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Abstract
Mental health is becoming an increasingly promi-
nent health challenge. Despite a plethora of studies
analysing and mitigating bias for a variety of tasks
such as face recognition and credit scoring, re-
search on machine learning (ML) fairness for men-
tal health has been sparse to date. In this work, we
focus on gender bias in mental health and make the
following contributions. First, we examine whether
bias exists in existing mental health datasets and
algorithms. Our experiments were conducted us-
ing Depresjon, Psykose and D-Vlog. We identify
that both data and algorithmic bias exist. Second,
we analyse strategies that can be deployed at the
pre-processing, in-processing and post-processing
stages to mitigate for bias and evaluate their effec-
tiveness. Third, we investigate factors that impact
the efficacy of existing bias mitigation strategies
and outline recommendations to achieve greater
gender fairness for mental health. Upon obtaining
counter-intuitive results on D-Vlog dataset, we un-
dertake further experiments and analyses, and pro-
vide practical suggestions to avoid hampering bias
mitigation efforts in ML for mental health.

1 Introduction
Mental health disorders (MHDs) often impose serious bur-
dens on individuals, families and society, and are becoming
increasingly prevalent world-wide [Wang et al., 2007; Math-
ers and Loncar, 2006]. Despite the severity of MHDs, there
is currently no unique and effective clinical characterization
of MHDs which makes their detection and the diagnosis dif-
ficult, time-consuming and subjective [Maj et al., 2020]. Ma-
chine learning (ML) methods have been successfully applied
to many real-world and health-related areas [Sendak et al.,
2020]. The natural extension of using ML for MHD analysis
and detection has proven to be promising [Long et al., 2022;
He et al., 2022; Zhang et al., 2020].

On the other hand, ML bias is becoming an increasing
source of concern [Buolamwini and Gebru, 2018; Barocas
et al., 2017]. Given the high stakes involved in MHD anal-
ysis and prediction, it is crucial to investigate and mitigate
the ML biases present. A key challenge for fair ML in MHD

analysis is the lack of publicly available datasets due to the
sensitive nature of the problem setting. In order to evaluate
and mitigate bias, sensitive attributes such as gender, ethnic-
ity and age will be required. Even if such information were
collected, they are often not made available in order to pro-
tect the subjects’ privacy. Given the above, research in this
area has been limited with only a handful of work investi-
gating the problem of gender bias in ML methods when de-
ployed on MHD applications [Bailey and Plumbley, 2021;
Zanna et al., 2022]. Bias mitigation can be conducted at either
the pre-processing, in-processing or post-processing stage.
Existing research only employed a single mitigation strategy
and did not conduct fairness evaluation across different crite-
ria. This is crucial as bias may be exacerbated if the incorrect
criteria is chosen [Lee et al., 2022]. Thus, the recommended
practice is the inclusion of more fairness metrics [Hort et al.,
2022]. Moreover, it has been highlighted by [Pagano et al.,
2023] that the proliferation of fairness metrics and mitigation
techniques has resulted in (i) a lack of direction about which
is the appropriate metric and mitigation option and (ii) the
need for use-case specific fairness research due to the differ-
ent types and nature of bias given the use-case related speci-
ficity [Cheong et al., 2023].

We hope to tackle the aforementioned gaps by address-
ing the following research questions (RQs). RQ 1: Is there
gender bias in MHD models and non-lab-based datasets?
If present, what are the primary sources of gender bias?
RQ 2: How effectively can the gender bias be mitigated at
the pre-processing, in-processing and post-processing stages?
RQ 3: What are the factors that hamper gender bias miti-
gation for MHD? By doing so, we hope to address the real-
world challenge of mental well-being and work towards re-
ducing the gender bias present in existing mental health algo-
rithms and datasets. These aims align with the United Nations
Sustainable Development Goal (SDG) 31 and SDG 52 respec-
tively. We obtain counter-intuitive results which prompted
further experimentation and analysis. We observe several fac-
tors that might not only hamper bias mitigation efforts, but
exacerbate the very bias we wish to mitigate. We highlight
the source of such potential pitfalls and suggest workarounds
to address the pertinent challenge of bias in MHD.

1“Ensure healthy lives and promote well-being for all at all ages.”
2“Achieve gender equality and empower all women and girls.”

