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Abstract
Machine learning (ML) technologies are known to
be riddled with ethical and operational problems,
however, we are witnessing an increasing thrust
by businesses to deploy them in sensitive applica-
tions. One major issue among many is that ML
models do not perform equally well for underrep-
resented groups. This puts vulnerable populations
in an even disadvantaged and unfavorable position.
We propose an approach that leverages the power
of web search and generative models to alleviate
some of the shortcomings of discriminative mod-
els. We demonstrate our method on an image clas-
sification problem using ImageNet’s People Sub-
tree subset, and show that it is effective in enhanc-
ing robustness and mitigating bias in certain classes
that represent vulnerable populations (e.g., female
doctor of color). Our new method is able to (1)
identify weak decision boundaries for such classes;
(2) construct search queries for Google as well as
text for generating images through DALL-E 2 and
Stable Diffusion; and (3) show how these newly
captured training samples could alleviate popula-
tion bias issue. While still improving the model’s
overall performance considerably, we achieve a sig-
nificant reduction (77.30%) in the model’s gender
accuracy disparity. In addition to these improve-
ments, we observed a notable enhancement in the
classifier’s decision boundary, as it is characterized
by fewer weakspots and an increased separation be-
tween classes. Although we showcase our method
on vulnerable populations in this study, the pro-
posed technique is extendable to a wide range of
problems and domains.

1 Introduction
Computer vision applications have become incorporated into
several daily activities in modern societies, and the user base
of these applications appears to be growing worldwide as
more developing societies are exposed to them. Despite the
widespread attention and maturity of the field, this technol-
ogy and its manifestation in various applications suffers from
issues that could have harmful societal impacts. Studies have

shown that underrepresentation of certain demographics in
datasets imparts bias to machine learning (ML) models [Zhao
et al., 2017; Hendricks et al., 2018; Buolamwini and Gebru,
2018]. This could result in such underrepresented groups be-
coming more vulnerable, as the negative impacts of these ML
services could have far-reaching consequences. Nevertheless,
many businesses have rolled out services that rely on flawed
technologies in order to expand to untapped markets.

Businesses often fail to address ML models’ performance
issues for underrepresented and vulnerable populations be-
cause (1) they lack enough resources (primarily, data) re-
quired to fairly train their ML models; and/or (2) there may be
a concern of how specifically focusing on small groups could
negatively affect the performance of large groups, which may
bring down the overall accuracy of the models. Technically
and economically, it may be prohibitive to have an overall
blanketed approach to fix the discrimination problem in an
ML model. But, if we could identify specific weakspots in a
model and fix them without significantly affecting the rest of
the model, we could address this problem of discrimination
without sacrificing the overall performance of the model.

In this work, we present a way to leverage generative mod-
els and the web to address the challenging task of mitigating
bias in services provided to vulnerable populations, which is
an essential step towards achieving two of UN’s Sustainable
Development Goals (SDGs): gender equality (SDG-5) & re-
ducing inequalities (SDG-10).

To the best of our knowledge, this is the first of its kind
attempt to address discrimination against underrepresented
(and often vulnerable) classes using a combination of web
search and image generation models while also providing a
novel framework for enhancing robustness by improving de-
cision boundaries. The rest of the paper is organized as fol-
lows. After reviewing some of the related works in Section
2, we provide an overview of the problem and approach in
Section 3. The details of our method are presented in Sec-
tion 4. In Section 5, we describe the datasets used for our
experiments, following the experimental details and results
in Section 6. Given that this is a new method for address-
ing an important problem of bias in ML, we discuss what this
means for addressing the needs of vulnerable populations and
the UN’s SDGs (specifically, SDG-5 and SDG-10) in Section
7. The paper is concluded in Section 8 with some remarks on
the current state of this research and future directions.
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2 Related Work
In this section, we review some of the related concepts and
relevant literature required to better understand this work.

2.1 Bias in Data
ML models, in general, are built to learn patterns and asso-
ciations present in the data without questioning their valid-
ity and appropriateness. Perhaps, a more concerning find-
ing is that ML models often amplify the bias present in data
[Wang et al., 2019; Zhao et al., 2017]. To mitigate bias in
ML models resulting from imbalanced or inadequate datasets,
researchers have proposed several approaches which include
balancing datasets in an attempt to address underrepresenta-
tion [Yang et al., 2020; Minot et al., 2022; Buda et al., 2018;
d’Alessandro et al., 2017; Liu et al., 2008].

