP for all variables, not just sensitive ones.
Evaluating kernel-based density functions requires access to
support vectors, a subset of the training data. This leads to
the need for adding excessive noise when determining SEPs
through (5), rendering the algorithm ineffective. The trained
GM density function, on the other hand, does not require any
information from the training data for evaluation, which pro-
vides the post-processing property for the following steps.

4.3 Finding Bridging Points with Voronoi Cells
While using the density of the TPs as the dissimilarity mea-
sure between adjacent SEPs is common in density-based clus-
tering, determining the TPs is computationally intensive and
can become a bottleneck in the labeling process. Addition-
ally, as the dimension of the data increases, the density allo-
cated to areas where no data sample exists becomes minus-
cule, making it difficult to effectively determine TPs between
different clusters using publicly available algorithms. For fur-
ther information on determining TPs, refer to Algorithm 1 in
[Lee and Lee, 2006].

In order to address the issues associated with the TPs, we
utilize the Voronoi cells of the centers of the trained GM den-
sity function and its associated BPs. The Voronoi cell V (mk)
of a center mk is defined as the closure of the set of all data
points whose closest center is mk. The entire data space can
be partitioned into individual Voronoi cells, similar to the
basin cells. The dissimilarity between two adjacent centers
mi and mj is determined by the density of the corresponding
BP bij , which is given by:

bij := argminx{f(x) : ||x−mi|| = ||x−mj ||},
s.t. ||x−mi|| = ||x−mj || < ||x−mk||, ∀k ̸= i, j. (13)

This definition extends the one presented in [Kim et al.,
2014] by adding a constraint that the BP between the two cen-
ters should not be closer to any other center. This constraint
is crucial for positioning the BP at the interface between the
two Voronoi cells. Figure 2 illustrates the difference between
basin cells and Voronoi cells for the same centers. It can be
observed that some adjacent basin cells did not have any TPs,

Algorithm 1 Fair labeling of sub-clusters with DP

1: procedure FLDP(density function f , sensitive variable
z ⊂ {0, 1}n, desired number of clusters K, set of initial
clusters {Ci}ai=1, set of adjacency points {tj}bj=1, pri-
vacy budget ϵ)

2: for i in 1, . . . , a do
3: v(Ci) = {k|xk ∈ Ci, k = 1, . . . , n}
4: Sumz(Ci) =

∑
k∈v(Ci)

zk + Lap(1/ϵ)

5: Calculate d(Cj1, Cj2) = f(tj)−λ(Bal(Cj1 ∪ Cj2)−
min(Bal(Cj1),Bal(Cj2))) for j = 1, . . . , b, where
Bal(C) = min( Sumz(C)

|C|−Sumz(C) ,
|C|−Sumz(C)

Sumz(C) ) and j1, j2
are the indices of two adjacent modes w.r.t tj .

6: Hierarchically merge the initial clusters, following
steps 4 and 5 in [Lee et al., 2021].

7: return {Ci}

while BPs were found for all adjacent Voronoi cells (one BP,
located in the upper right, is outside the range of the figure).

4.4 Differentially Private Fair Labeling
The proposed method requires the values of sensitive vari-
ables only when calculating the balances in (7). This design
choice ensures that sensitive variables of test samples are not
required during inference, a common practice in fair machine
learning studies. The calculation of balance requires the size
of each cluster and the sum of the sensitive variables belong-
ing to each cluster, which can be calculated assuming that the
sensitive variable can have a value of zero or one. To guar-
antee data privacy, randomness can be added to the sum of
sensitive variables of each cluster.

Algorithm 1 outlines the procedure for the proposed fair
labeling method that ensures ϵ-DP, denoted as FLDP. The
Laplace mechanism is utilized to provide DP protection. A
key aspect of the algorithm is that Laplace noise is only added
to the initial clusters, and not to subsequent iterations, due to
the post-processing property of DP. Additionally, the noise
amount is not impacted by the number of clusters, as the ini-
tial clusters are disjoint. In scenarios where the ownership of
data and computational resources are separated, such as in a
cloud service environment, the algorithm also preserves pri-
vacy against the modeler. This is achieved by requiring only
the sum of sensitive variables for each initial cluster, rather
than information about individual samples, thereby enhanc-
ing privacy. The data owner can calculate Sumz(Ci) and pro-
vide it to the modeler for privacy preservation.

Proposition 1. Algorithm 1 preserves ϵ-DP.

Proof. We defer the proof to the Appendix.