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

5932



2 Related Work
Machine Learning for Mental Health. Recent advances
in ML have prompted efforts to deploy deep learning meth-
ods for mental health analysis and detection [He et al., 2022;
Zhang et al., 2020; Long et al., 2022]. Existing works can
generally be categorised by data modality. A line of work
seeks to monitor mental health by monitoring physiological
data such as heart-rate variability and respiratory rate [Yau
et al., 2022; Mundnich et al., 2020] or motor activity data
such as the intensity and duration of movement [Jakobsen et
al., 2020b; Garcia-Ceja et al., 2018]. Another line of work
seeks to detect and analyse an individual’s mental health
through the use of audio-visual sources [He et al., 2022;
Yoon et al., 2022; Zhang et al., 2020]. Audio-visual (AV)
datasets typically include behavioural signals such as facial
affect, body gestures and vocal intensity [DeVault et al.,
2014; Gratch et al., 2014; He et al., 2022]. The core moti-
vation behind using these data is the findings that physiolog-
ical and behavioural data can be used to distinguish an in-
dividual’s affective or mental state. For instance, individuals
struggling with bipolar depression typically display increased
variability in activity [Scott et al., 2017] and psycho-motor
retardation which can manifest in the form of slower speech
and response time [Yamamoto et al., 2020].

Fair Machine Learning. The two main types of bias iden-
tified are dataset and algorithmic bias. Dataset bias can
largely be understood as the bias stemming from the data
whereas algorithmic bias can be understood as the bias that
occurred during the algorithm training process [Mehrabi et
al., 2021]. To achieve ML fairness, we can mitigate bias at
the pre-processing, in-processing or post-processing stages
[Barocas et al., 2017; Mehrabi et al., 2021; Cheong et al.,
2021]. Pre-processing methods typically attempt to miti-
gate bias at the data-level by collecting or resampling dat-
apoints in order to create a balanced dataset. In-processing
methods mainly involve model-level interventions at differ-
ent stages of the ML models or algorithms to mitigate bias.
Post-processing methods chiefly modify the model output
to achieve fairer predictions. There are a multitude of fair-
ness metrics available to evaluate bias [Barocas et al., 2017;
Mehrabi et al., 2021; Hort et al., 2022]. Picking the appropri-
ate fairness metric is important as it is used to determine the
degree of bias present and to evaluate the effectiveness of bias
mitigation strategies [Hort et al., 2022]. [Hort et al., 2022]
also highlighted that 2.7 datasets were used per publication
on average. In line with this, we utilise three datasets and con-
duct bias mitigation using methods from all three stages.

Gender Fairness for Mental Health Analysis. Research
in gender fairness for machine-learning-based MHD analy-
sis has been limited [Zanna et al., 2022; Bailey and Plumb-
ley, 2021]. [Zanna et al., 2022] proposed an uncertainty-based
loss re-weighting approach to address the bias present in the
TILES dataset. [Bailey and Plumbley, 2021] demonstrated
the effectiveness of using an existing bias mitigation method,
data re-distribution, to mitigate the gender bias present in the
DAIC-WOZ dataset. However, both existing works only fo-
cused on a single dataset, relied on self-reporting scores and
only attempted bias mitigation at a single stage.

Comparative Summary. Our contributions can be sum-
marised as follows. First, our work provides a comprehen-
sive account of bias evaluation and mitigation across three
publicly-available MHD datasets collected in the real world
as datasets collected within a lab setting may not capture the
naturalistic behaviour of individuals struggling with MHD
in the real world [Huang et al., 2020]. In addition, exist-
ing works chiefly rely on self-reported scores. In contrast,
our work attempts to focus on patients who have been diag-
nosed by clinical experts and are likely to be prescribed with
MHD medication. In Depresjon and Psykose, clinical experts
diagnosed the patients whereas in D-Vlog, annotators were
instructed to identify depressed vlogs based on statements
which indicate that they are either suicidal or on MHD med-
ication. Second, we attempt to identify the primary source of
bias as opposed to solely applying convenient bias mitiga-
tion strategies. We hypothesise that this is an important fac-
tor to ensure that mitigation efforts work as intended. Third,
we evaluate the effectiveness of popular fairness metrics with
regards to bias detection and mitigation strategy evaluation.
We utilise the four most popular fairness measures in order to
ensure thorough experimentation and analysis. Table 1 sum-
marises the differences between existing works and our work.

3 Methodology
We first formulate our research problem, and then introduce
the mitigation methods and bias measures used.

3.1 Notation and Problem Definition
We approach MHD detection as a classification problem
where we have a dataset D which consists of {(xi, yi)}i
values where xi ∈ X is a tensor representing information
(e.g. physiological signals, facial images) about an individual
I and yi ∈ Y is the outcome (e.g. 1 depressed vs. 0 non-
depressed) that we wish to predict. Each input xi is associated
(through an individual I) with a sensitive attribute s(xi) ∈ S
where S = {male, female}. This is a classification problem
where we are interested in finding a parameterised function f
with f : X → Y . The function f( · ; θ) estimates the prob-
abilities for all outcomes (classes) p(Y |xi). We use p(yi|xi)
to denote the predicted probability for the correct class.