However, balancing the dataset in terms of the number of
samples per class may not be sufficient [Słowik and Bottou,
2021; Buda et al., 2018; Wang et al., 2019]. For instance,
images belonging to the same class might contain informa-
tion that varies significantly and this may induce biases even
when the dataset is balanced. In order to mitigate bias infus-
ing patterns in datasets, it is paramount to identify spurious
correlations learned by the ML model and procure training
samples that have a neutralizing effect.

2.2 Robustness in ML Models
In addition to bias issues, lack of robustness is also a well-
known cause for concern when it comes to ML models [Car-
lini and Wagner, 2017; Hendrycks et al., 2021; Taori et al.,
2020; Szegedy et al., 2013]. In machine learning, robust-
ness reflects the model’s ability to not being significantly af-
fected by varying conditions. However, a bulk of research has
mainly been focused on a specific type of robustness, namely
adversarial robustness, which deals with the model’s ability to
handle adversarial attacks [Goodfellow et al., 2014]. Several
scholars have studied the impacts of natural transformations
such as changes in lighting conditions [Taori et al., 2020;
Wang et al., 2021a]. A lesser explored case is the ro-
bustness to spurious correlations, which has recently gained
more attention [Wang and Culotta, 2021; Wang et al., 2021b;
Singla and Feizi, 2022; Plumb et al., 2022].

Improving adversarial robustness does not translate to en-
hanced robustness towards natural transformations [Wang et
al., 2021a] or variations arising from distribution shifts [Taori
et al., 2020]. For a model to be reliable, it needs to be robust
against varying conditions that arise from the entropy of the
real world, and not just from malicious entities.

Disproportionate object to class associations can give rise
to spurious correlations, and these patterns compromise the
classifier’s robustness to distribution shifts [Singla and Feizi,
2022; Plumb et al., 2022]. In [Plumb et al., 2022], the au-
thors rely on saliency maps and pixel-wise object annotations
to identify spurious patterns, and then mitigate these patterns
through data augmentation by counterfactual image genera-
tion. This method produces classifiers that are more accurate
on distributions where the spurious patterns are not helpful
and robust to distribution shifts. In contrast, our approach is
more generalized as it handles spurious correlations among
other shortcomings of the model.

2.3 Data Augmentation

Data augmentation is a widely used technique to address per-
formance issues of ML models. Various approaches to im-
plement data augmentation have been proposed for address-
ing pitfalls such as class imbalance, overfitting, bias issues,
and distribution shifts [Kim et al., 2021; Jaipuria et al., 2020;
Yucer et al., 2020; Hu and Li, 2019; Sharma et al., 2020].
Transformations as simple as rotation or random crop have
been proven to improve classifiers [Mikołajczyk and Gro-
chowski, 2018]. However, in applications where the data
distribution is characterized by multiple varying factors, aug-
mentation techniques with higher control over the synthetic
augmentation process are required.

For instance, infinite unique datapoints are bound to ex-
ist in an unconstrained real-world environment, which makes
capturing long tails of the distribution impractical [Jaipuria
et al., 2020]. To meet such complex requirements, augment-
ing data through generative techniques such as neural style
transfer, GANs, VAEs, and simulation engines have been ex-
plored [Yucer et al., 2020; Chen et al., 2022]. However, each
of these methods comes with its own set of limitations. Sim-
ulation engines serve as a powerful tool if the goal is to diver-
sify scene attributes in robotic tasks [Chen et al., 2022], but
are not extendable to use cases beyond the simulated realm.
Notably, the recent text-to-image generative models [Ramesh
et al., 2021; Rombach et al., 2022] offer a higher degree of
freedom and control in the generation process and have not
been explored for data augmentation until now.

3 Overview

This section presents the research problem this paper aims to
address and an overview of our proposed approach.

3.1 Research Problem

Despite various efforts described in the previous section for
mitigating bias and robustness issues, we lack a systematic
approach that pinpoints where exactly the performance is-
sues for underrepresented classes are coming from and how
to address them through data augmentation without disrupt-
ing the overall performance of the image classifier. We break
this down into three subproblems: (1) identifying weakspots
in the classifier’s decision boundary; (2) procuring new data-
points that selectively enhance the decision boundary near the
weakspots; and (3) leveraging the augmented data to mitigate
the model’s bias and enhance its robustness.