4.5 Fast and Differentially Private Fair Clustering
The proposed method can be consolidated in Algorithm 2,
which involves two sub-procedures in addition to FLDP,
namely GMDP and FindBPs. GMDP is a procedure for
training a differentially private GM model, using a modi-
fied version of the DP-EM algorithm from [Park et al., 2017;
Byun et al., 2023] that optimizes parallel composition. Note
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Algorithm 2 Fast and differentially private fair clustering

1: procedure FairClusterDP(input data {xi}ni=1 ∈
[−1, 1]n×p, sensitive variable z ⊂ {0, 1}n, de-
sired number of clusters K, initial GM parameters
{m0

k}κk=1, {Σ0
k}κk=1, total privacy budget (ϵ, δ), privacy

budget for labeling ϵ′, number of iterations τ , number of
batches B, step size T)

2: ρ = (
√
log(1/δ) + ϵ−

√
log(1/δ))2 − ϵ′2/2

3: ϵ′′ = ρ+ 2
√

ρ log(1/δ)
4: {wk}κk=1, {mk}κk=1, {Σk}κk=1 =

GMDP({xi}ni=1, {m0
k}κk=1, {Σ0

k}κk=1, (ϵ
′′, δ), τ, B)

5: Define f as (12).
6: {bj}bj=1 = FindBPs({mk}κk=1, f, T )
7: for k in 1, . . . , κ do
8: Ck = {xi|xi ∈ V (mk), i = 1, . . . , n}
9: {Ci} = FLDP(f, z,K, {Ck}κk=1, {bj}bj=1, ϵ

′)

that GMDP is used only when DP is obligatory for all vari-
ables, including non-sensitive ones, and may be substituted
with a standard GM in most cases. FindBPs is a procedure
for determining the BPs, as detailed in Section 4.3. The two
sub-procedures are further detailed in the Appendix.

The proposed method also possesses an advantage in la-
beling unseen data compared to existing methods. Unlike
fairlet-based approaches, which necessitate retraining for new
samples due to the absence of fairlets for new samples, the
proposed density-based fair clustering does not require re-
training, leveraging the benefit of traditional density-based
clustering where the Voronoi cells encompass the full data
space. Therefore, the inference process in the proposed
method is simpler than that of existing methods. Addition-
ally, the method described in [Lee et al., 2021] requires it-
erating the dynamical system to determine the corresponding
SEPs (SEPs) for new samples, while the proposed method
only requires determining the nearest centers. Another op-
tion to further incorporate density is to assign the samples to
the sub-clusters with the highest density, i.e. argmaxkfk(x)
if f(x) =

∑
k fk(x).

Proposition 2. Algorithm 2 preserves (ϵ, δ)-DP.

Proof. We defer the proof to the Appendix.

5 Experiments
In this section, the proposed method is evaluated on a diverse
set of synthetic and real-world datasets, and its performance
is compared with that of existing methods.

5.1 Datasets
In contrast, Gaussian consists of 18 convex Gaussain blobs,
which are well suited for simple clustering methods. The to-
tal number of samples for the Gaussian was 500. Following
[Lee et al., 2021], we assigned a sensitive variable to the two
datasets to create a trade-off between clustering performance
and fairness.

In the evaluation, two synthetic datasets, namely Twom-
oon and 18-Gaussian, were generated to represent non-
convex and convex clusters, respectively. The Twomoon

dataset consisted of 1000 samples arranged in two curved
clusters, while the 18-Gaussian dataset comprised 18 con-
vex Gaussian blobs, with a total of 500 samples, making it
suitable for simple clustering methods. In accordance with
[Lee et al., 2021], a sensitive variable was assigned to each of
the two datasets to create a balance between clustering per-
formance and fairness.

For real-world datasets, three commonly used datasets in
fair machine learning research, from the UCI machine learn-
ing repository, were utilized: Bank [Moro et al., 2014],
Adult [Kohavi and others, 1996], and Diabetes [Strack et al.,
2014]. In this section, the experimental results are mainly fo-
cused on the Twomoon and Adult datasets. Further results
on the other datasets can be found in the Appendix.

5.2 Settings
The proposed method was compared against four other fair
clustering methods, namely FairSVC1 [Lee et al., 2021],
Fairlet2 [Chierichetti et al., 2017], FairScale3 [Backurs et
al., 2019], and FairAlg4 [Bera et al., 2019]. In all exper-
iments, the trade-off between fairness and clustering per-
formance was observed for different numbers of clusters,
K = 2, . . . , 9. The balance was used as the fairness cri-
terion, and Silhouette score [Rousseeuw, 1987] and Davies-
Bouldin index [Davies and Bouldin, 1979] were used as the
clustering performance metrics. The closer the balance was
to one, the better the result, as the same number of samples
was considered from each demographic group. A higher Sil-
houette score represents improved clustering results, while a
lower Davies-Bouldin score suggests superior clustering per-
formance. The computation time was also measured to eval-
uate the efficiency of the proposed method.