3.2 Bias Mitigation Methods
For all methods, we have chosen the popular methods accord-
ing to [Hort et al., 2022]. Further details about the specific
architecture will be addressed in Section 4.
Pre-processing: Data Augmentation. Pre-processing
methods typically attempt to mitigate bias prior to model
training. We leverage a pre-processing Mixup data augmenta-
tion strategy proposed by [Zhang et al., 2017]. The intuition
behind the method is that it generates new samples by mixing
up different features and their corresponding labels to prevent
a learner from being too confident about the learned relation-
ship between the features and their labels. A new training
sample (x′, y′) is generated by x′ = λxi + (1− λ)xj and
y′ = λyi + (1− λ) yj . This preserves the relation between
the augmented data and the supervision signal. We do so for
the minority group in order to obtained balanced samples
across gender.
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Mitigation Fairness Measures

Study Dataset Data Type Pre In Post SP EOpp EOdd EAcc SB L/R ND

[Bailey, 2021] DAIC-WOZ AV ✓ ✓ N L 1
[Zanna, 2022] TILES 2018 P ✓ ✓ N R 1

Ours Depresjon, Psykose, D-Vlog MA, AV ✓ ✓ ✓ ✓ ✓ ✓ ✓ Y R 3

Table 1: Comparative Summary with Existing Work. Abbreviations: P: Physiological. AV: Audio-Visual MA: Motor Activity. L: Lab. R:
Real world. SP: Statistical Parity. EOpp: Equality of Opportunity. DI: Disparate Impact. EOdd: Equalised Odds. EAcc: Equal Accuracy. SB:
Source of Bias. ND: Number of Datasets. Y: Yes. N: No.

In-processing: Loss Re-Weighting. In-processing meth-
ods generally change or re-traine the ML model in a way that
minimises bias. As an in-processing bias mitigation method,
we utilize a popular and effective loss re-weighting approach
as suggested by [Calders et al., 2009]. This method works
by penalizing mis-classified minority classes at a higher
weighted proportion. More formally, the loss value for sam-
ple xi, i.e., L(xi, yi; θ), is multiplied by αi, which is inversely
proportional to the number of samples in group s(xi). Thus,
the algorithm is encouraged to pay more attention to the mi-
nority class which assists in bias mitigation.

Post-processing: Reject Option Classification (ROC).
Post-processing algorithms typically modify the predicted la-
bels to mitigate bias. We employ the ROC method suggested
by [Kamiran et al., 2012]. The intuition behind ROC is to
re-classify the predictions of the minority group in favor of
the minority group if predictions fall within a certain deci-
sion threshold region. If a sample xi that falls in the “critical”
region 1− τ ≤ p(c|xi) ≤ τ where 0.5 ≤ τ ≤ 1, we classify
x as c if x belongs to a minority group. Otherwise, i.e. when
p(c|xi) > τ , we accept the predicted output class c. In our
experiments, we set τ = 0.6 as suggested by Kamiran et al.

3.3 Prediction and Fairness Evaluation Measures
Throughout the paper, we use s0 to denote the minority group.
The minority group differs among datasets: Males are the mi-
nority in Depresjon and DVlog, whereas females are the mi-
nority in Psykose.

Prediction Measures. We use the commonly used mea-
sures, Accuracy (MAcc), Precision (MP ), Recall (MR) and
F1 (MF1), to evaluate prediction quality.

Fairness Measures. As fairness is a multifaceted chal-
lenge, existing fairness literature has highlighted the need for
multiple metrics to characterize the ML bias present [Hort et
al., 2022; Cheong et al., 2022b]. We highlight the most com-
monly used metrics [Hort et al., 2022; Pessach and Shmueli,
2022] that we will adopt to evaluate our results and outline
how each quantifies a different aspect of fairness:

• Statistical Parity, or demographic parity, is based
purely on predicted outcome Ŷ and independent of ac-
tual outcome Y :

MSP =
P (Ŷ = 1|s0)
P (Ŷ = 1|s1)

. (1)

According to this measure, in order for a classifier to be
deemed fair, P (Ŷ = 1|s1) = P (Ŷ = 1|s0).

• Equal opportunity states that both demographic groups
s0 and s1 should have equal True Positive Rate (TPR).

MEOpp =
P (Ŷ = 1|Y = 1, s0)

P (Ŷ = 1|Y = 1, s1)
. (2)

According to this measure, in order for a classifier to be
deemed fair, P (Ŷ = 1|Y = 1, s1) = P (Ŷ = 1|Y =
1, s0).

• Equalised odds can be considered as a generalization of
Equal Opportunity where the rates are not only equal for
Y = 1, but for all values of Y ∈ {1, ...k}, i.e.:

MEOdd =
P (Ŷ = 1|Y = i, s0)

P (Ŷ = 1|Y = i, s1)
. (3)

According to this measure, in order for a classifier to be
deemed fair, P (Ŷ = 1|Y = i, s1) = P (Ŷ = 1|Y =
i, s0), ∀i ∈ {1, ...k}.