3.2 Approach Overview

To solve the problem described above, this paper proposes
a framework that can automatically detect the weakspots in
classifiers and, more importantly, leverage the internet’s vast-
ness and the emerging super-realistic text-to-image genera-
tive models to mitigate bias and robustness issues. We ad-
dress all of the subproblems, and thus, our contribution is
three-fold. The overview of the proposed framework is shown
in Figure 1 and its workings are detailed in Section 4.
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Figure 1: Overview of the proposed approach. Pivotal images representing the weakspots of the classifier are identified and used to generate
detailed textual descriptions by leveraging the supporting metadata. New training samples are acquired using these descriptions through
generative models which facilitate the enhancement of the classifier (Refer Section 4.3).

4 Methodology
In this section, we present the methodology for identifying
the weakspots in the classifier’s decision boundary, procur-
ing new training samples that belong to these weak regions
with high precision, and remedying the model’s robustness
and bias issues through strategically captured training data.

4.1 Identifying Model Weaknesses
Identifying Weakspots
To identify weakspots present in the classifier’s decision
boundary, we need to search the latent space for weak neigh-
borhoods with relatively high perplexity. However, search-
ing for weakspots in a large latent space is computation-
ally intensive. Therefore, we adopt a powerful tool that
uses GPU acceleration to perform similarity search, Face-
book FAISS [Johnson et al., 2019], thus improving the ef-
ficiency of weakspot search.

A sufficiently large number of data samples that can ad-
equately represent the dataset’s distribution are required to
identify weakspots. Feature embeddings are extracted for
each image in this representative set, and these feature vectors
are fed to the similarity search algorithm. In our experiments,
we use FAISS to perform this step, using the IndexFlatL2
operation that retrieves top k neighbors along with their eu-
clidean distance values for each datapoint. Subsequently, we
perform a grid search on all misclassified instances to check
if they lie near a weakspot. Consider an instance originally
belonging to class 1 erroneously labeled as class 2, keeping a
maximum neighbor L2 distance d as radius, if at least a fixed
threshold percentage of neighbors are correctly classified as
class 2, we detect a weakspot between the two classes in con-
sideration. The corresponding misclassified datapoint at the
center of the weak region is identified as pivotal image.

Identifying Object Associations and Spurious
Correlations
We employ a combination of deep learning tasks to identify
object associations and spurious correlations learned by the

deep learning model. As understanding the content of an im-
age is an essential first step, we use scene recognition and ob-
ject detection to obtain necessary image metadata that helps
figure out which factor(s) is/are the primary contributors to a
classifier’s decision. To achieve this, we rely on explainabil-
ity heatmaps to detect which objects present in the image ap-
pear to trigger the classification. If the explainability method
detects pixels belonging to an object to have higher relevance
beyond a certain threshold, an association between that object
and the classifier’s predicted class is detected for that partic-
ular instance. For example, in Figure 2, the first column con-
sists of original images, the second column consists of seg-
mented images, and the third consists of heatmaps overlayed
on segmented images. Relevant associations between classes
and objects identified in Figure 2 (a) tennis player – ‘tennis
racket’, ‘sports ball’, ‘person’, Figure 2 (b) traffic cop – ‘per-
son’, ‘car’, ‘motorcycle’, ‘truck’, Figure 2 (c) ballplayer -
‘person’, ‘bench’, ‘baseball glove’.

It is non-trivial and highly subjective to decide whether
an object association is inappropriate or not. From the ob-
served associations, the next challenge is to filter out the ones
deemed to be spurious. It requires human judgment, as AI
is incapable of making conscious or ethical calls. Therefore,
through manual intervention, we identify questionable asso-
ciations made by the model. As the proposed approach iden-
tifies scenarios where the model is likely to fail (see Section
4.1a), manually checking for the presence of spurious correla-
tions is feasible because the algorithm conveniently shortlists
cases which need reviewing. Mitigating search phrases are
subsequently added to the set of text prompts to be used for
procuring neutralizing images. (see examples in Figure 6).

Addressing Bias Issues
To mitigate bias, we need to procure samples that neutralize
patterns in the data that lead to harmful biases being learned
by the ML model. In contrast to standard data balancing, this
approach does not merely match the number of samples per
class, rather it emphasizes the trends present in the data. This
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Figure 2: Object associations through heatmaps and segmentation.

is essential due to the fact that even when the data is perfectly
balanced in terms of instances per class, harmful patterns
could still be learned [Wang et al., 2019]. As these patterns
lead to weak regions in the decision boundaries, which are
detected by our algorithm, effective counterexamples are au-
tomatically procured in subsequent steps (see 4.2b and 4.2c).