FairSVC was implemented using MATLAB, while the
other methods were implemented using Python. However,
the implementation of FairScale and FairAlg included calls
to MATLAB and CPLEX APIs, respectively, within Python.
All experiments were repeated ten times and the average of
each metric was recorded.

5.3 Results
Results on Synthetic Datasets
As demonstrated in Figure 3, the outcomes of each method
displayed a considerable disparity. The clustering results gen-
erated by FairAlg were comparable to those produced by
unfair methods. In an effort to enhance balance, the fair-
let decomposition methods Fairlet and FairScale resulted
in distorted cluster shapes, where different clusters were in-
termingled. Conversely, FairSVC and the proposed method
generated relatively natural and fair clustering results as the
points belonging to the same original cluster (basin cell or
Voronoi cell) were designated as the same cluster. It should
be noted that, while the proposed method achieved a balance
of 1, FairSVC achieved a balance of approximately 0.4. Fig-
ure 3(b) depicts the labeling outcome of the proposed method

1https://github.com/wj926/Fair SVC
2https://github.com/guptakhil/fair-clustering-fairlets
3https://github.com/talwagner/fair clustering
4https://github.com/nicolasjulioflores/fair algorithms for clustering
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(a) Ours (b) Ours-DP (c) FairSVC

(d) Fairlet (e) FairScale (f) FairAlg

Figure 3: Visualization of clustering results on Twomoon dataset with K = 3.

Dataset Time (s)
Ours FairSVC Fairlet FairScale FairAlg

Twomoon 0.151 3.130
(x20.728)

499.861
(x3310.338)

4.230
(x28.013)

246.266
(x1630.901)

18-Gaussian 0.415 2.611
(x6.292)

55.238
(x133.104)

4.342
(x10.463)

38.75
(x93.373)

Table 1: Computation time on synthetic datasets. The numbers in
parentheses indicate the ratio of the computation time of the com-
pared methods to that of the proposed method.

when Laplace noise was incorporated to ensure DP (ϵ = 1).
This noise only impacts the dissimilarity between the initial
clusters, thereby preserving the aforementioned property and
resulting in relatively undisturbed cluster shapes.

Table 1 compares the computation time of the proposed
method with those of existing methods. It was found that
the proposed method was significantly more efficient than the
existing methods, particularly for non-convex datasets where
solving optimization problems is more challenging. On the
Twomoon dataset, the proposed method was approximately
20-30 times faster than FairSVC and FairScale, 1600 times
faster than FairAlg, and 3000 times faster than Fairlet. On
the 18-Gaussian dataset, the proposed method was approx-
imately 6.3 times faster than FairSVC, approximately 10.4
times faster than FairScale, approximately 90 times faster
than FairAlg, and approximately 133 times faster than Fair-
let. The results highlight the improved efficiency of the pro-
posed method compared to the existing methods.

By considering the results obtained on the synthetic
datasets, the proposed method demonstrated a better fairness-
utility trade-off compared to FairSVC and natural clustering
results compared to fairlet decomposition methods. Addition-
ally, the proposed method showed remarkable computational
efficiency, outperforming all other methods in terms of com-
putation time. Nevertheless, the proposed method has a dis-
advantage in terms of cluster size uniformity. As illustrated
in Figure 3(a), the clusters are not of equal size, with some

clusters being significantly larger than others. This property
may have a detrimental effect on the clustering metrics, as a
large cluster may result in high intra-cluster measures and in-
crease the numerator of the Davies-Bouldin index, leading to
an overall increase in the index.

Results on Real-world Datasets
We first evaluated the performance of the proposed method
without incorporating DP, as the other compared methods be-
sides FairSVC are not capable of incorporating DP. The re-
sults in terms of balance score and clustering metrics on the
Adult dataset are shown in Figure 4. Only FairScale main-
tained a perfect balance score for all values of K, and the
proposed method demonstrated a slight decrease in balance
score at high values of K. Meanwhile, FairAlg and FairSVC
showed relatively low balance scores, with the balance score
of FairSVC dropping to about 0.4 at K = 9. The proposed
method achieved the best trade-off between fairness and util-
ity, as evidenced by its generally higher Silhouette score and
lower Davies-Bouldin index compared to the other methods,
with the exception of FairSVC, which showed a significantly
low balance score. The difference in clustering measures be-
tween the proposed method and FairScale is notable, further
emphasizing the superior fairness-utility trade-off achieved
by the proposed method.
Privacy-utility Trade-off We examined the impact of
adding noise to the algorithm to preserve DP on the perfor-
mance of the proposed method. We considered the scenario
where only the privacy of sensitive variables was of concern
and compared the proposed method with the FairSVC algo-
rithm. The experiments for the scenario where the privacy of
all variables are protected can be found in the Appendix. The
privacy budget ϵ was set to 1, 0.001, where a value of ϵ = 1
represents moderate privacy and ϵ = 0.001 represents very
strong privacy. The results of the clustering on the Adult
dataset under DP are depicted in Figure 5. The red lines in
the figure represent the results of the proposed method and
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(a) Balance (b) Silhouette (c) Davies-Bouldin