• Equal Accuracy states that both subgroups s0 and s1
should have equal rates of accuracy.

MEAcc =
MACC,s0

MACC,s1

. (4)

We have chosen the above fairness measures with careful
deliberation. In addition to being the most commonly used
metrics, the measures above cover all grounds ranging from
the lenient Fairness through Unawareness (FTU) definitions
to the stricter Equalised Odds framework [Hardt et al., 2016].
As we see in Section 6, this can result in very different fair-
ness outcomes which can have major implications on MHD
resource allocation and patient prioritising. The potential con-
sequences will be further discussed in Section 6. For all mea-
sures, we adopt the principle of disparate impact where a pre-
dictor or system is deemed to be fair when the performance
or measure does not vary between the different demographic
groups [Feldman et al., 2015]. The ideal score of 1 indicates
that both measures are equal for both groups and is henceforth
considered “perfectly fair”. For practical experimental pur-
poses, we adopt the approach of existing literature which con-
siders 0.80 and 1.20 as the acceptable lower and upper fair-
ness bounds respectively [Zanna et al., 2022]. Values which
fall within this range are considered acceptably fair. Values
which falls outside this range are considered unfair.

4 Experimental Setup
4.1 Datasets for MHD Analysis and Detection
In this study, we analyse two distinct types of datasets as
summarized in Table 2. The dataset inclusion and exclusion
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Dataset MHD Data Type # Sbjcts # Smpls SA Annotation Class Balanced

Depresjon Depression Motor Activity 55 693 Gender, Age MADRS Binary Y
Psykose Schizophrenia Motor Activity 54 687 Gender, Age DSM-IV, BPRS Binary N
D-Vlog Depression A + V 816 961 Gender - Binary N

Table 2: Overview of the datasets included in this analysis. Abbreviations: A: Audio. V: Visual. MADRS: Montgomery–Åsberg Depression
Rating Scale. DSM: Diagnostic and Statistical Manual of Mental Disorders. BPRS - Brief Psychiatric Rating Scale. SA: Sensitive Attributes.
# Sbjcts: Number of subjects. # Smpls: Number of samples. Balanced: Balanced across gender. Y: Yes. N:No.

criteria is as follows. First, we restrict our analysis to pub-
licly available datasets in order for our work to be compa-
rable. Second, we focus on non-lab-based data, i.e. data that
is collected in the real-world with fully naturalistic human
behaviour. Third, we attempt to focus on patients who have
been clinically diagnosed or are prescribed with MHD medi-
cation. We exclude datasets that chiefly rely on self-reported
scores as well as datasets which were collected in a lab-based
setting. Depresjon and Psykose consist of motor activity data
whereas D-Vlog includes audio-visual recordings. With ref-
erence to Table 3, we see that each dataset has a different dis-
tribution breakdown across gender and MHD class. This is an
important nuance which will impact our subsequent analysis
and bias mitigation attempts.
Depresjon. Depresjon [Garcia-Ceja et al., 2018] consists of
motor activity data collected from 55 individuals. Data was
recorded using an ActiGraph wristband. Out of the 55 partic-
ipants, 23 individuals have been diagnosed with depression
(Y = 1). This includes both unipolar and bipolar depression.
This group was monitored for 291 days. 32 individuals do
not have depression (Y = 0). This group was monitored for
402 days. The dataset contains 30 females and 25 males. This
dataset contains another sensitive attribute age which is not
used within our experiments. No standard train-test split pro-
tocol was provided by the dataset owners.
Psykose. Psykose [Jakobsen et al., 2020b] consists of mo-
tor activity data collected from 54 individuals. Data was
recorded using an ActiGraph wristband. Out of the 54 partici-
pants, 22 individuals have been diagnosed with schizophrenia
(Y = 1). This group was monitored for 285 days. 32 individ-
uals are in the control group (Y = 0). This group was mon-
itored for 402 days. The dataset contains 23 females and 31
males. This dataset contains age as another sensitive attribute
which is not used within our experiments. No standard train-
test split protocol was provided by the dataset owners.
D-Vlog. D-Vlog [Yoon et al., 2022] consists of vlog data
collected from YouTube videos over a 13-months. The dataset
contains 555 depressed and 406 non-depressed vlogs of 639
females and 322 males. The dataset owners provided a stan-
dard train-test split which we adhered to in our experiments.