Addressing Robustness Issues
In this work, we address robustness towards model failures
caused by natural triggers such as overfitting on scene infor-
mation or learning spurious correlations. To address these
robustness issues, the identified pivotal images representative
of weak regions of the classifier are used as ‘anchoring sam-
ples’, analogous to ‘support vectors’ in SVMs [Chapelle et
al., 1999]. Subsequently, images with comparable content to
the anchoring samples are either generated using generative
models or retrieved using web search engines. Additional dat-
apoints that are sampled from the weakspot’s latent space are
expected to alleviate the perplexity around it.

4.2 Fixing Model Weaknesses
Once we have identified the weakspots in a model, the next
step is to find appropriate data to fix them. We do this using
web search as well as image generation models.

Generating Search Phrases for Pivotal Images
Once weak regions have been identified, we attempt to pro-
cure samples from the latent space belonging to these regions.
Pivotal images, as they are located at the centers of these re-
gions with high perplexity, act as a good anchoring point to
generate or retrieve similar samples. As we plan to retrieve
samples from web search engines and text-to-image models
which take text data as input, an accurate and specific text
description of the pivotal image is crucial. To achieve high-
quality descriptions, we use a combination of techniques.

Firstly, we use the Vit-GPT2 [Dosovitskiy et al., 2020;
Radford et al., 2019] image captioning model to generate a
caption for the pivotal image. However, these captions might
lack the level of detail to use them for accurately generating
new images. For instance, a common occurrence is that the
captions are characterized with pronouns instead of a descrip-
tion of the person in the image. To remedy this, we replace all

pronouns with the class label of the image, as these labels ac-
curately represent the person seen in the image. Additionally,
we use scene information generated by the Places-365 CNN
model [Zhou et al., 2017] to incorporate scene information
into the textual description by only considering the high-level
details, such as if the image is taken indoors or outdoors and
the venue. These steps ensure that we obtain a sufficiently de-
tailed and accurate description required to generate or retrieve
highly relevant training samples.

Procuring Images through Web Search Engines
Once detailed descriptions have been generated, web search
engines can be used to collect new training images. An ad-
vantage of using search engines is that most of the retrieved
images can be observed in the real world. However, in cases
where the textual description is of an uncommon instance, the
retrieved images may not sufficiently match the search phrase
or be irrelevant. For example, the search results of a person
of color female doctor would be useful, but the results of a
male nurse with a potted plant on a desk returned by image
search engines would not adequately match the description.
To address this gap, we generate images with those specific
characterizations using generative models.

Procuring Images through Generative Models
In addition to retrieving image search engines, another way
to collect desired images is generating them based on given
text. The recently released text-to-image generative models,
such as DALL-E 2 [Ramesh et al., 2021] and Stable Diffu-
sion [Rombach et al., 2022], are able to generate high-quality
super-realistic images that accurately match the text descrip-
tion of the pivotal image. Compared to web search engines,
text-to-image models allow to sample the weak region more
precisely, enabling the generation of highly effective training
samples in a more accurate manner.

4.3 Flow of Operations
Here, we present the workflow of our proposed approach in
Figure 1, and the corresponding algorithm in Algorithm 1.
Initially, Places465-CNN [Zhou et al., 2017] and Mask R-
CNN [He et al., 2017] are used to generate scene attributes
and segmentation maps respectively for all datapoints, as this
metadata is required in subsequent steps. On the image clas-
sifier trained on the original training set, we use GradCAM
[Selvaraju et al., 2017] to generate heatmaps, which are used
in conjunction with object segmentation maps to obtain ob-
ject associations. Next, FAISS is used to conduct a similar-
ity search on the feature embeddings to generate the near-
est neighbors along with their distances, which are fed to
the weakspot search algorithm. The pivotal images repre-
senting the identified weakspots are then captioned using the
VIT-GPT2 model, and the resulting image descriptions are
enhanced with the metadata generated in previous steps to
obtain detailed textual descriptions. These descriptions are
used for retrieving images using Google image search, as
well as for generating images using the text-to-image mod-
els. Subsequently, the original dataset is augmented with new
datapoints, and this updated dataset is utilized to train the en-
hanced image classifier.
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Algorithm 1: Enhancing Classifier
1 Input: Dtrain: train dataset; Dtest: test dataset; C:

original classifier; tdist: L2 distance threshold; tperp:
perplexity threshold;