Figure 4: Clustering results on Adult dataset. The x-axis and y-axis indicate the number of clusters and the metric value, respectively.

(a) Balance (b) Silhouette (c) Davies-Bouldin

Figure 5: Clustering results with DP on Adult dataset. The x-axis and y-axis indicate the number of clusters and the metric value, respectively.

Dataset Time (s)
Ours FairSVC Fairlet FairScale FairAlg

Adult 1.688 35.337
(x20.940)

504.064
(x298.690)

6.406
(x3.796)

229.944
(x135.664)

Bank 1.441 98.853
(x68.620)

614.567
(x426.608)

8.413
(x5.840)

242.060
(x168.028)

Diabetes 1.173 107.607
(x91.716)

582.217
(x496.235)

8.840
(x7.535)

158.047
(x134.706)

Table 2: Computation time on real-world datasets. The numbers in
parentheses indicate the ratio of the computation time of the com-
pared methods to that of the proposed method.

the blue lines represent the results of FairSVC. The balance
of the proposed method was consistently higher than that of
FairSVC for any value of K, regardless of the value of ϵ.
Both methods showed a significant decrease in balance as
K increased. However, while the balance of the proposed
method with ϵ = 1 remained above 0.3, and the balance with
ϵ = 0.001 was around 0.2, the balance of FairSVC with any ϵ
dropped to close to zero for K = 9. Furthermore, the balance
score of the proposed method showed a gradual decrease with
the increase of privacy level, whereas the balance of FairSVC
was not significantly affected by the value of ϵ. This indicates
that the performance of FairSVC was severely impacted even
with a small amount of added DP noise, while the proposed
method was more resilient to such noise. In terms of clus-
tering measures, FairSVC showed superior results at the cost
of fairness. The proposed method displayed better cluster-
ing performance with ϵ = 1 compared to ϵ = 0.001, thus
highlighting the clear decline in the fairness-utility trade-off
as privacy level increased. However, no such pattern was ob-
served in the case of FairSVC.

Computation Time The computation time for the three
datasets is summarized in Table 2. The proposed method was
found to be faster than the existing methods in all datasets, by
at least several times. As the number of initial clusters used
was higher for the real datasets than the synthetic datasets, the
computation time of the proposed method increased in com-
parison. The computation times of Fairlet and FairAlg were
mainly impacted by the number of samples and not signifi-
cantly affected by the dimension of the dataset. Among the
compared methods, FairScale was the fastest and was at least
3.7 times slower than the proposed method. In comparison
with the proposed method, the computation time of the other
methods was found to be high, ranging from tens of times to
several hundred times, depending on the dataset.

In summary, the proposed method demonstrates superior
results in balancing fairness and utility, and has been shown
to be significantly faster than existing methods. Additionally,
it demonstrates greater compatibility with DP in comparison
to FairSVC, which is currently the only available method that
supports DP implementation.

6 Discussion
We have proposed a new density-based fair clustering ap-
proach that meets DP standards. By incorporating the GM
density function and Voronoi cell, the proposed method im-
proves upon existing methods in every aspect, while main-
taining DP with limited randomness. The experimental re-
sults demonstrate the superior performance of the proposed
method in terms of privacy, fairness, utility, and efficiency.
To further enhance input privacy, the proposed method can
be combined with cryptographic techniques such as homo-
morphic encryption and secure multi-party computation.
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Ethical Statement
Numerous instances have been documented wherein machine
learning algorithms exhibit discriminatory behavior against
various demographic groups, with adverse outcomes for vul-
nerable populations. The focus of our study is to directly con-
front the problem of social inequality by presenting a fair ma-
chine learning model that aims to provide equitable opportu-
nities to multiple demographic groups. As such, our proposed
model is significant in the context of advancing two of the
Sustainable Development Goals, specifically Gender Equal-
ity and Reducing Inequality.
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