4.2 ML Architecture
Depresjon and Psykose. As both Depresjon and Psykose
are similar in size and collection method, we utilise the same
experimental setup for both datasets. As the dataset owners
have reported promising results with simpler ML models, we
choose multi-layer perceptrons as an easy-to-use model for
these datasets. For both, we utilise a 2-layer multi-layer per-
ceptron with 3 neurons in the first layer with ReLU activation

Depresjon Psykose D-Vlog

Y0 Y1 T Y0 Y1 T Y0 Y1 T

M 150 160 310 NA 246 NA 140 182 322
F 252 131 383 NA 39 NA 266 373 639
T 402 291 693 402 285 687 405 555 961

Table 3: Dataset distribution and target attribute breakdown across
datasets. Abbreviations: F: Female. M: Male. T: Total. Y0: Control
group. Y1: MHD group. NA: Not available.

function and 2 neurons for the output layer. We utilise a Soft-
max function at the output layer to obtain class-wise predic-
tion probabilities and minimize the Cross-entropy Loss.
D-Vlog. We utilise the Depression Detector architecture as
proposed in [Yoon et al., 2022]. It consists of two unimodal
Transformer encoders and a multimodal Transformer encoder
to incorporate the learned representations from both visual
and acoustic features, followed by a global average pooling
layer, a dropout layer, a a fully-connected layer and a Softmax
layer. We minimize the Cross Entropy Loss. Readers can refer
to [Yoon et al., 2022] for further details on the architecture.

4.3 Implementation Details
Depresjon and Psykose. We train the networks using the
Adam optimizer [Kingma and Ba, 2014] with a learning
rate of 0.0001 and a batch size of 16 for 100 epochs
(hyper-parameters are tuned using grid search). Depresjon
and Psykose are both subject-dependent datasets. As each
subject is tracked across several days, there will be several
datapoints which belong to a single individual. As a result,
we have opted to use a Leave-One-Subject-Out evaluation
method which is aligned with existing literature [Garcia-Ceja
et al., 2018; Jakobsen et al., 2020b; Jakobsen et al., 2020a].
D-Vlog. We train the network using the Adam optimizer
[Kingma and Ba, 2014] with a learning rate of 0.0002, a batch
size of 32, a sequence length (t) of 596, for 50 epochs as
stated in [Yoon et al., 2022]. The dropout rate was not pro-
vided in the original work, and we empirically chose 0.1.
We conduct two distinct sets of experiments for D-vlog. For
the first set of experiments, for both the mixup and loss re-
weighting experiments, we assign weights to male and female
samples as inversely proportional to their ratios in the train-
ing set. For the second of experiments, we assign weights to
male and female samples directly proportional to their ratios
in the training set, i.e. we generate twice as many males com-
pared to females for the first experiments and twice as many
females compared to males for the second experiments. Our
rationale for the second set of experiments is to further exam-
ine whether the performance degradation on female samples
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can be overcome through assigning more weights to their loss
or generating more female samples. For each of the experi-
ments, we train and evaluate the networks three times with
different seeds (1, 2, 3) and report their average.

5 Results and Further Experiments
We discuss the results across all three datasets in relation to
our research questions.

5.1 RQ1: What is the Bias Present?
Depresjon. With reference to Table 3, Depresjon is rela-
tively balanced across gender with 310 males and 383 fe-
males. Males are considered the minority s0 as we have less
samples for them. Results for experiments on Depresjon are
captured in Table 4. The baseline MLP model gives an ac-
curacy of 0.72 (0.72) and an F1 score of 0.67 (0.71) which
is consistent with existing work [Garcia-Ceja et al., 2018] as
highlighted within the parentheses. Two out of the four fair-
ness measure used indicate that there is bias across gender.
Both MSP and MEOpp give values within the 0.80 to 1.20
range. However, both MEOdd and MEAcc give a score of
0.47 and 0.72 respectively which indicate that the model is
biased. Answer to RQ 1: Dataset bias is absent. Some met-
rics indicate that algorithmic bias may be present (F1.33).

Psykose. Looking at Table 3, Psykose is imbalanced with
39 females in comparison with 246 males. For Psykose, fe-
males are the minority s0. Our efforts are complicated by the
fact that we do no have the sensitive attributes of those labeled
with Y0 which impacts our subsequent bias mitigation strate-
gies. Looking at Table 4, the baseline MLP model gives a
precision of 0.79 (0.80) and an F1 score of 0.79 (0.80) which
is consistent with existing work [Jakobsen et al., 2020b] as
indicated within the parentheses. As we only have the sensi-
tive attributes for Y1, we are only able to evaluate bias across
samples belonging to this category. Hence, the interpretation
of the results may not be directly comparable to the other
experiments. In addition, some of the fairness measures e.g.
MEOdd cannot be calculated as we are unable to calculate
values such as the false positive rate according to sensitive
attributes. Looking at the fairness of the baseline model, all
values are close to 1, which implies that there is no algorith-
mic bias present. Answer to RQ 1: We note that dataset bias
is present (F1.1) and algorithmic bias is absent (F1.2).