2 Operations: procweb(): procure images from web;
proctxt2img(): procure images from text-to-image
model; finetune(): finetune model; perplexity():
compute perplexity; object associations(): get
object associations; get neighbors(): get
neighbors within tdist; textual description(): get
textual description; find spurious(): find spurious
correlations;

3 Output: enhanced classifier C ′;
4 Tdesc ← ∅ ; // initialize text

descriptions as empty
5 Oasso ← ∅ ; // initialize object

associations as empty
6 for xiϵDtest do
7 neighbors← get neighbors(xi, tdist) ;
8 perp← perplexity(neighbors) ;
9 if perp > tperp then // xi is detected as

a pivotal image
10 Insert textual description(xi) into Tdesc;
11 Insert object associations(xi) into Oasso;
12 end
13 end
14 Insert

textual description(find spurious(Oasso))
into Tdesc;

15 Dweb ← procweb(Tdesc) ;
16 Dtxt2img ← proctxt2img(Tdesc) ;
17 Dupdated ← Dtrain ∪Dweb ∪Dtxt2img ;
18 C ′ ← finetune(C,Dupdated) ; // return

enhanced classifier
19 return C ′

5 Datasets

ImageNet People SubTree: This subset of ImageNet contains
2,832 people categories, however, only 139 of these cate-
gories are considered safe and imageable [Yang et al., 2020].
In our experiments, we only considered classes identified as
safe and free from annotator bias. From these 139 classes, we
selected the ones that are either a profession or an occupation.
Categories which share the lowest common hypernym that
has a broader yet specific definition of an occupation were
merged together. For instance, captain, chief of staff, gen-
eral, major, Navy SEAL, military personnel were all mapped
to military officer, as some of these classes are an abstrac-
tion of others. Finally, we ended up with 40 classes that were
used to conduct our experiments. Each class had at least 100
images in both training and testing sets.

In [Yang et al., 2020], the authors prepared annotations for
100 images per each synset, which resulted in 13,900 images.
We filtered out categories that were not related to an occupa-
tion, and this step resulted in 6,278 images. We used all of
the annotated images in the test set and the remaining images

Figure 3: Samples from weak regions between classes (a) lifeguard
and carpenter (b) military officer and musician (c) traffic cop and
flight attendant. Erroneous predictions are labeled in red. Images
with black borders are pivotal images.

without annotations in the train set, creating a sample size of
6,278 and 64,516 respectively for each partition.

To conduct our experiments, we required further informa-
tion to help us examine the constituents of the image. To this
effect, we used object detection and scene recognition to gen-
erate the required additional metadata.

6 Experiments and Results
To demonstrate the efficacy of the proposed method, we
started by building an image classifier on the 40 class sub-
set. Using ResNet50 [He et al., 2016], we retrained the last
layer on our training set to obtain 80.12% test accuracy. How-
ever, this model demonstrated significant performance dispar-
ity. The accuracy for males across all categories was 81.76%,
whereas for females it was 75.68%, amounting to a 6.08%
gender accuracy disparity. We noticed that the model per-
formed significantly worse for person of color female doctors,
as the accuracy for this demographic is just 27.78% in com-
parison to 79.38% for the doctors class. After enhancing the
classifier with our method, gender accuracy disparity dropped
from 6.08% to 1.38% amounting to a 77.30% reduction.

Using our technique, we found weakspots in the deci-
sion boundary of the classifiers. Observing the identified
weakspots could reveal valuable insights about the model be-
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Classifier Gender
Original Enhanced

Acc Prec Rec Acc Prec Rec

ResNet50 All 80.12 82.56 77.5 84.09 84.52 82.28
ResNet50 Male 81.76 79.09 75.24 84.54 80.12 82.46
ResNet50 Female 75.68 70.58 74.3 83.16 78.1 79.32

Table 1: Performance of the classifier before and after enhancement.

Figure 4: Images generated by DALL-E to mitigate perplexity in
weak regions between lifeguard and carpenter (see Figure 3 (a)).

havior, leading to higher transparency of the automated de-
cision process. Revealing the classifier’s weaknesses could
also introduce accountability, as the developers of the model
would be informed of scenarios where it is likely to fail, and
would have to prepare to handle such cases.