D-Vlog. With reference to Table 3, D-Vlog is imbalanced
across gender as we have approximately twice as many sam-
ples for females compared to males. Here, males are consid-
ered the minority class s0. The results for our experiments
on DVlog are summarized in Table 4. The baseline method
gives an accuracy of 0.64 and an F1 score of 0.69. For MSP ,
MEOpp and MEAcc, scores are within the range 0.80-1.20,
indicating a fair model, whereas MEOdd gives 1.84 indicat-
ing strong algorithmic bias in favour of males. Answer to RQ
1: Results indicate that dataset bias is present (F1.1). Across
algorithmic bias, different fairness measures give different
outcomes. Three out of the four measures used indicated that
the baseline model is acceptably fair.

3Fx.y refers to the summary of findings in Table 5

5.2 RQ2: How Effective are the Bias Mitigation
Strategies?

Depresjon. With reference to Table 4, we see that across
most performance metrics, the pre- and in-processing results
provide comparable outcomes. Overall, pre-processing meth-
ods seem to provide a slightly greater score improvement and
outperform the other methods across accuracy, precision, re-
call and F1-measure. Across the fairness measures, for both
the pre and in-processing methods, three out of the four fair-
ness measures indicate that the model is fair. This is an im-
provement from the baseline. Answer to RQ 2: Different
fairness measures report different outcomes (F2.1). The pre
and in-processing methods provide more consistent bias mit-
igation compared to the post-processing method.

Psykose. Three of the fairness measures, MSP , MEOpp

and MEAcc, indicate that all models provide fairness results
which are within the acceptable threshold 0.80-1.20. As we
only have the sensitive attributes of the Y = 1 group, MSP

is inadvertently equal to MEOpp. Across all three mitigation
strategies, the pre-processing method performs the best as it
achieves a fairness score that is closest to 1. Answer to RQ
2: For Psykose, though all methods provide fairness scores
within the fair range of 0.80 − 1.20, both the pre- and in-
processing methods give values that are closer to 1 whilst the
post-processing mitigation strategy results in a slight bias to-
wards the minority group. The pre-processing method pro-
vides the fairest result of all.

D-Vlog. Looking at the performance measures, the female-
inclined pre-processing method and the female-inclined in-
processing method yield the highest recall and F1-scores. The
male-inclined pre-processing method have the edge in terms
of accuracy. All results are relatively close and no single ap-
proach is best overall. Across fairness, different fairness met-
rics provide different results and even conflicting implica-
tions. To exemplify, if we were to evaluate fairness based on
MSP , we would see that every single one of our approaches
yields an improvement over the baseline, with the exception
of the post-processing method ROC applied to the minor-
ity class males. Even more interestingly, the in-processing
method yields a perfectly fair MSP = 1.00 score despite
providing more weight to the majority female class. On the
other hand, if we were to consider fairness solely based on
MEOpp or MEAcc, the baseline would be the fairest of all
with MOpp = 1.09 and MEAcc = 1.09. Furthermore,
one of the fairest approaches according to the MSP met-
ric, female-inclined pre-processing has MOpp = 1.24 and
MEAcc = 1.21, which are both out of the 0.80− 1.20 range,
indicating a strong bias in favour of males. Answer to RQ 2:
The measures often contradict each other (F2.1). No method
is consistently effective at mitigating bias and all seems to
worsen the bias present (F2.2).

5.3 RQ3: What are the Factors that Hamper
Gender Bias Mitigation in MHD?

Our results on D-Vlog highlight an important aspect which
has yet to be considered within the fairness literature: In
D-Vlog, males are considered the minority class. However,
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Depresjon Psykose D-Vlog

Metrics B Pre In Post B Pre In Post B Pre (M) Pre (F) In (M) In (F) Post (M) Post (F)

MAcc 0.72 0.77 0.76 0.74 0.77 0.75 0.78 0.78 0.64 0.66 0.65 0.65 0.65 0.64 0.64
MP 0.76 0.80 0.80 0.78 0.85 0.74 0.86 0.85 0.70 0.71 0.69 0.72 0.69 0.68 0.67
MR 0.67 0.74 0.73 0.71 0.73 0.74 0.74 0.74 0.69 0.71 0.73 0.65 0.73 0.71 0.73
MF1 0.67 0.74 0.73 0.71 0.73 0.74 0.75 0.74 0.69 0.70 0.71 0.68 0.71 0.69 0.70

MSP 0.93 1.22 1.16 1.30 0.92 0.97 0.95 1.20 0.92 1.02 1.01 0.95 1.00 1.24 0.92
MEOpp 0.82 1.20 1.11 1.20 0.92 0.97 0.95 1.20 1.09 1.25 1.24 1.18 1.19 1.38 1.16
MEOdd 0.47 0.86 0.67 0.61 - - - - 1.84 2.13 2.09 2.45 1.87 1.42 2.27
MEAcc 0.72 0.82 0.80 0.79 0.94 1.03 1.04 1.19 1.09 1.19 1.21 1.10 1.15 1.14 1.21
Consistency 2/4 3/4 3/4 1/4 3/3 3/3 3/3 3/3 3/4 2/4 1/4 3/4 2/4 1/4 2/4

Table 4: A comparison of the performance and fairness scores for the baseline model, the pre-processing data augmentation strategy, the
in-processing loss reweighting and the post-processing ROC. Values in bold denote values that fall outside the acceptable range of 0.80-1.20.
Underlined values highlight the best fairness score or values which are close to the ideal fair score of 1, i.e. within the 0.95-1.05 range.
Abbreviations: B: Baseline. Pre: Pre-processing. In: In-processing. Post: Post-processing. M: Male. F: Female. Consistency: Highlights the
number of fairness metrics which give values that fall within the acceptable fair threshold range. Additional results disaggragated across
gender is available within the Appendix of the full paper4.

0 500 1000 1500 2000 2500 3000 3500 4000
Duration (sec)

0

10

20

30

40

50

60

70

80

D
en

si
ty

DVlog = 596

Male:  29.81% > DVlog

Female: 41.31% > DVlog

DVlog Durations
Male
Female

Figure 1: Male (red) and female (blue) vlog duration distribution
in DVlog dataset. Yellow vertical line indicates the mean duration
point. For females and males, 41.31% and 29.81% of the vlogs
longer than the mean were truncated respectively.

despite having only approximately half the amount of sam-
ples as females, there is still strong bias in favour of males
across most methods and fairness metrics. In addition, none
of the bias mitigation methods seem effective as most perform
poorly across many fairness metrics. In order to quantify the
difficulty of depression detection for females vs. males, we
measure the model’s uncertainty in its predictions (i.e., pre-
dictive uncertainty). A model can be considered ‘uncertain’
in its predictions due to noise or lack of data. Therefore, a
higher uncertainty value signifies a more difficult prediction
problem. As there are twice as many female samples com-
pared to males (Table 2), the expectation is to have a signifi-
cantly lower uncertainty value for females. However, on aver-
age, we obtain similar uncertainty values of 0.645 and 0.649
for males and females, respectively (obtained using Deep En-
sembles [Lakshminarayanan et al., 2017] – see Appendix of
the full paper4 for details – F3.3). We identified two main po-
tential factors for this counter-intuitive phenomena:

Factor 1: Data Pre-Processing. In [Yoon et al., 2022], in
order to achieve the same dimensionality for both visual and
acoustic features, timesteps were either truncated or padded

4https://www.repository.cam.ac.uk/handle/1810/349873

with zeros. t = 596 seconds was chosen as the truncation-
padding boundary as it is the mean duration of all vlogs. This
approach of truncating the endings inherently causes informa-
tion loss for the vlogs that are longer than the mean duration
whereas the shorter vlogs do not experience any loss as they
are only padded with zeros. As illustrated in Figure 1, since
female vlogs are significantly longer in duration compared
to male vlogs on average, this approach might be a possible
source of bias as it causes significantly more information loss
for female vlogs compared to male vlogs (F3.1).
Factor 2: Gender Differences in Depression Manifes-
tation and Diagnosis. Females and males tend to show
different symptom profiles when depressed [Floyd, 1997;
Barsky et al., 2001; Ogrodniczuk and Oliffe, 2011]. Though
existing research does not provide a conclusive indication
of whether males or females are harder to diagnose, litera-
ture suggests that there are factors (e.g. physician bias, hor-
monal effects) which may make it more difficult to diag-
nose depression in females compared to males [Floyd, 1997;
Barsky et al., 2001] (F3.2).
Overall: Answer to RQ 3. Current bias mitigation tech-
niques are inadequate to address the information loss due to
data-preprocessing as well as the inherent gap in depression
recognition difficulty across genders. This is evidenced by
our experimental results. To mitigate bias, conventional mit-
igation methods dictate that we either balance the number of
samples across class or apply e.g. a loss re-weighting propor-
tional to the imbalance ratio. Despite doing so for the male
minority class, we do not observe consistent performance and
fairness improvement across metrics. To further illustrate our
point, we replicated the same experiments in favour of fe-
males despite females being the majority class. As evidenced
in Table 4, for all of the metrics other than MSP , this ap-
proach exacerbated the bias compared to the baseline.

6 Summary and Conclusion
Our findings indicate the presence of bias within both the
datasets and models. For Psykose and D-Vlog, there is dataset
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Findings Recommendations

RQ1

F1.1: Dataset and algorithmic bias are 
present.
F1.2: Dataset bias, often, but does not always 
lead to biased outcomes and vice versa. 
F1.3: Algorithmic bias is present despite 
balanced samples.

R1.1: Ensure balanced dataset.
R1.2: Train a separate model for each demographic group if samples are 
adequate.
R1.3: Ensure appropriate experimentation methods, e.g. leave-one-subject-out 
for subject-dependent datasets.
R1.4: Use dataset appropriate models e.g. simpler models for smaller datasets.