For instance, in Figure 3 (a), we notice that a lifeguard is
being predicted as a carpenter due to the presence of wooden
structures. By sampling near this weakspot between lifeguard
and carpenter classes (see Figure 4), we help the model per-
form better in similar cases. In 3 (b), we see that the model
confuses a soldier manning a machine gun with musicians
playing an instrument, and the closest three neighboring im-
ages share similar scene attributes – all of them are situated
outdoors with open skies. In 3 (c), we observe that a traffic
cop is labeled as flight attendant because of the background,
as the inside of the bus looks similar to an airplane cabin.

Using the pivotal images representing these weak regions,
we procured neutralizing images to alleviate the perplexity
present around weakspots in the decision boundary. Ad-
ditionally, we also inspected for any spurious correlations
learned by the model by observing the object associations in
the identified weakspots. For instance, the presence of pot-
ted plant object in images of nurses fools the model into mis-
classifying them as gardener. To counter this spurious cor-
relation, we generated images of nurses with potted plants
situated in front of them using DALL-E.

Probing performance disparity for the identified weakspots
also revealed valuable insights. For instance, taking a closer
look at the weakspot between doctor and nurse classes un-
covered the model’s bias against the underrepresented de-
mographic of person of color female doctors. The classifier
correctly classified doctors 79.38% of the time, however, it
demonstrated a significant drop in accuracy for colored fe-
male doctors with an accuracy of 27.78%. After strategic re-
training, the disparity was reduced by 49.37%.

To neutralize the weakspots identified by the technique, a
total of 2,144 neutralizing training samples were procured,
increasing the training set size by 3.32%. Despite being a
relatively small-sized addition, the strategically crafted train-
ing samples resulted in a considerable improvement in the
model’s performance. The model’s overall accuracy in-

Figure 5: Person of color female doctors have the least accuracy
across demographics (27.78%, overall is 79.38%). Representative
image from ImageNet (left, red borders). Neutralizing images pro-
cured through (a) Web Search (b) DALL-E and (c) Stable Diffusion.

Figure 6: Spurious correlation between potted plant and gardener
class (image shown with red border). Images on the right are images
generated using DALL-E to counter this spurious correlation.

creased by roughly 4%, but more importantly, the gender
accuracy disparity was reduced by 77.30% (see Table 1).
Top five categories with the highest gender accuracy dispar-
ity have been tabulated in Table 2, and observe a significant
reduction in the disparity for four of the five classes. Notably,
this mitigation of bias was achieved without compromising
the overall performance of the model.

Sampling weak regions near the decision boundary and re-
training with carefully crafted additional datapoints resulted
in better-defined class boundaries with fewer weakpoints and
better separation. As can be observed in Table 3, the max-
imum number of weakspots identified in the original model
was 139 with d=50 (L2 distance) as the radius around piv-
otal datapoint in the latent space. After improving the model
with the proposed approach, no weakspots were identified at
d=50, and few were detected at higher d values. This in-
dicates a clear increase in inter-class separation and a more
robust decision boundary of the classifier.

7 Discussion
Many ML models suffer from issues stemming from imbal-
ance in datasets [Zhao et al., 2017; Hendricks et al., 2018;
Buolamwini and Gebru, 2018]. Typically, this results in clas-
sifiers performing substantially worse for some of its minor-
ity classes, even when the overall performance is high [Buo-
lamwini and Gebru, 2018]. The adverse effects of such biases
are felt the most by underrepresented and vulnerable demo-
graphics, making them susceptible to larger harms of ML-
based discrimination. For instance, studies have shown that
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Class
Accuracy
(original)

Accuracy
(enhanced)

Accuracy
disparity
decrease (%)All M F All M F

Nurse 66.18 13.51 77.4 70.1 17.9 82.2 -0.59
Coalminer 83.33 86.52 33.3 87.1 87.8 50.0 28.97
Boatperson 78.15 81.73 33.3 96.8 97.6 75.0 53.21
Firefighter 78.95 81.48 33.3 76.9 79.6 50.0 38.43
Painter 65.0 74.68 30.0 72.8 75.6 55.6 55.12

Table 2: Top five classes with the highest performance disparity for
male and female. Significant decrease in accuracy disparity is ob-
served for four of the five classes. Improvements are emboldened.