RQ2

F2.1: Fairness measures are not always 
consistent.
F2.2: Mitigation worsens bias if it does not 
address root cause.
F2.3: Pre- and in-processing methods are 
more consistently effective compared to the 
post-processing method.

R2.1: Use a range of fairness measures as they give different indication of bias 
mitigation effectiveness.
R2.2: Rely on the stricter fairness measures for  higher stake situations.
R2.3: Employ appropriate mitigation strategies that address the root cause of 
bias. 
R2.4: Have a baseline result or expectation to compare against.

RQ3

F3.1: Inappropriate data pre-processing.
F3.2: Gender difference in depression 
diagnosis.
F3.3: Difficulty of the data impacts the 
algorithm’s ability to learn appropriate 
representations.

R3.1: Conduct preliminary analysis to avoid removing important signals. 
R3.2: Work closely with clinical experts to devise better solutions that address 
gender differences in depression diagnosis.
R3.3: Identify the source of difficulty between groups & if the discrepancy 
cannot be removed, employ methods that pay more attention to more difficult 
samples. 

Table 5: Overview of our findings and recommendations on how to achieve machine learning fairness for mental health analysis.

bias in the form of dataset imbalance. However, there is still
bias in the models even if we train the model on a more
balanced dataset (e.g. Depresjon or the augmented balanced
datasets). In addition to dataset imbalance, another key source
of bias is the data pre-processing schema deployed. We see
from our analysis with D-Vlog that inappropriate data pre-
processing has potentially resulted in information loss for
the female samples. This makes it harder for ML algorithms
to detect depressed females which may have induced a bias
against females compared to males. Another potential source
of bias is the usage of inappropriate ML models or experi-
mentation methods when analysing mental health data. For
instance, MA data (e.g. Depresjon and Psykose) are very dif-
ferent from AV data (e.g. Depresjon): MA data is compara-
tively smaller than AV data. As such, using a simpler model
e.g. a 2-layer MLP or a Linear SVM may be more appro-
priate for the former whereas a DNN would be appropriate
for the latter. Using DNN for a small dataset may cause ex-
cessive memorisation which will likely fail to generalise and
hence produce seemingly “biased” outcomes. In addition, for
subject-dependent datasets (e.g. Depresjon and Psykose), it
is important to ensure a subject-independent training pro-
cedure (e.g. Leave-One-Subject-Out). Otherwise, the model
will produce overly optimistic results which will fail to gen-
eralise. Hence, biased results may be due to inappropriate
model training and experimentation methods.

Our results indicate that bias can be mitigated if suitable
mitigation methods were employed to address the root source
of bias. For instance, looking at Psykose’s results, if the prob-
lem is that of data imbalance, using bias mitigation strategies
such as data augmentation and loss re-weighting work. How-
ever, if the source of bias is due to inappropriate data pre-
processing (e.g. DVlog), regular bias mitigation may fail to
work. Moreover, it is also important to take into account the
potential shortcomings of bias mitigation strategies. For in-
stance, the post-processing method ROC solely operates on

the minority class by re-classifying them from Y = 0 to
Y = 1 whenever they are in the critical region. This may
risk inducing a bias in favour of the minority group and a
bias against the majority group as evidenced by our results.
To sum, bias cannot be sufficiently mitigated if the methods
used do not adequately address the root cause of bias or if we
do not account for the potential negative repercussions.

The findings above are critical as we see we can arrive at
incorrect conclusions if the wrong fairness criteria or mitiga-
tion strategy is used. Taking D-Vlog for example, if we were
solely to make decisions based on dataset bias, we may end
up prioritising the minority group (i.e. males) when in fact the
algorithm is biased against the majority group (i.e. females).
In addition, some fairness measures are stricter than the oth-
ers and some are true label dependent whereas some are not.
It is important to have a good understanding of how these
measures are computed to avoid arriving at misleading con-
clusions. For instance, the commonly used MEAcc ascertains
if a model is fair simply based on the ratio of its predictive
accuracy between subgroups. Thus, it is possible to achieve
a fairer score by reducing the performance accuracy on the
majority group as exemplified in [Zanna et al., 2022]. This is
a sub-optimal solution and would not be ideal given the grave
consequence associated with MHD disorder and analysis. We
sum up our findings and outline a set of recommendations
in Table 5 to address the foreseeable challenges in bias mit-
igation for MHD applications. The problem of bias in MHD
analysis is multi-faceted and remains an open challenge.
Overall, there are still many open-ended shortcomings that
we have not been able to address in this paper. We hope that
our results provide some much needed insights to the problem
of bias in MHD analysis and will pave the way for several
interesting future research directions [Cheong et al., 2022a;
Churamani et al., 2023] to ensure that the technology devel-
oped for MHD analysis are fair and ethical for all.
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