Classifier
Number of weakspots

d=10 d=15 d=20 d=50 d=80 d=110 d=140
ResNet50,
Original

52 112 133 139 139 139 139

ResNet50,
Enhanced

0 0 0 0 11 44 87

Table 3: Number of weakspots identified with perplexity of 70%. d
refers to radius of the weak regions in euclidean distance.

when it comes to certain job results in image searches, fe-
males and people of color are highly underrepresented [Lam
et al., 2018]. Even when search engines attempt to address
this issue, recent research has shown that the fixes are often
on the surface and not foundational [Feng and Shah, 2022].
Such bias in representation leads to cognitive bias, and per-
petuates biases in data and algorithms [Baeza-Yates, 2018].

While several studies have attempted to solve the lack
of diversity in datasets through data augmentation, previ-
ous approaches for generating new samples have limita-
tions [Mikołajczyk and Grochowski, 2018; Kim et al., 2021;
Iosifidis and Ntoutsi, 2018; Jaipuria et al., 2020; Yucer et al.,
2020; Hu and Li, 2019; Sharma et al., 2020]. A common
drawback of most of these approaches is that they are not
extendable to other problems, even if they are shown to work
well with a specific problem. This is due to the limited degree
of freedom and control in the existing approaches. In con-
trast, our method uses text-to-image generative models that
offer a higher degree of variation in multiple aspects such as
the background, objects, and person attributes among others.

Any attempt to diversify datasets using traditional ap-
proaches such as collecting more data requires a substan-
tial investment in terms of both time and money. In some
cases, it might not even be feasible due to operational chal-
lenges. There is also a limit to how much diversification can
be achieved through additional data collection. However, this
should not justify the use of biased datasets to train ML mod-
els that may adversely affect vulnerable populations, and the
responsibility falls on the ML community to devise solutions
that address this challenge. As an alternative, we proposed an
approach that could circumvent many of these hindrances by
procuring diverse samples instantaneously at low costs.

Adversarial training typically enhances weak decision
boundaries when gradient-based attacks are used to generate
the samples, as these techniques compute the least amount of
perturbation required to fool the classifier [Madry et al., 2017;

Goodfellow et al., 2014]. However, improvements obtained
through this approach are limited to robustness against adver-
sarial attacks and ineffective against natural variations or dis-
tribution shifts [Wang et al., 2021a; Taori et al., 2020]. More-
over, they are not suitable for diversifying the demographics
of the training samples. The proposed approach serves an
ideal alternative which tackles these shortcomings.

Another major concern about the performance of ML mod-
els in deployment is that the distribution of the data it was
trained may be different from the real-world data. For exam-
ple, a medical diagnosis model trained on a predominantly
western population may exhibit erroneous behavior when put
to practice in other parts of the world. A study on chest X-ray
pathology classification model demonstrated this issue, as pa-
tients from under-served demographics were underdiagnosed
[Seyyed-Kalantari et al., 2021; Bernhardt et al., 2022].

In addition to portability from data distribution to another
being an issue, we should also be concerned about the dis-
tribution of the same data evolving over time. Therefore,
periodical evaluation of machine learning models in deploy-
ment is a requirement. As the data changes over time, new
weakspots in the decision boundary of the classifier may
arise. Consequently, the technique presented in this paper
could be used to keep the ML model up to date to reflect nat-
ural changes emerging in the distribution of the data.

The proposed approach acts as a step in the right direction
to solve the issues discussed above. In the future, we should
aim to work towards methods that proactively prevent bias
issues, instead of fixing the existing ones in a posthoc fashion.

8 Conclusion

In this paper, we presented a method to address three prob-
lems: (1) identifying weakspots in image classification; (2)
procuring data appropriate for re-learning those weak bound-
aries; and (3) incorporating such data for training a classifier
such that its bias and robustness issues are mitigated.

The proposed method to enhance discriminative models
by leveraging generative models and web search engines in-
stills various desirable characteristics such as robustness, fair-
ness, and transparency to the original model while still im-
proving the overall performance. In addition, the steps in-
volved in executing this approach imparts model understand-
ing and accountability, and as such should be used as a
post-development practice before deployment. Finally, this
method addresses an often overlooked problem of robustness
towards spurious correlations and scene variations. By rem-
edying weakspots through targeted sampling, the decision
boundary of the classifier is enhanced with fewer vulnerable
points and higher inter-class separation.

While we applied our method on a specific classification
problem with a focus on certain vulnerable populations, the
method presented in this paper is flexible and can be used
to improve classifiers in various applications and domains.
As demonstrated, we envision this approach to be extended
to several other tasks and promoting better practices in the
development of ML models.
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